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Abstract 

Monitoring tree growth processes is relevant for ecological research and understanding the intricate relationship between vegetation 
and the environment. Time series analyses have revealed a correlation between leaf emergence timing and climate change, with 
earlier leaf emergence attributed to global warming. While traditional forest inventory methods struggle to quantify growth processes 
on small scales, terrestrial laser scanning provides a powerful alternative for providing high-resolution 3D information. This study 
explores the use of high-frequency hyper-temporal terrestrial laser scanning data to quantitatively describe deciduous tree growth, 
tested on a pedunculate oak (Quercus robur). The research aims to address key questions about detecting leaf growth in hyper-
temporal terrestrial laser scanning data. Additionally, it explores how 3D tree parameters and point cloud comparisons capture leaf 
and tree growth throughout the year. Results from M3C2 point cloud analyses indicate that the temporary branch movements corre-
late with precipitation. Over the year, branch movements were detected to increase with growing distance from the trunk. 

* Corresponding author 

1. Introduction

The monitoring of tree growth processes is highly relevant for 
ecological research and for a better understanding of the 
complex relation between vegetation and environment. Time 
series studies have shown that the timing of leaf emergence is 
correlated with climate change and that leaf emergence is 
occurring earlier due to global warming (Vitasse et al., 2022). 
Leaf growth in spring and branch growth throughout the year 
are also important indicators of the effects of climate change on 
trees and their ability to adapt to changing climatic conditions. 

Quantifying growth processes, which take place on small spatial 
and temporal scales, is difficult using conventional forest 
inventory methods. Terrestrial laser scanning (TLS) is a power-
ful alternative, providing high-resolution 3D information on the 
vegetation structure at almost arbitrary time intervals. The 
measurement frequency of multi-temporal studies can range 
from seasonal examinations (Olivier et al., 2017) or daily 
examinations to hourly examinations (Puttonen et al., 2016; 
Puttonen et al., 2019; Campos et al., 2021) of vegetation 
changes. Information on tree growth is usually obtained from 
3D tree parameters (e.g. tree height, diameter at breast height 
(DBH), crown parameters) derived from the TLS point clouds 
using automated methods (e.g. Maas et al., 2008). Most studies 
are based on leaf-off data in order to obtain an unobstructed 
view of the 3D structures in the crown space. In contrast, Hosoi 
et al. (2011) specifically use leaf-on data to analyze leaf orienta-
tion. Dupuis et al. (2017) estimate leaf thickness from point 
clouds of a two-dimensional laser triangulation sensor com-
bined with a coordinate measuring arm. 

This study investigates the potential of hyper-temporal TLS data 
for monitoring deciduous tree growth. The focus is on two 
aspects: leaf and tree growth over the course of the year. The 
subject of the study is a pedunculate oak (Quercus robur), 
which is a central element of forest conversion in the study 
region due to its adaptability to changing climatic conditions. 

With the presented work we want to answer the following 
research question: 

 Is it possible to detect leaf growth in the hyper-
temporal TLS data?

 How does leaf growth and tree growth manifest itself
in quantitative 3D tree parameters and point cloud
comparisons?

When comparing hyper-temporal data, it is important to consid-
er that a tree is not a static object. In addition to growth, one 
will always see branch movements in the data. Zlinszky et al. 
(2017) show a nocturnal lowering of the branches, which 
Juntilla et al. (2022) explain by an increasing water content in 
the leaves at night.  

In addition, the increasing weight of the leaves causes the 
branches to lower, which manifests itself in an annual cycle. 
The branch movement is highly correlated to the water status of 
the plant (Hallmark et al., 2011). Humidity and air temperature, 
for example, play a major role. Rain also causes the branches to 
temporarily move. Both phenomena have an effect on the 
analysis of the hyper-temporal data and must be taken into 
account when interpreting the results. For this reason, a method 
for determining branch movements was developed. The basic 
idea is to track prominent branch points through the entire data 
set. 

2. Data Acquisition

For the study, a hyper-temporal TLS data set of a pedunculate 
oak (Quercus robur) has been recorded. The study site is 
located in Dresden, Germany (51°1’46” N, 13°43’29” E). The 
tree is a solitary street tree that does not interact with neighbor-
ing trees (Fig. 1). It has a height of approximately 12.2 m and is 
surrounded by tall buildings. The acquisition of the hyper-
temporal TLS data is described in section 2.1. In addition to the 
TLS data, meteorological data were recorded (Section 2.2). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-33-2024 | © Author(s) 2024. CC BY 4.0 License.

