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Abstract

Benefiting from advancements in algorithms and computing capabilities, supervised deep learning models offer significant advant-
ages in accurately mapping individual tree canopy cover, which is a fundamental component of forestry management. In contrast
to traditional field measurement methods, deep learning models leveraging remote sensing data circumvent access limitations and
are more cost-effective. However, the efficiency of models depends on the accuracy of the tree crown annotations, which are often
obtained through manual labeling. The intricate features of the tree crown, characterized by irregular contours, overlapping fo-
liage, and frequent shadowing, pose a challenge for annotators. Therefore, this study explores a novel approach that integrates the
annotations of multiple annotators for the same region of interest. It further refines the labels by leveraging information extracted
from multi-spectral aerial images. This approach aims to reduce annotation inaccuracies caused by personal preference and bias

and obtain a more balanced integrated annotation.

1. Introduction

In the field of forestry research, it is fundamental to accurately
map individual tree crowns, i.e., the projected area of a tree
crown on a horizontal plane. It plays a significant role as in-
put variable in more accurate analysis, modelling and manage-
ment, such as the carbon storage estimation, biodiversity as-
sessment, urban forest management, forest fire simulation and
forest health description (Zhao et al., 2023; Zhu et al., 2021).

A common way of the individual tree crown delineation is field
measurement. Accessed by professional measurement devices,
it is able to obtain the common forest mensuration variables,
such as the crown length, crown base height, crown diameter,
crown radius, crown projected area and crown shape (Zhu et
al., 2021). Although we can obtain precise data through field
measurements, there are also some challenges associated with
it. Large-scale field measurement is a time-consuming process
and limited by access issues, such as privately-owned or other-
wise inaccessible area (Zhao et al., 2023).

In contrast, with the advent and development of remote sensing
technology, and in particular the popularity of unmanned aer-
ial vehicles (UAVs) and multimodal data sources (Roder et al.,
2018; Bulatov et al., 2016b; Freudenberg et al., 2022), depict-
ing tree crowns on remotely sensed data is more economical
and not constrained by access issues. Benefiting from advance-
ments in algorithms and computing capabilities, in the past dec-
ade, supervised deep learning models offer significant advant-
ages in accurately mapping individual tree crown as well as to
replace traditional labour-intensive visual interpretation. Tak-
ing the widely used convolutional neural network (CNN) model
as an example, its unique convolutional layers can extract both
surface and abstract features of the image. Then, through a
series of sequentially trained hidden layers constructed with a
large number of interconnected neurons, it is able to understand
images in a manner similar to human cognitive processes and
produce reliable results.
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For the mapping of the individual tree crowns, deep learning-
based instance segmentation (G. Braga et al., 2020) is an suit-
able approach, which can not only locate the position of the in-
dividual tree in an image, but also to depict its tree crown. How-
ever, the model’s capability stems from both its excellent in-
ternal structure and the reliable dataset used for training, which
is equally important and cannot be overlooked. Besides quant-
ity, researchers are increasingly emphasizing the importance of
quality in training data. Even the most powerful models can-
not compensate for the deficiencies of low-quality training data
(Oksuz et al., 2020; Whang et al., 2023).

When it comes to the quality of datasets, the quality of annota-
tions cannot be bypassed. Accurately annotating individual tree
crowns is fraught with several obstacles that the annotator must
face:

1. Characteristics of the tree crown: Tree crowns have irregu-
lar contours and overlapping foliage (Stewart et al., 2021).

2. Tree arrangement: Trees are for the most part in the ground
without a specific distribution pattern. Especially in dense
forests, it is extremely challenging to distinguish a single
tree with the naked eye (Freudenberg et al., 2022; Ball et
al., 2023).

3. Other ground features: Some features resembling trees in
appearance (green belts and lawns,etc.) and shadows bring
trouble to the annotator’s judgment.

4. Image quality: The limited spatial resolution of the images
and varying lighting conditions impede the distinguish-
ability of tree crowns.

5. Issues of the annotator: The patience, fatigue and attitude
of the annotator also subjectively affect the quality of the
labeling.

Therefore, it is difficult for even the most specialized experts to
get the best labels independently.

To overcome these challenges, we introduce a novel approach
associated with the information extracted from multi-spectral
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aerial images, to integrate the annotations from multiple annot-
ators, aim to reduce annotation inaccuracies caused by personal
preference and bias and obtain a more balanced integrated an-
notation.

