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Abstract

LiDAR bathymetry provides an efficient and comprehensive way to capture the topography of water bodies in shallow water areas.

However, the penetration depth of this measurement method into the water column is limited by the medium water and water

turbidity, resulting in a limited detectability of the bottom topography in deeper waters. An increase of the analyzable water depth is

possible by the use of extended evaluation methods, in detail full-waveform stacking methods. So far, however, this has only been

investigated for water depths of up to 3.50 m due to water turbidity. In this article, the potential of these extended data processing

methods is investigated on an alpine mountain lake with low water turbidity and thus high analyzable water depth. Compared to the

standard data processing, the penetration depth could be significantly increased by 58%. In addition, methods for depth-resolved

water turbidity parameter determination on the basis of LiDAR bathymetry data were successfully tested.

1. Introduction

LiDAR bathymetry is a method for the efficient and area-wide

acquisition of water bottom topography in shallow coastal areas

and inland waters. The recent development of compact, light-

weight, and sufficiently powerful bathymetric laser scanners

enables their use on UAVs (uncrewed aerial vehicles). In this

way, the water bottom topography can be mapped flexibly, cost-

efficiently and with high resolution. Investigations on the ap-

plication potential of UAV-based LiDAR bathymetry show that

study areas can be scanned time-efficiently, with high point

density and high accuracy (Mandlburger et al., 2020, 2022).

The penetration depth of LiDAR bathymetry is limited by the

attenuation of the green laser pulse in the water medium and the

water turbidity. Recently, novel processing methods for full-

waveform LiDAR bathymetry data have been developed to ex-

tend the depth range and to derive additional information from

the measurement data. Compared to standard processing meth-

ods, higher penetration depths and better coverage of the water

bottom with measurement points can be achieved (Mader et al.,

2021, 2023a,b). In addition, information on water turbidity can

be derived (Richter et al., 2017, 2021, 2022). However, existing

studies investigating the potential of these methods are limited

to airborne LiDAR bathymetry (ALB) data in shallow water

areas with high water turbidity, e.g. from the federal waterway

Elbe in Germany and the German Wadden Sea National Park.

The maximum analyzable water depth in these data sets was

approximately 3.50m due to the high water turbidity.

In this study, the novel processing methods are applied to a data

set with a large analyzable water depth larger than 10m. For

this purpose, a UAV-based LiDAR measurement campaign was

carried out on an alpine mountain lake characterized by low wa-

ter turbidity and large water depth. The UAV-based LiDAR ba-

thymetry data differs from the conventional ALB data in terms

of point density and footprint size. The study therefore also ex-

amines the application of the new processing methods to a data

set with a higher point density and smaller footprint.

The paper is structured as follows. The study area and the meas-

urement campaign are presented in Section 2. Section 3 de-
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Figure 1. Top: Location of Lake Erlauf in Austria. Bottom:

Location of the study area in the eastern part of Lake Erlauf.

scribes the novel full-waveform processing methods for the de-

rivation of water bottom topography. The determination of 3D

turbidity parameter fields is presented in Section 4. The paper

ends with a conclusion in Section 5.

2. Study area and data acquisition

The study area is a part of the Lake Erlauf, an alpine moun-

tain lake near the town Mariazell in Austria (Fig. 1). The

UAV-based LiDAR bathymetry data was acquired in summer

2022 using a RIEGL VQ-840-G on an UAV. The study area

covers approximately 350m × 350m and was flown with six

overlapping flight strips with a swath width of approximately

100m. The flight altitude was approximately 135m above

the water surface. The mean point density was approximately

160 points per m
2, whereby the point distribution is inhomo-

geneous due to the elliptical scan pattern and the overlapping

flight strips. The measurement campaign comprised two flights

over the same measurement area with different beam diver-

gence angles (1mrad and 4mrad corresponding to a footprint

size of 13.5 cm and 54 cm at the water surface). The sampling

time interval was 0.503 ns, which corresponds to a 3D distance

of 5.64 cm under water.
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Figure 2. Measurement data to validate the results of

full-waveform stacking and depth-resolved water turbidity

parameter estimation.

For validation purposes, hydroacoustic measurements were car-

ried out in the study area. A vertical echo sounder (EchoLog-

ger ECT400) installed on an uncrewed water vehicle (UWV)

was used to measure the water bottom topography profile by

profile (Sardemann et al., 2018). The measurement frequency

was 1Hz, resulting in point distances of 0.5m up to 1.2m

along a profile, depending on the speed of the UWV. The dis-

tances between the profiles were generally less than 8m. The

depths measured with the echo sounder were corrected using

water temperatures measured with a CTD probe. The correc-

ted echo sounder measurements were then georeferenced with

the IMU and RTK positions of the UWV. However, the tem-

perature measurements were only made at three locations in the

deep part of the lake. Deviating temperatures in the shallow

water may affect the accuracy of the depth measurements. It is

also affected by the unknown characteristics and variable geo-

metry of the water bottom (Anderson et al., 2007). As the hy-

droacoustic measurements generally have no superior accuracy

with respect to ALB, they cannot be used as reference measure-

ments. However, they are well suited for plausibility checks of

the UAV-based LiDAR bathymetry measurements.

