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ABSTRACT: Cityscapes contain a variety of objects, each with a particular role in urban administration and development. With the 
rapid growth and implementation of 3D imaging technology, urban areas are increasingly surveyed with high-resolution point 
clouds. This technical advancement extensively improves our ability to capture and analyse urban environments and their small 
objects. Deep learning algorithms for point cloud data have shown considerable capacity in 3D object classification but still face 
problems with generally under-represented objects (such as light poles or chimneys). This paper introduces the ESTATE dataset 
(https://github.com/3DOM-FBK/ESTATE), which combines available datasets of various sensors, densities, regions, and object 
types. It includes 13 classes featuring intensity and/or colour attributes. Tests using ESTATE demonstrate that the dataset improves 
the classification performance of deep learning techniques and could be a game-changer to advance in the 3D classification of urban 
objects. 

Figure 1: Examples of some objects included in the ESTATE dataset realized to improve the identification and classification of 
normally under-represented objects in urban point clouds. 

1. INTRODUCTION

Urban point clouds have recently played an important role in 3D 
scene interpretation (Xie et al., 2020; Grilli et al., 2021). The 
growing use of reality-based 3D techniques is sparking research 
efforts to develop solutions for point cloud analyses useful for 
building modelling (Özdemir and Remondino, 2018), urban 
management (Zolanvari et al., 2019), street furniture extraction 
(Bai et al., 2021), digital twin generation (Ismail et al., 2023). 
Operative approaches for point cloud categorization rely on 
hand-crafted feature extraction rules and a variety of machine 
learning-based classifiers (Zhang et al., 2023). With the 
advancements in deep learning-based techniques, the use of deep 
neural networks has gained traction (Hu et al., 2020; Hu et al., 
2021; Mao et al., 2022; Ren et al., 2023), including the 
combination of logic rules (Grilli et al., 2023). 
Although there have been positive findings, the classification of 
3D point clouds still encounters numerous difficulties when 
applied in real-world scenarios. While current methods perform 
well on single datasets, they generally struggle to generalize 
when faced with cross-dataset circumstances, where the training 
and test data are obtained from distinct distributions (Wang et al., 
2021). Figure 1 shows how point clouds from distinct datasets 
can vary in terms of density, colour, noise and shape. This 
variation is particularly visible in small and generally under-
represented objects, such as cables, traffic lights and garbage 

boxes. With the advancement of 3D digitization techniques and 
the increase in point cloud density, machine and deep learning 
methods suffer even more in detecting small urban objects. 
The presence of under-represented classes limits the performance 
of state-of-the-art neural networks. Therefore, to allow an 
effective utilization of deep learning-based algorithms in real-
world contexts, especially for supporting the needs of 
municipalities and mapping agencies, a set of discriminated 3D 
urban elements must be incorporated. The use of reality-based 
3D surveying data with respect to synthetic ones (Wu et al., 2015; 
Chang et al., 2015; Deitke et al., 2022) can enhance dataset 
generalization and expand its applications.   

1.1 Paper motivation and aims 

The motivations behind the presented research activities include: 
• presence of under-represented urban objects in available

datasets/benchmarks which can hardly be segmented with
state-of-the-art neural networks;

• generalization issues across datasets using current deep
learning approaches due to the heterogeneity of sensors, data,
and locations.

The goal of the study is thus to create an urban point cloud dataset 
fulfilling the following criteria: 
• data should come from several locations to represent diverse
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Name Reference Classes Tot. Numb. of Objects Target Scene Type 
Sydney Urban Objects De Deuge et al. (2013) 14 588 Outdoor scenes  Real World 

ModelNet10 Wu et al. (2015) 10 4596 Indoor objects  Synthetic 
ModelNet40 Wu et al. (2015) 40 12311 Indoor objects  Synthetic 

ShapeNet Chang et al. (2015) 55 51190 Indoor objects  Synthetic 
ScanNet Dai et al. (2017) 17 12283 Indoor scenes  Real World 

ScanObjectNN Uy et al. (2019) 15 2902 Indoor objects  Real World 
Objaverse Deitke et al. (2022) 21K + 10 million + Indoor objects  Synthetic 

ModelNet40-C Sun et al. (2022) 15 185000 Indoor objects  Synthetic 
ESTATE (Our) - 13 6528 Outdoor scenes  Real World 

Table 1. A summary of some representative datasets for object classification in point clouds. 
 

