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Abstract 

The correction of digital elevation models (DEMs) can be achieved using a variety of techniques. Machine learning and statistical 

methods are broadly applicable to a variety of DEM correction case studies in different landscapes. However, a literature survey did 

not reveal any research that compared the effectiveness or performance of both methods. In this study, we comparatively evaluate three 

gradient boosted decision trees (XGBoost, LightGBM and CatBoost) and multiple linear regression for the correction of two publicly 

available global DEMs: Copernicus GLO-30 and ALOS World 3D (AW3D) in Cape Town, South Africa. The training datasets are 

comprised of eleven predictor variables including elevation, slope, aspect, surface roughness, topographic position index, terrain 

ruggedness index, terrain surface texture, vector ruggedness measure, percentage bare ground, urban footprints and percentage forest 

cover as an indicator of the overland forest distribution. The target variable (elevation error) was derived with respect to highly accurate 

airborne LiDAR. The results presented in this study represent urban/industrial and grassland/shrubland/dense bush landscapes. 

Although the accuracy of the original DEMs had been degraded by several anomalies, the corrections improved the vertical accuracy 

across vast areas of the landscape. In the urban/industrial and grassland/shrubland landscapes, the reduction in the root mean square 

error (RMSE) of the original AW3D DEM was greater than 70%, after correction. The corrections improved the accuracy of Copernicus 

DEM, e.g., > 44% RMSE reduction in the urban area and >32% RMSE reduction in the grassland/shrubland landscape. Generally, the 

gradient boosted decision trees outperformed multiple linear regression in most of the tests. 

1. Introduction

Several methods have been proposed for correcting the elevation 

bias in digital elevation models (DEMs) for example, linear 

regression (Su & Guo, 2014; Olajubu et al., 2021; Pakoksung & 

Takagi, 2015; Preety et al., 2022). Other strategies have been 

proposed (e.g., Audenino et al., 2001; Bagheri et al., 2017, 2018; 

Bhardwaj et al., 2019; Fu et al., 2016; Okolie & Smit, 2022). 

Nowadays, supervised machine learning enables the modelling 

of complex relationships between variables, and has been 

deployed by researchers in a variety of fields (e.g., Hancock & 

Khoshgoftaar, 2020; Kotsiantis, 2007). Usually, the input layers 

into the models are the values of the elevation (derived from the 

DEM) and values of other DEM error-influencing parameters. 

While some researchers set the elevation error as the target layer 

(e.g., Kulp & Strauss, 2018; Liu et al., 2021), others utilized the 

groundtruth or reference DEM (RefDEM) as the target layer 

(e.g., Chen et al., 2020; Kasi et al., 2020; Kim et al., 2019). 

In the existing literature, several studies have adopted either 

machine learning or statistical approaches in the task of DEM 

correction. However, to our knowledge, none of these studies 

have compared the performance of both approaches, especially 

with regard to publicly available global DEMs. Our previous 

work has already shown the potential of machine learning 

approaches, including gradient boosted decision trees (GBDTs) 

for DEM correction, e.g. (Okolie et al., 2023; Okolie et al., 2024) 

In this study, we share some results from the comparison of three 

recent implementations of gradient boosted decision trees 

(Extreme gradient boosting - XGBoost, Light gradient boosting - 

LightGBM and Categorical boosting - CatBoost), versus multiple 

linear regression (MLR) for enhancing the vertical accuracy of 

30 m Copernicus and AW3D global DEMs in Cape Town, South 

Africa.  

2. Methodology

2.1 Study area 

Two different landscapes in Cape Town (South Africa; Figure 1) 

are presented in this assessment: urban/industrial (e.g. Figure 2a) 

and grassland/shrubland/dense bush (e.g., Figure 2b). The urban 

and industrial areas are located within the Cape Town metropolis, 

a large urban area with a high population density, industrial and 

business districts. Grassland/shrubland/dense bush includes 

natural or semi-natural grasses or low shrubs, open grassland, 

sparse bushland, transitional wooded grasslands and woodland 

areas, degraded vegetation with significantly reduced vegetation 

cover, natural or semi-natural areas dominated by trees and/or 

bushes, dense bush, closed woodland, thicket, scrub forest, dense 

shrubs and mangrove swamps (DFFE, 2023). 

2.2 Digital elevation models 

The 30 m Copernicus DEM (GLO-30) emanated from data 

acquired during the TanDEM-X Mission (Airbus, 2020). The 

Defense Gridded Elevation Data (DGED) format of the DEM 

was adopted. The 30 m ALOS World 3D (AW3D30) DEM is a 

derivative of the earlier high-resolution 5 m ALOS DEM (JAXA, 

2023). AW3D version 3.2 was adopted in this research. 

The reference DEM adopted is the 2 m City of Cape Town (CCT) 

airborne LiDAR-derived DEM acquired from the Information 

and Knowledge Management Department of the City of Cape 

Town (City Maps Office). The DEM is generated from LiDAR 

point clouds with a height accuracy of 15 cm. The data 
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acquisition for the dataset used in this study was conducted in 

phases between 2018 and 2021.  

 

2.3 Global tree cover and bare ground  

The global tree cover (treecover2010) and bare ground cover 

(bareground2010) provide estimates of the percent maximum 

tree canopy cover and the percent bare ground cover respectively 

(GLAD, 2023a; GLAD, 2023b; Hansen et al., 2013). 