In addition, various water property parameters were determined

at five measuring points using in-situ measuring methods. Pho-

tosynthetically active radiation (PAR) was measured using a

spherical quantum sensor. The chlorophyll concentration was

determined using a fluorescence probe. Temperature, dissolved

oxygen, pH-value, conductivity and water turbidity were meas-

ured with a CTD probe. The water transparency was determ-

ined using a Secchi disk (Secchi, 1864).

Fig. 2 provides an overview of the location of the measure-

ments. The vertical echo sounder measurements on the south

shore are color coded according to their water depth. The yel-

low dots P1 – P5 show the locations of the in-situ water prop-

erty measurements.

3. Derivation of water bottom topography using

full-waveform stacking approaches

This section briefly introduces various methods of full-

waveform processing. On the one hand, a brief overview of ex-

isting established methods for the extraction of object echoes in

full-waveform signals is given (Section 3.1 and 3.2) and, on the

other hand, the main features of the novel full-waveform pro-

cessing approaches for detecting weak water bottom echoes are
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Figure 3. Full-waveform with conventional peak detectors.

Figure according to Mader et al. (2021).
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Figure 4. Principle of exponential decomposition; σm = model

of the differential backscatter cross-section (dBCS); τi = time

interval limits of the dBCS segments; Ei = amplitude values of

the σm; γ = attenuation coefficient. Figure according to Schwarz

et al. (2019).

presented (Section 3.3). The main difference between the stand-

ard methods and the novel full-waveform processing methods is

that the isolated evaluation of the full-waveform data is replaced

by a combined evaluation of neighboring full-waveforms to

provide additional information about the water depth. The

novel methods were used to analyze the UAV-based LiDAR

bathymetry data set with a beam divergence angle of 1mrad.

For validation purposes, the results are compared with the hy-

droacoustically determined water depths (Section 3.4).

3.1 Conventional peak detection and decomposition

There are several methods to extract object echoes from full-

waveform data. Wagner et al. (2004) and Wang et al. (2015)

present basic methods for detecting object echoes in full-

waveforms, including the threshold operator, the peak max-

imum, the center of gravity, and the inflection point (Figure 3).

A more complex method for estimating the peak position, peak

amplitude and peak width is Gaussian decomposition (Wagner

et al., 2006; Reitberger et al., 2009; Mallet and Bretar, 2009).

However, this method is less suitable for analyzing LiDAR ba-

thymetry data due to the specific signal characteristics caused

by the influence of the water column on the signal. Schwarz

et al. (2017, 2019) present the surface-volume-bottom method

based on the exponential decomposition, which can extract wa-

ter surface, water column, and water bottom echoes from the

full-waveform signal (Figure 4).
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Figure 5. Principle of pseudo-waveform generation for sigFWFS. Pseudo-waveform for sigFWFS = stacked full-waveform. (Mader et

al., 2021, 2023b).
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Figure 6. Principle of pseudo-waveform generation for volFWFS. Pseudo-waveform for volFWFS = ortho full-waveform. (Mader et

al., 2023a,b).

3.2 Standard processing with commercial software pack-

ages

The terms standard processing and online waveform processing

(OWP) are used here to refer to the real-time evaluation and

post-processing by manufacturer software and other commer-

cial software packages. The exact processing sequence in these

software packages is only partially published (Pfennigbauer et

al., 2009; Pfennigbauer and Ullrich, 2010). It can be assumed

that both peak detectors and decomposition methods are used,

also in combination.

3.3 Full-waveform stacking for the detection of weak wa-

ter bottom echoes

Full-waveform stacking methods are based on the combined

analysis of closely adjacent full-waveform data, which are ac-

cumulated into pseudo-waveforms. The pseudo-waveforms

have an improved signal to noise ratio and therefore allow for

more reliable detection of weak water bottom echoes. The non-

linear signal-based and volumetric full-waveform stacking ap-

proaches (sigFWFS and volFWFS) presented in Mader et al.

(2021) and Mader et al. (2023a) differ in the generation of

the pseudo-waveform. The sigFWFS combines the complete

signal characteristics of individual full-waveforms which are

closely adjacent at the water surface (Fig. 5). The geometric

direction of the laser pulses in the water column is not con-

sidered herin. In contrast, the volFWFS takes into account the

geometric propagation of the laser pulses throughout the wa-

ter column using a voxel space representation (Fig. 6). For the

present study, a voxel size of 2m× 2m× 0.1m was chosen.