 
Figure 2: Potential uses of the proposed ESTATE dataset. 

 
landscapes, environments and construction styles; 

• data should include various under-represented urban objects, 
such as poles, vehicles and infrastructural units; 

• data should have been acquired using different sensors, such 
as Mobile Laser Scanner (MLS), Airborne Laser Scanner 
(ALS), Unmanned Aerial Vehicle (UAV-Photo) or Airborne 
Photogrammetry, and include sensor-specific features 
(colour and intensity); 

• data must feature various resolutions (density); 
• data should support object classification. 
Therefore, the aim of the paper is to present ESTATE, a new 
dataset to improve the identification and classification of 
normally under-represented objects in urban point clouds, 
including generalization capabilities (Figure 2). ESTATE 
contains 13 objects (classes). It is produced by combining in-
house and available heterogeneous datasets and could also be 
used for semantic segmentation purposes. The reported analyses 
demonstrate that ESTATE improves the classification 
performances of deep learning techniques.  
 

2. STATE OF THE ART 

3D point cloud datasets for object classification purposes can be 
broadly categorised based on the location (indoor vs outdoor) and 
scene type (synthetic vs real-world) (Table 1). 
Among the widely recognized datasets, Objaverse (Deitke et al., 
2022), ModelNet10 (Wu et al., 2015), ModelNet40 (Wu et al., 
2015), ModelNet40-C (Sun et al., 2022) and ShapeNet (Chang et 
al., 2015) consist of synthetic and indoor object samples. Despite 
their sizes, the synthetic contents limit their applicability in real-
world scenarios with environmental variability and 
unpredictability.  
On the other hand, datasets like ScanNet (Dai et al., 2017) and 
ScanObjectNN (Uy et al., 2019) provide real-world data captured 

from indoor environments. Although these datasets introduce 
more realistic scenarios compared to their synthetic counterparts, 
they still have disadvantages in representing generally under-
represented urban objects, such as traffic lights or street furniture, 
which are crucial for applications like autonomous driving and 
urban planning.  
The Sydney Urban Objects dataset (De Deuge et al., 2013) 
addresses some of these gaps by comprising reality-based point 
clouds of outdoor objects. However, the insufficient sample size 
of this dataset hampers its ability to generalize across the broad 
range of objects and complex urban conditions. 
In summary, while significant progress has been made in the 
development of 3D datasets for object classification, the field 
should continue to evolve with an increasing focus on enhancing 
the diversity, realism and practical applicability of the real-world 
dataset by including a sufficient variety and number of under-
represented urban objects. 
 

3. THE ESTATE DATASET 

To overcome the above-mentioned gaps, as well as 
generalization limitations of neural networks with existing 
datasets, we provide ESTATE (Figures 2 and 3), which includes 
various urban objects normally under-represented in the publicly 
available datasets. ESTATE contains 13 different classes of 3D 
points (with colour and/or intensity information) extracted and 
merged from 11 MLS/ALS/UAV-Photogrammetry datasets, 
which were created for 3D segmentation purposes:  
• WHU-Urban3D (Han et al., 2024): a large-coverage ALS and 

MLS annotated datasets (three subsets) containing urban 
scenes and roads from different cities (one of the subsets 
contains 37 annotated classes); 

• DublinCity (Zolanvari et al., 2019): a benchmark dataset 
including 13 manually annotated object classes from a 
LiDAR point cloud depicting the city of Dublin; 
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Approx. point density 
(pts/m2) 600 348 140 2000 700 400 1000 100 1000 800 1000 