1.1 Previous Work

In instance segmentation, vector data typically serve as carri-
ers in annotation datasets. They store label as geometric shapes
(like points, lines, and polygons) and solely the endpoint co-
ordinates rather than the values of individual pixels, which re-
main constant regardless of scaling. Converting vector annota-
tions to the raster domain for specific numerical operations is
one approach for annotation integration. Walter (2018) pro-
posed a method to apply a majority vote in raster domain based
on the “Wisdom of the Crowd”, assuming that “If many indi-
viduals measure the same object, the average geometry should
closely approximate the real geometry”. Collmar et al. (2023)
expanded on this concept to integrate tree crown labels obtained
from crowdsourcing through a two-step process. These meth-
ods primarily focus on polygon integration for a single object.

Inspired by their work, we have taken a step further to imple-
ment tree crown annotation integration in intricate scenarios
(Mei et al., 2024). While focusing on individual trees, it also
attempted to match pixels to suitable trees in densely fores-
ted areas. In contrast to our previous study, this work, we
not only consider the mutual constraints of different annotat-
ors’ perspectives, but also introduce the information provided
by remotely sensed data.

More specifically, we use Normalized Difference Vegetation In-
dex (NDVI), a widely used indicator of vegetation health and
which can be calculated using commonly available multi-spectral
sensors, to support the integration approach. Its inclusion en-
hances the match between individual pixels and their respective
trees. Furthermore, it facilitates clearer differentiation between
tree crown boundaries and other surface features, such as man-
made structures, which typically exhibit much lower values than
vegetation.

2. Methodology
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Figure 1. Workflow of the approach.

Figure 1 depicts the workflow of our approach. In general, it re-
volves around constructing a Markov Random Field (MRF) and
minimizing the associated energy. Therefore, it can be roughly
divided into three steps: pre-processing, MRF construction, and
energy minimization.

2.1 Pre-processing

2.1.1 Acquisition Matrix In order to take into account the
annotations of the same ROI by multiple annotators, we con-
struct a matrix, named the acquisition matrix, for aligning an-
notations from different annotators. Its shape is (n + 1, H, W),
where n represents the number of manual annotations associ-
ated with the same ROI, and 1 is dedicated to serve as an ex-
pansion layer. The height and width of the image denote as H
and W. In this matrix, each of the n layers records the Identi-
fier (ID) of the tree crown label at the corresponding pixel pos-
ition based on the original annotation. On the expansion layer,
we record the frequency f of labelling a pixel as a tree crown.
Therefore, we are able to obtain the ID-sequence (IDS) for each
pixel, which contains the perspectives of all the annotators.

2.1.2 Potential Clusters Each annotator has its own under-
standing of the number of trees and the outline of the tree crown
in the same ROI. To find a consensus, we define two type of
pixel, in addition to the background pixel, for subsequent pro-
cess, central and marginal ID-sequence (cIDS and mIDS). For
them, we have the following assumptions:

1. Pixels in the region around the tree center, where most an-
notators agree on the tree crown, share the same IDS, re-
ferred to cIDS.

2. Pixels at the border of the tree crown may exhibit different
IDS due to varying perspectives of one or more annotators,
referred to mIDS.

Pixel Frequency ~ 1°D | 2MID  3¢ID

A 3 11 3 ]
B 3 12 4 10
C 3 11 3 5]
D 3 12 3 5
E 2 0 3 5
F 1 0 3 0

Figure 2. Example of cIDS and mIDS.

Figure 2 is the example of cIDS and mIDS. For a clear explana-
tion, we have selected 6 key pixels. A and B are representatives
of the cIDS, surrounded by pixels that share the same IDS. C,
D, and E are located at the border of the tree crowns. C has
the same IDS as A, indicating that its identity is recognized by
all annotators. The IDS of D and E may be slightly different
from cIDS due to differing opinions of several annotators and
are considered to be mIDS. Moreover, it is certain that their
number is much smaller than cIDS. The low fof F suggests that
it may stem from bias from a single annotator.

In order to refine the cIDS that most annotators agree on as
the anchors for potential clusters, we use the combination of
thresholding and non-maximum suppression. The process is as
follow:

1. Determine the pixels that most annotators have agreed are
part of the tree crowns by retaining pixels with f greater
than a certain threshold.

2. Apply non-maximum suppression based on the number of
IDS to eliminate redundancies that may point to the same
tree crown, which attend to preserve cIDS while eliminate
mIDS.