 
33



 

 
2.1 TLS Data 

TLS data acquisition was carried out during the growing and 
leaf-on season from April to January. Laser scans were taken 
daily from the beginning of leaf emergence until the leaves were 
fully developed, (April 24 – May 26). After that, the measure-
ment cycle was changed to weekly (Fig. 2). The dry leaves 
remain on the tree well into the winter, and the last leaves do 
not fall off until January. A final scan was therefore carried out 
in January. Overall, 60 scan epochs were recorded. The DBH 
was measured at the beginning and end of the scan epochs using 
a circumference measuring tape. 
 
The TLS data were acquired with a RIEGL VZ-400i terrestrial 
laser scanner at a resolution of 40 mdeg from four diametrically 
arranged positions (Fig. 3). The scanner viewpoints were 
located approximately 15 m away from the tree at nearly 
identical positions. For fine registration purposes, 11 retro-
reflective targets were attached to the surrounding buildings. 
  
Wind-induced movement of the branches cannot be excluded in 
natural locations. The effects of wind are amplified by the 
sequential recording scheme of a laser scanner, which leads to 
smearing effects in the form of distortions or compression. In 
this study, a log of the prevailing wind conditions was kept, and 
the wind direction and strength were measured. The scan was 
occasionally interrupted during very strong gusts.  
 

 
Figure 1. Pedunculate oak under leaf-off (April, 2023) and leaf-
on (June, 2023) conditions. 
 

 
Figure 3. Top view of the measurement setup with pedunculate 
oak (black circle) and the scan positions ScanPos001-
ScanPos004. 
 

2.2 Meteorological Data 

Meteorological data from a KLIPS weather station (KLIPS, 
2024) in the immediate vicinity (<50 m, 51°1’47” N, 13°43’ 
28.7” E) was available for the measurement period. The sensor 
node of the weather station faces south and is mounted at a 
height of 3 meters. Relative humidity and air temperature were 
recorded at 10-minute intervals. In addition, wind direction and 
wind speed were measured during scanning using a mobile 
anemometer right next to the tree. 
 
The daily precipitation amount was extracted from a climate 
station of the Deutscher Wetterdienst (DWD) Climate Data 
Center (CDC). The climate station used is about 3.1 km away 
(51°1’29.64” N, 13°46’30” E). 
 

3. Methods  

The hyper-temporal TLS data was first pre-processed (Section 
3.1). To analyze leaf growth and tree growth, 3D tree parame-
ters were derived (Section 3.2) and point cloud comparisons 
were performed (Section 3.3). Additionally, the annual branch 
movement was analyzed (Section 3.4). 
 
3.1 Preprocessing 

The 60 scan epochs were registered with a mean standard 
deviation of 0.65 mm ≤ σ0 ≤ 1.95 mm using the retro-reflective 
targets. Subsequently, the tree was cut out of the entire point 
cloud in each epoch. For this purpose, a polygon was defined in 
the XY view of epoch 1 to separate the tree from neighbouring 
buildings, street signs and street vegetation. The resulting point 
clouds contain both tree and ground points and are used as input 
data for deriving 3D tree parameters. Finally, the ground points 
were removed. The resulting point clouds are used as input data 
for the point cloud comparisons. 
 
3.2 Determination of 3D Tree Parameters 

The parameters tree height, diameter at breast height (DBH), 
crown projection area (CPA) as well as crown volume were 
determined for each measurement epoch using the approach 
presented in Mass et al. (2008) and Bienert et al. (2021) (Sec-
tion 3.2.1) as well as the commercial software package Li-
DAR360 (V7.0).  
 
3.2.1 Proprietary method: The method derives the 3D tree 
parameters fully automatically from the point clouds. The tree 
height is defined as the difference between the highest and 
lowest tree point. On sloping terrain, the point on the trunk is on 
the uphill side. This is also the height basis for the DBH 
derivation, which is defined as the stem diameter at a height of 
1.3 m above a digital terrain model (DTM). To determine the 
DBH, a section of the point cloud with a height of 10 cm is 
extracted and a circle fitting is performed. 
 
The crown projection area is obtained by a vertical projection of 
the tree crown onto the ground. It is determined as a convex hull 
from the 2D projection of all scan points in the XY plane. The 
outcome is a set of points representing the surrounding polygon 
and its corresponding area. 
 

 
Figure 2. Recording dates. 
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To determine the crown volume, the polygon method, employs 
the extraction of crown projections in equally spaced horizontal 
layers along the tree crown. The area of the surrounding 
polygons is multiplied by the layer thickness and subsequently 
summarized to yield the volume. 