Light Pole 337 258 70 52 48 8 5 116 346 32 64 1336 
Traffic Light 79 3 2 15 17 - - 16 6 - 26 164 

Pole 135 71 27 24 28 - 13 67 39 18 32 454 
Electr. Pole 7 - 83 2 - - - 43 - - 41 176 
Traffic Sign 231 5 74 124 114 9 - 36 20 14 43 670 

Pylon - 8 125 - - - - - - - - 133 
Cable - 81 43 - - - - - - - 183 307 

Garbage Box 87 - - 162 13 369 17 - 120 66 - 834 
Car 85 80 - 274 7 130 - - 801 28 78 1483 

Truck 10 - 5 - 2 20 14 6 64 - - 121 
Bus 7 30 - - - 3 2 2 38 - - 82 

Chimney - 54 65 - - - 232 - 234 40 - 625 
Ventilation - - - - - 38 - - 105 - - 143 

Total 978 590 494 653 229 577 283 286 1773 198 467 6528 
Table 2. Selected datasets and extracted objects (classes) featuring the proposed ESTATE dataset. ALS and MLS data include also 
intensity values. 
 
• Hessigheim (Kölle et al., 2021): a high-density UAV laser 

scanning point cloud dataset acquired over the village of 
Hessigheim (Germany), segmented into 11 classes; 

• Paris-Lille3D (Roynard et al., 2018): about 2 km of MLS 
point cloud, acquired in Lille and Paris with 50 classes; 

• SensatUrban (Hu et al., 2022): a photogrammetric urban-
scale UAV dataset consisting of 13 object classes; 

• STPLS3D (Chen et al., 2022): a synthetic aerial 
photogrammetric point cloud annotated with 19 classes; 

• Swiss3DCities (Can et al., 2021): a LiDAR point cloud 
acquired over three Swiss cities with 5 semantic classes; 

• Toronto3D (Tan et al., 2020): an MLS point cloud which 
features 8 semantic classes; 

• YTU3D (Bayrak et al., 2023): a UAV photogrammetric point 
cloud acquired over the Davutpasa Campus of Yildiz 
Technical University (YTU) in Turkey, semantically labelled 
in 45 classes; 

• two in-house datasets from Turkey (TR-MLS) and Italy 
(FBK).  

The ESTATE dataset encompasses and refines semantically 
segmented 3D data from each of the presented datasets, focusing 
on 13 specific classes. It was noted that most of the datasets, due 
to semi-automatic or manual labelling procedures, contain many 
labelling errors; therefore, only higher quality and manually 
refined data were included in ESTATE. The dataset 
characteristics are summarized in Table 2.  
 

4. EXPERIMENTS 

The ESTATE dataset is generated to facilitate the accurate 
classification of generally under-represented objects. In the 
experiments, the data were split into the train (70%) and test 
(%30) with three different input configurations:  
• XYZ  
• XYZ + RGB 
• XYZ + intensity. 
Among the available recent deep learning methods (Wag et al., 
2019; Wu et al., 2019; Guo et al., 2021; Lu et al., 2022), we 
evaluated the performance of KPConv (Thomas et al., 2019), 
which is commonly used in 3D semantic segmentation, object 