 

2.4 Global urban footprint 

The Global Urban Footprint (GUF) is a database of human set-

tlements that was introduced by the German Aerospace Centre 

(DLR) (Esch et al., 2012, 2018). The methodology for deriving 

the GUF is presented in Esch et al. (2010, 2013). The 0.4 arc-

second (~12 m) 2012 GUF dataset was adopted in this research. 

 

2.5 Terrain parameters 

In this study, the following terrain parameters are considered: 

slope, aspect, surface roughness, topographic position index 

(TPI), terrain ruggedness index (TRI), terrain surface texture 

(TST), and vector ruggedness measure (VRM). The terrain 

parameters were generated within the QGIS 3.28.2 and SAGA 

GIS 7.8.2 software environments. For visualisation purposes, 

Figure 3 shows slope and aspect maps of Cape Town derived 

from the airborne LiDAR-derived DEM. 

 

2.6 Datum harmonisation  

To achieve uniformity in the spatial reference systems, the global 

DEMs were projected from the Geographic to the Universal 

Transverse Mercator (UTM) coordinate system (UTM Zone 34 – 

southern hemisphere). The vertical datums of the DEMs were 

harmonised into the EGM2008 system.  

 

 

2.7     Model implementation and DEM correction 

The input datasets are comprised of eleven predictor variables 

including elevation, slope, aspect, surface roughness, 

topographic position index, terrain ruggedness index, terrain 

surface texture, vector ruggedness measure, percentage bare 

ground, urban footprints and percentage forest cover. The target 

variable (elevation error) was derived with respect to highly 

 
Figure 1. The location of Cape Town, South Africa  

 
Figure 2. Satellite image views of some sections of 

the  (a) urban/industrial, and (b) 

grassland/shrubland/dense bush landscapes   
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accurate airborne LiDAR. To check for multicollinearity in the 

input variables, Pearson’s bivariate correlation analysis and the 

Variance inflation factor (VIF) were adopted. Pearson’s bivariate 

correlation analysis was carried out to flag any significant 

correlations between the input variables. The VIF can indicate 

the problematic coefficients that are impacted by collinearity 

(Ferré, 2009). Using a general rule of thumb, variables with VIF 

> 10 are usually eliminated. In the case of multiple linear 

regression (MLR), surface roughness and TRI were flagged 

during multi-collinearity diagnostics and excluded from the input 

variables. Thus using MLR, the elevation error was expressed as 

a linear combination of nine input variables. Since 

multicollinearity is not a major concern for decision trees, all the 

eleven input variables were fed into the gradient boosted decision 

trees, GBDTs (XGBoost, LightGBM and CatBoost) where 

training was done using Python scripting in the Google 

Collaboratory environment. Generally, the models (trained with 

default hyperparameters) performed considerably well and 

demonstrated excellent predictive capability. Both models 

(GBDTs and MLR) were evaluated at several implementation 

sites for prediction and correction of DEM error. The corrections 

were achieved by subtracting the predicted elevation errors from 

the original elevations (i.e., DEMCorrected =  DEMOriginal −

∆h).  

 

3.  Results and Discussion 

In several instances after correction, the terrain offsets in the 

original DEMs were de-escalated (e.g. Figures 4 and 5). Table 1 

compares the percentage reduction in RMSE of AW3D and 

Copernicus DEMs after correction. In the urban/industrial 

landscape, the RMSEs of the original AW3D DEM reduced by 

72.1% (MLR), 72.2% (XGBoost), 72.8% (LightGBM) and 

72.5% (CatBoost), while the RMSEs of the original Copernicus 

DEM reduced by 44.3% (MLR), 46.8% (XGBoost), 46.7% 

(LightGBM) and 47.0% (CatBoost). In the grassland/shrubland 

landscape, the RMSEs of the original AW3D DEM reduced by 

72.6% (MLR), 72.6% (XGBoost), 73.2% (LightGBM) and 

73.1% (CatBoost), while the RMSEs of the original Copernicus 

DEM reduced by 41.4% (MLR), 32.9% (XGBoost), 35.3% 

(LightGBM) and 32.3% (CatBoost). 

 

4.  Conclusion 

In the urban/industrial and grassland/shrubland landscapes, the 

reduction in RMSE of the original AW3D DEM was greater than 

70%, after correction. The corrections improved the accuracy of 

Copernicus DEM, e.g., > 44% RMSE reduction in the urban area 

and >32% RMSE reduction in the grassland/shrubland 

landscape. The statistical-based (MLR) and machine learning 

(GBDT) correction achieved significant corrections of AW3D 

and Copernicus DEMs. While MLR outperformed the GBDTs in 

one scenario (i.e. Copernicus DEM in the grassland/shrubland 

landscape), the GBDTs outperformed MLR in most landscapes. 

The comparison proves the robustness of the GBDT-based 

correction in virtually all the landscapes under consideration. 

Future studies could integrate other approaches in the 

comparison.  
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Figure 3. Slope (left) and aspect (right) classification derived from the airborne LiDAR-derived DEM 
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Landscape % RMSE reduction (AW3D DEM) % RMSE reduction (Copernicus DEM) 

MLR XGBoost LightGBM CatBoost MLR XGBoost LightGBM CatBoost 

Urban/ industrial 72.1 72.2 72.8 72.5 44.3 46.8 46.7 47.0 

Grassland/ shrubland 72.6 72.6 73.2 73.1 41.4 32.9 35.3 32.3 

Table 1. Percentage reduction in RMSE of the original DEMs after correction 

 

 
Figure 4. Absolute height error comparison of corrected DEMs in parts of the urban landscape  

 
Figure 5. Absolute height error comparison of corrected DEMs in parts of the grassland/shrubland landscape 
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