 
Figure 4. Proprietary method for crown volume determination: 
polygon method with equally spaced surrounding polygons. 
 
3.3 Multiscale Model to Model Comparison  

The M3C2 algorithm (Multiscale Model to Model Cloud 
Comparison, Lague et al., 2013) is a method for analyzing point 
clouds and to compare two or more point clouds with each other 
to identify differences in geometry. To compare the point clouds 
of successive epochs, the M3C2 implemented in CloudCompare 
was used. In the M3C2 comparison, the surface normals and 
their 3D orientation are first estimated. Then, the mean area 
changes along the normal directions are calculated. The regis-
tration error is taken into account to assess the significance of 
the corresponding displacement. Due to the extensive scan 
epochs, a Python script was developed to initiate the M3C2 
plugin via command line mode. Thus, automatic processing was 
performed using constant M3C2 parameters with scan-specific 
registration errors. The scan-specific registration errors are 
calculated based on the average errors of the two scan epochs to 
be compared. 
 
3.4 Analysis of branch movements 

The branch movements are analyzed by tracking natural branch 
points in the co-registered point clouds of the time series. The 
workflow (Fig. 5) consists of four steps. The first step involves 
the interactive identification of discernible branch points pi

0 
within the point cloud at epoch t0. It is preferable that these 
points exhibit characteristics such as branch forks or distinctive 
structural features, which will facilitate unambiguous automatic 
assignment in subsequent stages.  
 
Subsequently, a spatial region Ni

j around each identified branch 
point is delineated, characterized by coordinate boundaries 
(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax). Within each epoch 
(t0, ..., tn where n denotes the number of epochs), the corre-
sponding point cloud sections are extracted based on these 
defined boundaries. Notably, the extent of this region is set 
sufficiently wide (±20 cm in all spatial dimensions) to allow for 
a potential displacement of the branches. 
 
The third step entails the application of the Iterative Closest 
Point algorithm (ICP, Besl and McKay, 1992) on the extracted 
point cloud sections. This iterative process aims to determine 

transformation parameters, with the point cloud data from epoch 
t0 serving as reference. Subsequently, the point cloud sections 
from epochs t0, ..., tn are transformed into the reference system 
of epoch t0.  

 
Figure 5. Workflow for tracking branch points in the hyper-
temporal TLS data. 
 
After the transformation, the closest point to the original branch 
point at epoch t0 is identified via the smallest distance search 
within the transformed point cloud of the respective epoch. This 
point will serve as the branch point for the corresponding epoch, 
which will then be transformed back into the coordinate system 
of the original epoch. The result of branch tracking is the 3D 
trajectory of the tracked branch point in all epochs. 
 
To facilitate the process, a Python script was developed to 
automate the branch point tracking procedure using a predefined 
list of branch points from epoch t0. This script uses the CROP 
and ICP routines from CloudCompare (version 2.12.4), invoked 
in command-line mode. 
 

4. Results and Discussion 

This section presents and discusses the results of the meteoro-
logical measurements (Section 4.1), the determination of the 3D 
tree parameters (Section 4.2), the point cloud comparison 
(Section 4.3) and the analysis of the branch movements (Section 
4.4). 
 
4.1 Meteorological Data 

Figure 6 illustrates the measured air temperature, relative 
humidity and daily precipitation height recorded during the scan 
epochs and averaged over a day. Figures 6a and 6b represent 
values obtained from a weather station located in close proximi-
ty to the scanned tree. The daily precipitation height was 
recorded by a station in another part of the city. Therefore, it is 
possible that the actual amount of precipitation for the tree was 
slightly different. 
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(a) Air temperature 

 
(b) Relative humidity 

 
(c) Daily precipitation height 
 
Figure 6. Results of the meteorological measurements: a) Air 
temperature and b) Relative humidity from a KLIPS-station; c) 
Daily precipitation height, database: Deutscher Wetterdienst 
(DWD), Climate Data Center (CDC), single values averaged. 
 
4.2 Determination of 3D Tree Parameters  

Tree height: The obtained tree heights (Fig. 7) of both soft-
ware’s show clear differences. Two things stand out in the curve 
of the tree heights. There is a consistent slight overestimation 
(4.7 cm) in the commercial software compared to the non-
commercial software. Presumably the determination of the tree 
base is lower when using LiDAR360, which leads to a higher 
tree height estimate. 
 
Secondly, there is a conspicuous spike evident in both curves 
around the epochs of May 16 and June 2. The decrease in tree 
height observed from May 16 to June 2 can be explained by an 
escalation of ground vegetation. Shortly before June 9, the grass 
at the location of the tree was mowed, which lead to a lower 
DTM determination, resulting in a sudden increase in the 
calculated height of the tree. 