classification and SLAM segmentation benchmarks. KPConv 
utilizes radius neighbourhoods as input and applies weights 
spatially determined by a small set of kernel points. KP-CNN is 
a convolutional network with 5 layers for classification. Every 
layer consists of two convolutional blocks, with the exception of 
the first layer, where the first block is not stride. The 
convolutional blocks are structured similarly to bottleneck 
ResNet blocks (He et al., 2016), utilizing a KPConv instead of 
the traditional image convolution, along with batch 
normalization and leaky ReLu activation. After the final layer, 
the features undergo aggregation through global average pooling 
and are then processed by the fully connected and softmax layers. 
Only deformable kernels are utilized in the last 5 KPConv blocks.    
These kernels have proven to be highly effective in learning local  
shifts that can accurately adapt to the point cloud geometry and 
local structures. An optimizer is used to minimize the cross-
entropy loss by implementing a Momentum gradient Descent 
approach. The batch size is set to 16, while the momentum is set 
to 0.98. The initial learning rate is set to 10-3. The learning rate 
was set to decrease exponentially, with a chosen exponential 
decay that guarantees a division by 10 every 100 epochs during 
training of 300 epochs. A dropout probability of 0.5 is employed 
in the fully connected layers at the end. The initial subsampling 
grid size was set to 1 cm.  
The purpose of ESTATE data is to make deep learning models 
invariant to various density, sensor, and object types belonging 
to the same class. Thus, in order to determine whether the 
ESTATE dataset improves (i) the classification performance and 
(ii) generalization capability of deep learning methods, two 
different training and testing approaches were applied: 
• Approach-1 (Single-Train Single-Test - STST): randomly 

selected 70% of the objects in each dataset as training and 
30% as test and perform training and testing for each dataset; 

• Approach-2 (All-Train All-Test - ATAT): all train and test 
sets of STST are merged to examine the classification 
performance in general; the model is then trained and tested 
on a dataset basis (All-Train Single-Test (ATST) and 
compared to STST.  

It is expected to obtain more accurate results for ATST since it 
includes training samples from all datasets.  
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Class XYZ Train 
Samples 

Test 
Samples  XYZ+Intensity Train 

Samples 
Test 

Samples XYZ+RGB Train 
Samples Test Samples 

Light Pole 0.92 930 406 0.96 360 159 0.93 397 174 
Traffic Light 0.76 112 52 0.67 42 21 0.67 33 15 

Pole 0.80 312 142 0.82 136 64 0.81 116 53 
Elect. Pole 0.76 121 55 0.80 87 39 0.74 58 26 

Traffic Sign 0.88 464 206 0.90 258 116 0.77 84 38 
Pylon 0.95 92 41 0.98 92 41 - - - 
Cable 0.80 214 93 0.89 214 93 0.96 128 55 

Garbage Box 0.89 581 253 0.94 168 73 0.87 399 173 
Car 0.99 1034 449 0.98 324 143 0.99 724 313 

Truck 0.82 82 39 0.00 4 3 0.82 71 33 
Bus 0.88 55 27 1.00 21 9 0.75 30 15 

Chimney 0.86 435 190 0.88 110 49 0.89 353 153 
Ventilation 0.68 99 44 - -  - 0.72 99 44 

Total  4531 1997  1816 810  2492 1092 

Table 3. ATAT results with KPConv on the 13 objects of ESTATE.  
 