The final refined potential clusters obtained represent the agreed-
upon trees within the corresponding ROI.
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2.1.3 Normalized Difference Vegetation Index In addition
to subjective human annotation, we introduce objective spec-
tral information to support the integration. The Normalized Ve-
getation Index (NDVI) is a widely used indicator of vegetation
health that ranges from -1 to 1 and is calculated using the fol-
lowing formula:

NIR — RED
NDVI = G 7rED M

where NDV I = Normalized Difference Vegetation Index
NIR = spectral radiance in near-infrared

RED = spectral radiance in red (visible)

Overall, it is negative for water bodies, close to zero for rocks,
sands, or concrete surfaces, and positive for vegetation as well
as positively correlated with the vitality of the vegetation(Jones
and Vaughan, 2010).

Figure 3. Example of Normalized Vegetation Index.

Figure 3 is the example of the NDVI among various surface
objects. The difference in NDVI between vegetation and man-
made structures is significant, with boundaries being more visu-
ally distinct than in regular RGB images. Additionally, the vari-
ations in characteristics between trees are evident in the NDVI.
However, within individual trees, the fluctuations in NDVI are
relatively minor.

Therefore, we assume that the introduction of inter-pixel NDVI
differences enables the following refinement of the labeling.

1. The NDVI difference between vegetated and non-vegetated
pixels makes the separation more pronounced.

2. The NDVI might have variations from tree to tree due to
the health status or characteristics.

2.2 Markov Random Field

The MREF is an undirected probabilistic graphical model used
to model the relationship between random variables. It com-
pose of a set of nodes and edges connecting these nodes, where
nodes represent random variables, and edges represent the de-
pendency between variables (Geman and Graffigne, 1986). Its
structure is suitable for characterizing images and implement-
ing specific tasks such as depth map generation (Bulatov et al.,
2016a). Qiu et al. (2022) employed MRF as the post-processing
the deep learning model for car detection and utilized elevation
as a constraint, which demonstrates the potential of MRF in in-
corporating support data to optimize labels.

Here, we establish a MRF to represent the annotation in a ROL
Each pixel (¢) in the annotation is considered as a node and
connected by edges with its eight neighbors’ nodes (5). Their
set is denoted by N resp. j € N (4).

2.2.1 Unary Potentials The unary potentials refer to the costs
of assigning nodes to potential clusters, mentioned in Section 2.1.2,
provided to the MRF. It focuses solely on the current node without
considering the state of other nodes. In order to compute the
unitary potential of each node over potential clusters c, we first
compute the similarity of their IDS to cIDS in response to the
possibility of them being assigned to each of the potential clusters

P(c(d)).

P(e(i)) = = @)

ns = number of items in IDS identical to cIDS
n; = number of the total items in IDS

Here,

Then, we convert this possibility into the unary potentials for
each node with the standard negative logarithm trick to ensure
that a low possibility results in a high unary cost:

E. (c(i)) = —logy P (c(7)), 3)
where F,, (c()) ) denote the unary potentials.

2.2.2 Pairwise Potentials The pairwise potentials take into

account the cost caused by the adjacency relationship, which

make the assignment of nodes subject to neighboring nodes.

The NDVI difference A n (%, j) between each node and its neigh-
boring nodes is converted into edge weight WW;; by the follow-

ing formula:

Wij = )\-exp <_AN“(]Z.’J'))’ (4)

where w = the sensitivity to Ay (4, 7)

A = the gain of the weights

Hence, the pairwise potentials are defined as:

0, if ¢() = ¢(j)

Lifel) £cG) O

Ep(c(i), () = Wi - {

In general, pairwise potential encourages the smoothing. When
neighboring nodes are classified under the same cluster, it does
not incur any cost for the MRF. However, unary pontetials en-
able to constrain excessive smoothing and incur substantial costs
with sensible parameter configurations.

Furthermore, the Ay (i, j) are able to optimize the assignment.
Due to the W, in the case of ¢(i) # c(j), lower Ay (i, j) res-
ult in higher W;;. Conversely, the pairwise potentials caused
by high Ay (i, 7) are acceptable. Therefore, our MRF tends to
keep neighboring pixels with similar NDVI in the same cluster,
while allowing pixels with significant NDVI differences to be-
long to different clusters.
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2.3 Energy Minimization

The total cost of the MRF caused by unary and pairwise poten-
tials is expressed as the following energy equation.

E(e) =Y |Eu(c)+ Y Bp(cld),c(i)| (6

i JEN(4)

The clusters distribution that minimizes this energy equation is
the most balanced integrated annotation. It is generated by the
mutual constraints of the different annotators and controlled by
objective spectral information. However, directly solving for
the minimum energy of the MRF is an NP-hard problem. We
use a graph cuts algorithm, alpha-expansion moves, to achieve
the approximate energy minimization (Boykov et al., 2001).