 
Figure 7. Comparison of the tree height obtained with proprie-
tary method and LiDAR360. 
 
DBH: The DBH demonstrates an increase of approximately 
1 cm (Fig. 8). There are slight differences (mean 1.8 mm) in the 
DBH determination regarding the two methods, which can be 
caused by different heights on the trunk. If the base of the tree is 
determined using different methods, the height at the trunk 
varies by a few centimeters. This discrepancy, along with 
variations in the thickness of points utilized for circle fitting, 

contributes to the observed differences. Different thicknesses of 
the point cloud sections were used to determine the DBH 
(10 cm proprietary method vs. 20 cm LiDAR360). Figure 8 
shows the DBH obtained and the DBH measured with a circum-
ference measuring tape. 
 

 
Figure 8. Comparison of the DBH obtained with proprietary 
method and LiDAR360. 
 
CPA and crown volume: The curves for crown projection area, 
and crown volume are very similar, characterized by a rapid 
increase during the leaf growth period followed by relatively 
constant values throughout the tree growth period (Fig. 9, 10). 
The CPA values agree well. The last epoch was measured in 
January, after the leaves had fallen. As expected, the values 
decrease significantly here.  
 

 
Figure 9. Comparison of the CPA obtained with proprietary 
method and LiDAR360. 
 
The polygon method is used to determine the 3D extansion of 
the crown. However, the actual wood volume is smaller, as the 
spaces between the branches are taken into account here. The 
method used by LiDAR360 to determine the volume is not 
known. It is assumed that the methods determine the volume in 
different ways and a wide spread of the determined values is 
therefore expected. However, in order to make it comparable, 
the results of the polygon method and LiDAR360 are shown in 
Figure 10. 

 
Figure 10. Comparison of the crown volume obtained with 
polygon method and LiDAR360. 
 
The tree height is a parameter that provides good information 
over a longer observation period for tree growth. The DBH is 
also an indicator of the growth in wood volume and does not 
provide any information on leaf emergence. In the rather short 
time series, the crown parameters show the change in volume as 
a result of leaf emergence much better. 
 
4.3 Multiscale Model to Model Comparison  

The M3C2 comparison was used to visualize vegetation chang-
es in subsequent epochs. The actual leaf emergence started on 
May 2. Figure 11 shows the results of the M3C2 comparison,  
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Figure 11. M3C2 distances of two successive epochs with drop-coded precipitation height. During the daily recording, one filled 
drop represents a precipitation of 1.25 mm and during the weekly recording, one drop symbolizes a precipitation of 11 mm. 
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where each epoch tn is shown compared to the previous epoch 
tn-1. The daily amount of precipitation that fell between the two 
recording times is visualized as colored drops. From the weekly 
scans onwards (from May 26), the amount of precipitation per 7 
days was indicated. Positive M3C2 distances (vegetation 
changes as a result of growth) are shown in red and negative 
distances in blue. Since May 7, a sudden and continuous change 
in the M3C2 distances can be seen.  
 
Considering the daily scan comparisons (until to May 26), two 
days stand out on which the M3C2 comparisons show com-
pletely opposite results to the subsequent comparison: May 5 - 
May 6 and May 22 - May 23. When comparing the later epochs, 
there are differences of up to 12 cm. Interestingly, these anoma-
lies are always observed on days with heavy rainfall. The 
differences are mostly positive. 
 
From the weekly recording onwards, the distances are rather 
mixed and irregularly distributed over the recording period. No 
uniform trend can be seen, possibly due to the warm and rainy 
weather. From September 22, the M3C2 distances are mostly 
negative, which can be explained by the beginning of leaf fall. 
 
4.4 Analysis of branch movements 

Branch points were randomly distributed in the crown (variation 
in height and distance from the trunk) at a junction of two 
branches to analyze the movement as a function of the height 
and distance of the trunk. The order of branching from the trunk 
was recorded for each point. With increasing distance of the 
branch points from the trunk, an increase in branch movement 
in the Z direction was observed (Figure 12). No correlation 
could be found between branch movement and the height of a 
branch within the crown.  
 

Figure 12. Movement of the branch points in the Z direction as 
a function of the horizontal distance of the branch points from 
the trunk. The colors symbolize the order of the branches. 
 