For thorough performance analysis, these procedures are 
repeated for Intensity and RGB features to evaluate their 
importance (therefore: XYZ, XYZ+Intensity and XYZ+RGB).  
For the XYZ, XYZ+Intensity and XYZ+RGB input 
configurations, STST comprises 11, 6 and 6 training and testing 
operations, respectively. For the XYZ, XYZ+Intensity, and 
XYZ+RGB input configurations, ATST incorporates 1 training 
process and 11, 6 and 6 test operations, respectively.  Since 
ATAT comprises a single training and testing operation, a 
cumulative sum of 29 training operations and 49 test processes 
were executed within our analyses.  
Table 3 shows ATAT results obtained for XYZ, XYZ+Intensity, 
and XYZ+RGB input configurations and the number of samples 
used for training and testing. For Traffic Light, the best scores 
are obtained with XYZ input (F1-score of 0.76), while scores of 
0.99 and 0.82 are obtained for Car and Truck classes, 
respectively, for both XYZ and XYZ+RGB configurations. With 
XYZ+Intensity inputs, the most successful scores were obtained 
for Light Pole (0.96), Pole (0.82), Electrical Pole (0.80), Traffic 
Sign (0.90), Pylon (0.98), Garbage Box (0.94) and Bus (1.00) 
classes. For XYZ+RGB, the most successful results were 
obtained for Cable (0.96), Chimney (0.89) and Ventilation (0.72) 
classes. For the Traffic Light class, the addition of Intensity and 
RGB features decreased the classification accuracy. It was 
observed that the RGB attribute decreased the classification 
accuracy of objects with various colour ranges in different 
datasets such as Traffic Light, Electrical Pole, Traffic Sign, 
Garbage Box and Bus. This finding is similar to Sun et al. (2020), 
where the classification performance decreases with the addition 
of colour information. However, the best results were obtained 
with the addition of Intensity in Light Pole, Pole, Electrical Pole, 
Traffic Sign, Pylon, Garbage Box and Bus classes. According to 
these results, it is seen that the employed network uses the point 
cloud geometry predominantly, while RGB attributes (that can 
difference among datasets) decrease the generalization ability 
(which instead also increase with the Intensity attribute).  
Table 4 reports classification results using only XYZ 
information. The model trained on the ESTATE dataset using 
XYZ features improved the classification results. The F1-scores 

obtained for STST and ATST, respectively, have relatively small 
improvements of 0.95 to 0.96 for Light Pole in DublinCity, 0.85 
to 0.89 for Traffic Sign in FBK, 0.63 to 0.64 for TR-MLS Pole. 
But, at the same time, the ESTATE dataset allows meaningful 
improvements for Bus in DublinCity (from 0.2 to 1.00), Traffic 
Light in FBK (from 0.00 to 0.4), Light Pole in SensatUrban (from 
0.50 to 0.80), Electrical Pole in Paris-Lille3D (from 0.67 to 1.00), 
Garbage Box in Swiss3DCities (from 0.44 to 0.73), Traffic Light 
(from 0.00 to 0.86) and Electrical Pole (from 0.24 to 0.69) in 
Toronto3D.  However, no improvement was achieved in YTU3D 
and Hessigheim datasets. This is probably due to the high 
similarity of objects in the same class in those datasets. 
Table 5 reports the obtained results with XYZ+Intensity features 
for STST and ATST. It is seen that ESTATE dataset improves 
the classification results. For example, relatively small 
improvements such as 0.92 to 0.97 for Light Pole in DublinCity, 
0.95 to 0.96 and 0.85 to 0.90 for Pylon and Traffic Sign in FBK, 
0.94 to 1.00 for Light Pole in Paris-Lille3D, 0.80 to 0.88 for 
Chimney in Hessigheim, 0.76 to 0.89 and 0.97 to 0.99 for Light 
Pole and Cable Toronto3D are observed. On the other hand, 
relatively higher improvements for Pylon in DublinCity (from 
0.00 to 0.50), Traffic Light in FBK (from 0.00 to 0.50), Electrical 
Pole in Paris-Lille3D (from 0.67 to 1.00), Pole (from 0.29 to 
0.80) and Traffic Sign (from 0.57 to 1.00) in Hessigheim, Traffic 
Light (from 0.40 to 0.75), Electrical Pole (from 0.50 to 0.85) and 
Traffic Sign (from 0.55 to 0.88) in Toronto3D are visible.    
The results of STST and ATST for XYZ+RGB features (Table 6) 
show that ESTATE improves the classification results. Relatively 
small improvements for Car in SensatUrban (from 0.97 to 0.99), 
Pole in Swiss3DCities (from 0.89 to 1.00), Light Pole in 
STPLS3D (from 0.79 to 0.80), Light Pole (from 0.96 to 0.97), 
Truck (from 0.81 to 0.86) in YTU3D, Pole (from 0.77 to 0.83) in 
Hessigheim and Cable (from 0.97 to 0.98) in Toronto3D are 
attained. On the other hand, we have achieved relatively 
significant improvements for the class Truck in SensatUrban 
(from 0.67 to 0.80) and Swiss3DCities (from 0.67 to 0.83), 
Traffic Light in STPLS3D (from 0.67 to 0.89) and YTU3D (from 
0.00 to 0.67), Traffic Light (from 0.22 to 0.62) and Electrical Pole 
(from 0.41 to 0.83) in Toronto3D.  
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Light Pole 
0.96 0.94 0.95 0.96 0.79 0.85 0.94 1.0 0.83 0.74 0.50 0.80 0.80 0.80 0.88 0.86 0.99 0.97 0.95 0.95 0.64 0.74 