2.4 Quantitative Metrics

Quantitative evaluation of annotations is a challenging issue.
Manual annotation is regarded as the ground truth in the training
of deep learning models. Hence, appropriate reference data of
annotation is crucial.

Ball et al. (2023) and Collmar et al. (2023) used the labels de-
lineated by domain-specific experts as the ground truth for eval-
uation. Freudenberg et al. (2022) introduced LiDAR data to
assist in generating reference labels.

In our study, we use the tree cadaster' as the reference data,
which maintained by the parks department of the City of Frank-
furt am Main and collected in the field, has been accessible on-
line to the public since 2014, with the latest version updated
in August 2023. It contains almost all trees in public areas of
Frankfurt am Main, stored as vector data. The tree center of
each tree is recorded, as well as the tree cover stored as a circu-
lar vector.

We have defined the following metrics for quantifying the in-
formation we are interested in:

1. Overall Intersection over Union (IoU): The IoU between
annotation and tree’s coverage from the cadastre.

2. Tree’s center coverage (TCC): The proportion of recorded
tree’s centers that are covered in the annotation.

3. Single tree label (STL): The ratio of the number of labels
that cover only a single tree center to the total number of
labels in the annotation.

It is worth noting that for each ROI, we finally performed max-
imum absolute scaling on the metrics, aiming to evaluate the
relative gap between annotations (manual and integrated) to the
optimal values.

3. Experimentation

We selected eight locations within Frankfurt am Main as ROIs,
which cover cemeteries, streets, squares, and backyards within
the city area (see Fiegure 4). The trees within these areas dis-
play a variety of distributions, ranging from haphazard arrange-
ments akin to those found in cemeteries to organized layouts re-
sembling those along streets and in squares. Each aerial images

1 https://www.offenedaten frankfurt.de/dataset/baumkataster-frankfurt-
am-main

Figure 4. Experimental areas.

is in size of 512x 512 pixels with a with a Ground Sampling
Distance (GSD) of 20 c¢m/pizel and consist of R, G, B, NIR
channels. For each ROI, four experts independently annotated
the tree crowns on the true color image.

AJBJC|JDJETJF G H

Annotator I | 48 [ 19 [ 45 [ 30 [ 50 | 34 | 139 | 127

Annotator2 | 37 [ I8 [ 45 [ 32 | 76 | 39 | 107 | 99

Annotator3 [ 44 [ I8 [ 69 | 26 | 65 | 40 | 97 | 96

Annotator4 | 43 [ 19 [ 39 [ 33 | 61 [ 34 | 75 | 119

Table 1. Number of labels in the region of interest.

Table 1 shows the number of labels made by each annotator for
the corresponding ROI. In uniform tree distribution areas, label
counts are almost consistent, but in irregularly distributed areas,
label counts vary significantly.

Annotator 3

Annotator 4
Figure 5. Annotation example of ROI G.

In addition, in complex areas such as forests, differences in la-
belling between different annotators are evident (see Figure 5).
It is reflected in the depiction of outlines and the identification
of tree locations. Therefore, to account for the possibility of
trees being overlooked due to the negligence of a particular an-
notator, we set the threshold at 75%. That means, in our ex-
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periment, pixels identified as representing trees by at least 3
individuals will be considered for further processing.

In non-maximum suppression, we retain the IDS with higher
counts as potential clusters and remove those with fewer counts,
which have at least 50% of the items in common with the po-
tential clusters.

4. Results

For manual and integrated annotation, we conduct quantitative
and qualitative evaluations to evaluate the quality of annotation
from different perspectives.

4.1 Quantitative Evaluation

overall IOU
1

Annotator 1
Annotator 2
Annotator 3
Annotator 4

—Integrated
Annotation

STL TCC

Figure 6. Annotation preference.

Figure 6 shows the metrics distribution over difference annota-
tions. It is evident that manual annotations often exhibit certain
biases. For example, annotator 1 tends to delineate more ac-
curate tree crown boundaries and strives to cover all trees, but
it’s prone to lumping multiple trees into one label. Conversely,
a strict definition of a single tree may result in their inability
to cover all trees and to delineate more matching boundaries.
Such as the results of annotator 2 and 3.

Although the integrated annotation is not optimal in all metrics,
it is the most balanced. It is able to approach the optimal value
in each metric under the mutual constraints of different annot-
ators’ perspectives and the support of additional remote sensing
information.