There is not only a movement in the Z direction, but also a 
movement in the X and Y directions. Figure 13 presents the 
movement of 8 branch points in the XY, XZ and YZ projec-
tions. Concerning the branch points K and O, these are a 2nd 
order branch point and a 1st order branch point with a height of 
7.17 m and a distance of 1.28 m to the trunk, and a height of 
6.57 m and a distance of 2.58 m, respectively. Over the course 
of the year, their movement corresponds roughly to a circular 
movement. Point M, however, shows an irregularly scattered 
course in the projections. The attributes of the selected branch 
points depicted in Figure 13 are described in Table 1. 
 
 
 
 

 
Figure 13. Movement of 8 distinctive branch points in XY, XZ 
and YZ projection. 
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Table 1. Characteristics of the selected branch points with 
branch order Br. ord., height h and distance dtrunk of the point to 
the trunk and the maximum scattering in the coordinate direc-
tions ΔX, ΔY, ΔZ. The largest deviations are highlighted. 
 

 Br. 
ord. 

h  
[m] 

dtrunk 
[m] 

ΔX 
[m] 

ΔY 
[m] 

ΔZ 
[m] 

E 2 4.84 1.10 0.02 0.02 0.03 
G 1 6.01 1.45 0.02 0.03 0.04 
I 1 5.33 1.59 0.05 0.05 0.12 
K 2 7.17 1.28 0.03 0.04 0.07 
M 2 7.15 2.30 0.10 0.07 0.09 
O 1 6.57 2.58 0.06 0.07 0.07 
V 1 3.41 2.01 0.03 0.03 0.08 
W 3 3.00 1.65 0.02 0.05 0.09 

 
The three-dimensional movement over the year for two selected 
branch points (K and O) is shown in Figure 14. It can be seen 
that, in addition to the lowering of the branch, a lateral move-
ment of the branch occurs. After leaf fall, the branch returns to 
the vicinity of the starting point.  

 
Figure 14. Trajectory of two distinctive branch points in 3D: 
point K (left) and point O (right). 
 
The presented branch tracking algorithm reaches its limits 
because the branch points to be analysed are selected in the 
leafless reference epoch t0. Incorrect tracking may occur if the 
branch section is not sufficiently visible due to occlusion by 
growing leaves and the point cloud sections to be matched lie 
outside the spatial region (very large movement). This manifests 
itself in an incorrect ICP assignment, as with point M in Figure 
13. These errors can be excluded by analysing the standard 
deviations of the ICP algorithm. 
 
The indicated M3C2 distances and tracking differences are 
caused not only by leaf growth, but also by branch lowering due 
to the leaf weight (Fig. 15). External influences such as the 
tree's water balance (drought stress and precipitation) also have 
an effect. 
 

 
 
Figure 15. Exemplary representation of branch lowering over an 
observation period of one, three and 147 days. The turquoise 
point cloud represents the epoch recorded at an earlier time, 
while white represents the epoch recorded at a later time. 

5. Conclusion and Outlook 

The study investigated the potential of hyper-temporal TLS data 
for monitoring leaf growth and tree growth. The methods 
presented here show that a change in the crown can be detected 
by M3C2 distances. Two types of branch movement were 
detected: Annual movement of the branch and movement after 
rain events. 
 
As the evaluation of the M3C2 distances showed, the branches 
lower after a rainfall event (within 24 hours). Within the next 24 
hours, a lifting of the branches is visible, which is due to the 
elasticity of the wood and absorption of water. In addition to 
branch movements caused by precipitation, there are also 
annual branch movements. These are subject to a certain 
movement and can be described by tracking a defined point. 
The changes within the crown area are influenced by external 
influences (wind and rain), leaf emergence and growth and the 
general lowering of branches due to the gravity of the increasing 
leaf mass. 
 
To answer the research outset questions: 1. Is it possible to 
detect leaf growth in the hyper-temporal recorded TLS data? 
Yes, it is possible to detect leaf growth in the data. In addition, 
heavy rainfall events affect the tree structure so that they are 
also visible in the data. 
 
2. How does leaf growth and tree growth manifest itself in 3D 
tree parameters and point cloud comparisons? Leaf and tree 
growth can be identified in the data using the 3D tree parame-
ters examined. While the DBH is a good indicator of stem 
growth, leaf growth can be recognized from the derived crown 
parameters (CPA and crown volume). The point cloud compari-
sons show little change after leaf emergence. 
 
For further research questions regarding branch volume or 
occlusion modeling inside tree crowns based on time series, the 
movement behavior of branches is essential and requires 
consideration of the course of movement. Future work will 
focus on tracking and predicting these movements using applied 
Quantitative Structure Models (QSM). As the crown skeleton 
performs natural movements, these areas are severely con-
strained and cannot be predicted by rigid structural models. 
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