337 258 70 52 48 8 5 116 346 32 64 

Traffic Light 
0.65 0.68 0.00 0.00 0.00 0.4 0.80 0.77 0.44 0.80 - - - - 0.75 0.80 1.00 0.80 - - 0.00 0.86 

79 3 2 15 17 - - 16 6 - 26 

Pole 
0.86 0.85 0.83 0.74 0.76 0.73 1.00 0.93 0.63 0.64 - - 0.75 1.00 0.88 0.80 0.92 0.85 1.00 0.80 0.74 0.87 

135 71 27 24 28 - 13 67 39 18 32 

Electrical Pole 
0.00 0.00 - - 0.86 0.85 0.67 1.00 - - - - - - 0.75 0.85 - - - - 0.24 0.69 

7 - 83 2 - - - 43 - - 41 

Traffic Sign 
0.86 0.80 0.00 0.00 0.85 0.89 0.96 0.97 0.85 0.94 0.40 1.00 - - 0.82 0.82 0.91 0.92 1.00 0.89 0.76 0.87 

231 5 74 124 114 9 - 36 20 14 43 

Cable 
- - 0.98 1.00 0.96 0.96 - - - - - - - - - - - - - - 0.99 0.99 

- 81 43 - - - - - - - 183 

Pylon 
- - 0.00 0.00 0.95 0.92 - - - - - - - - - - - - - - - - 

- 8 125 - - - - - - - - 

Garbage Box 
0.96 0.88 - - - - 1.00 0.95 0.86 0.86 0.93 0.93 0.44 0.73 - - 0.75 0.70 0.92 0.86 - - 

87 - - 162 13 369 17 - 120 66 - 

Car 
1.00 0.96 0.98 1.00 - - 1.00 0.99 0.67 0.67 0.97 0.92 - - - - 0.99 0.99 0.95 0.95 1.00 0.98 

85 80 - 274 7 130 - - 801 28 78 

Truck 
0.86 0.86 - - 1.00 1.00 - - 0.00 0.00 0.92 0.91 0.67 1.00 0.80 0.67 0.90 0.80 - - - - 

10 - 5 - 2 20 14 6 64 - - 

Bus 
0.80 1.00 0.2 1.00 - - - - - - 1.00 0.67 0.00 1.00 0.00 0.67 0.82 0.81 - - - - 

7 30 - - - 3 2 2 38 - - 

Chimney 
- - 1.00 0.83 0.98 0.83 - - - - - - 0.96 0.97 - - 0.91 0.81 0.87 0.81 - - 

- 54 65 - - - 232 - 234 40 - 

Ventilation 
- - - - - - - - - - 0.53 0.50 - - - - 0.78 0.72 - - - - 

- - - - - 38 - - 105 - - 

Table 4. Classification results (F1-score) and number of instances per object with XYZ input for STST and ATST. 
 