Compared with the average results of manual annotation, the
integrated annotation is significantly better (see Figure 7). This
further illustrates that the contributions of different annotators
can yield a relatively reliable annotation while suppressing bias
and personal preference. Furthermore, compared to our pre-
vious approach (Mei et al., 2024), due to the additional in-
formation provided by NDVI, the improvement in overall IoU
and STL is noteworthy, which proves our assumptions in Sec-
tion 2.1.3. In TCC, due to its primary dependence on the acquis-
ition matrix, attention to the ROI is more global, hence, there
is no significant enhancement. However, the TCC of integrated
(with and without NDVI) annotations generally outperform the
of manual annotations, once again demonstrating the effective-
ness of our approach.

4.2 Qualitative Evaluation

In addition to quantitatively analyzing the quality of annotation,
we perform subjective observations on the annotations.

0.95
0.85
STL

overall IOU TCC

® Average of maunal Annotations
m Average of integrated Annotations without NDVI
u Average of integrated Annotations with NDVI

Figure 7. Comparing integrated with average manual annotation.

Figure 8. Integrated (white) and manual (green) annotations on
the single tree (left:true-color image, middle: near-infrared
pseudo color image, right: annotations).

Firstly, when it comes to individual tree labels, the integrated
annotations are satisfying and visually more accurate (see Fig-
ure 8). Influenced by multiple factors such as image quality,
surface similarity (such as shadows resembling tree colors), an-
notator’s patience and fatigue, etc., manual annotation may in-
clude pixels that do not belong to the tree crown or overlook
some pixels.

Our integrated annotation benefits from the mutual constraints
of different annotators and the simple yet effective support of
NDVI differences, enabling the production of a label that closely
fits the outline of the tree crown.

However, when the tree crown is too small and all annotators
attempt to depict it with labels larger than the tree crown, the
suppressive effect of NDVI is limited. As shown in Figure 9,
even the shadows are still included in the labels.

In the case of trees intersecting with each other, our approach
also can find a suitable boundary for the tree crowns (see Fig-
ure 10). Moreover, pixels located at the margins are able to
be more inclined to the corresponding trees as the result of the
heath status or characteristics of the tree.

In conclusion, the combination of the mutual constraints of dif-
ferent annotators and the NDVI Difference enables the gener-
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Figure 9. Integrated (white) and manual (green) annotations on
the single tree, limitation (left:true-color image, middle:
near-infrared pseudo color image, right: annotations).

Figure 10. Integrated (white) and manual (green) annotations on
the intersecting trees (left:true-color image, middle:
near-infrared pseudo color image, right: annotations).

ation of an integrated annotation that is more representative of
the actual situation. And favorable outcomes are also observed
in regions where multiple trees intersect with each other.

5. Conclusion

In this study, we introduce a novel integrated approach of crowd-
sourced tree crown annotations. It takes into account the sub-
jective cognition of the annotator and is supported by objective
multi-spectral aerial images to obtain a balanced integrated an-
notation.

More specifically, the annotations from difference annotators
are aligned by an acquisition matrix we propose, and undergo
specific numerical processing (non-maximal suppression and
thresholding) to obtain the basic consensus by the tree crown
annotation of different annotators on the same region of in-
terest. Building upon this foundation, we employed a probab-
ilistic graphical model, namely a Markov random field, supple-
mented by objective indicator, the Normalized Vegetation In-
dex, to achieve mutual constraint among different annotators’
annotations by energy minimization.

Experimentation in various regions of Frankfurt am Main demon-
strates its potential. In the quantitative evaluation, our approach
is shown to balance the preferences and biases of different an-
notators and outperform the average annotator performance on
each metric. In the qualitative evaluation, the integrated annota-
tions are visually and subjectively more realistic. The introduc-
tion of objective data enable to partially rectify human judg-
ment errors, yet its efficacy remains constrained in the face of
inaccuracies upheld by the majority of annotators. It is worth
noting that our approach performs suitable in scenarios with
trees arranged individually as well as in densely. Therefore, it
can be applied to the integration of annotations in large-scale
scenarios. Overall, the integrated annotations obtained through
the mutual constraints of multiple annotators are satisfactory.

In addition, our approach has strong generality. The acquisition
matrix is a general component that can be adapt to the annota-

tions of any object with complex outline, such as human, wa-
ter body. Pairwise potentials and edge weights of the Markov
random field can be adjusted according to specific tasks. For
example, thermal images for the human as well as Normalized
Difference Water Index for water bodies.

In our future work, we will assess the efficacy and extent of
enhancement that this approach brings to deep learning mod-
els. Meanwhile, it also has the potential to become a post-
processing part for deep learning model. It has the possibility
of integrating multi-modal prediction results as well as combin-
ing it with a general segmentation large model,such as Segment
Anything Model (Kirillov et al., 2023), to improve specific seg-
mentation tasks.
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