5. CONCLUSIONS 

The paper (i) introduced a new dataset for the 3D classification 
of urban objects and (ii) evaluated its benefits on a deep 
learning method with various input configurations. The shared 
data and research findings are publicly available at 
https://github.com/3DOM-FBK/ESTATE.  
The detailed collection of the 13 objects, which include some 
urban objects normally under-represented in commonly 
available datasets, enhances the practical utility of 3D object 
classification models. The reported experimental results 
indicate that the ESTATE dataset improved the overall 
performance of classification models. Intensity feature 
obtained more successful results than RGB colour inputs. This 
shows that additional features are able to improve the 
classification performance, but the inclusion of various colour 

features couldn’t provide the expected improvement. In order 
to use the models to be trained on the ESTATE dataset in real-
life scenarios, only the coordinate values of the objects can be 
considered since the results show that there are relatively low 
differences between the results of XYZ and XYZ+Intensity 
input configurations.  
Furthermore, the ESTATE dataset has the potential to be used 
for object classification as well as semantic segmentation, 
instance or panoptic segmentation (Figure 2), where objects in 
complex urban areas can be extracted using traditional pre-
processing methods or unsupervised learning, graphs, etc. 
Future studies may evaluate the performances of other neural 
networks and focus on improving and integrating supervised 
and unsupervised learning techniques into a complementary 
process.
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Light Pole 0.92 0.97 0.79 0.95 0.94 1.00 0.85 0.90 1.00 1.00 0.76 0.89 

Traffic Light 0.00 1.00 0.00 0.50 0.80 0.80 0.29 0.80 - - 0.40 0.75 

Pole 0.76 0.83 0.76 0.90 1.00 0.93 0.70 0.70 0.67 0.92 0.87 0.82 

Electrical Pole - - 0.86 0.86 0.67 1.00 - - - - 0.50 0.85 

Traffic Sign 0.00 0.00 0.85 0.90 0.96 0.95 0.90 0.92 0.57 1.00 0.55 0.88 

Cable 0.94 0.98 0.96 0.96 - - - - - - 0.97 0.99 

Pylon 0.00 0.50 0.95 0.96 - - - - - - - - 

Garbage Box - - - - 1.00 0.99 0.40 0.75 0.92 0.92 - - 

Car 0.91 1.00 - - 1.00 1.00 0.29 0.80 0.90 1.00 1.00 0.98 

Truck - - 1.00 0.00 - - 0.00 0.00 - - - - 

Bus 0.63 1.00 - - - - - - - - - - 

Chimney 0.65 0.94 0.98 0.86 - - - - 0.80 0.88 - - 

Ventilation - - - - - - - - - - - - 

Table 5. Classification results with XYZ+Intensity input for STST and ATST (number of instances per object as in Table 4).
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ST
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Light Pole 0.86 0.86 1.00 0.80 0.79 0.80 0.96 0.97 1.00 0.91 0.62 0.86 

Traffic Light - - - - 0.67 0.89 0.00 0.67 - - 0.22 0.62 

Pole - - 0.89 1.00 0.80 0.78 0.82 0.76 0.77 0.83 0.58 0.80 

Electrical Pole - - - - 0.75 0.70 - - - - 0.41 0.83 

Traffic Sign 0.75 0.75 - - 0.74 0.70 0.91 0.91 0.89 0.89 0.53 0.76 

Cable - - - - - - - - - - 0.97 0.98 

Garbage Box 0.94 0.94 0.91 0.29 - - 0.85 0.68 1.00 0.97 - - 

Car 0.97 0.99 - - - - 0.99 0.99 1.00 0.94 1.00 1.00 

Truck 0.67 0.80 0.67 0.83 0.80 0.50 0.81 0.86 - - - - 

Bus 1.00 0.50 0.00 0.00 0.00 0.00 1.00 0.92 - - - - 

Chimney - - 0.97 0.97 - - 0.86 0.83 0.92 0.88 - - 

Ventilation 0.63 0.61 - - - - 0.76 0.83 - - - - 

Table 6. Classification results with XYZ+RGB input for STST and ATST (number of instances per object as in Table 4). 
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Figure 3: Examples of instances (rows) available in the proposed ESTATE dataset and collected from various available datasets 
(columns). 
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