In both methods, the water bottom echoes in the individual full-

waveforms are detected and extracted based on the water depth

information of the pseudo-waveforms. Details on how the full-

waveform stacking process works can be found in the literature

cited above.

3.4 Results of water bottom topography derivation using

sigFWFS and volFWFS

First, the results of sigFWFS and volFWFS are visually ana-

lyzed. Fig. 7 (a) and (b) show a top view of the extracted water

bottom points. As can be clearly seen, the shallow water area

(water depth < 1.6m) was not extracted correctly. In the area

marked in purple, the full-waveforms could not be correctly

evaluated by the full-waveform stacking method due to their

unusual shape. Figure 8 shows a characteristic full-waveform

from the shallow water area in the study area, which differs sig-

nificantly from a typical textbook form. Full-waveforms with

very similar characteristics are also presented in Saylam et al.

(2018) and explained with shallow water depths and very low

water turbidity. Since the standard processing worked very well

in the shallow water areas, the OWP data can be used there

without any problems instead of the full-waveform stacking res-

ults.

Beyond the shallow water area, the bottom is characterized by

a steep gradient. This is followed by a highly rugged zone that

is not plausible (Fig. 7 (a) and (b), areas outlined in red). The

filter methods optimized for moderately sloping water bottom

topographies obviously failed here. In future work, the filter-

ing methods will have to be adapted for steeply sloping water

bottoms. For this contribution, however, the incorrectly filtered

parts of the water bottom were interactively removed. The res-

ulting sigFWFS and volFWFS point clouds in Fig. 7 (c) and

(d) show that the water bottom is plausibly represented up to a

water depth of approx. 14.5m with a high point density.
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Figure 7. Top view of the point clouds resulting from sigFWFS (a) and volFWFS (b). The points are color coded according to their

water depths. The problematic areas in the shallow water are marked in purple, the areas where the filtering has failed are marked in

red. The results after interactive filtering are shown in (c) and (d). (e) and (f) show the coverage comparison between (c) and (d) and

the OWP data (black points).
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Figure 8. Full-waveform from the shallow water area of the

study site (water depth ≤ 1.6m).

Figure 9. Comparison between sigFWFS and volFWFS point

cloud color coded by their height differences (green = sigFWFS

lower than volFWFS, red = sigFWFS higher than volFWFS).

Fig. 7 (c) clearly shows that even in the plausible areas there

are isolated errors in the results of the sigFWFS processing.

A comparison of the point clouds of sigFWFS and volFWFS

shows no significant trend with an average height difference of

−0.004m. Fig. 9 shows the local differences between the point

clouds.

Finally, the sigFWFS and volFWFS point clouds are validated

by comparing them to the hydroacoustic measurements. Only

points in the direct neighborhood of the hydroacoustic meas-

urements (lateral distance ≤ 0.2m) were used to compare the

height coordinates. The results of the point cloud comparisons

are presented in Table 1. The statistical values used for the com-

parison correspond to those of (Mader et al., 2021, 2023a,b).

Details on the calculation of the statistical values can be found

in these articles.

If we consider the statistical values as a function of water depth,

it is noticeable that the accuracy and reliability values for the

results of the volFWFS are worse at smaller water depths than

at larger water depths. Table 2 illustrates this by showing an

example of the statistical values for the water depth range of

1m – 7m and 7m – 15m. The accuracy and reliability of the

sigFWFS results decreases with increasing water depth. Table 2

shows the statistical values for the same depth ranges as the

results of the volFWFS.

In summary, it can be stated that the extracted water bottom

points up to a water depth of approx. 14.5m appear plausible.

The comparison between sigFWFS and volFWFS also shows

that the volFWFS overall worked better than the sigFWFS

(Table 1). Table 2 shows that the volFWFS provided signific-

antly better results than the sigFWFS, especially in the depth

range of 7m – 15m. This may be due to the fact that the

sigFWFS does not take into account the laser beam direction

when generating the pseudo-waveform. The result is a combin-

ation of full-waveforms that are close to each other at the water

surface but not at the water bottom. This in turn causes the

already weak bottom echo in the pseudo-waveform to be fur-

ther ”smoothed” and thus less reliably detected when the water

bottom is very sloped. It is evident that the penetration depth

of both the sigFWFS and volFWFS processing is significantly

larger than that of the standard processing (OWP), which was

approximately 9.2m. Please note that the achieved water depth

of the OWP data can vary depending on the parameter selection

in the standard processing.

4. Determination of 3D turbidity parameter fields

This section first presents the full-waveform processing meth-

ods for determining 3D turbidity parameter fields (Section 4.1).

The methods were applied to the pseudo-waveforms resulting

from volFWFS. The results are presented and discussed in Sec-

tion 4.2. For validation purposes, the water turbidity values

determined from the UAV-based LiDAR bathymetry data are

compared with the in-situ measurements.

4.1 Methods

Richter et al. (2022) present an approach for the determina-

tion of depth-resolved water turbidity parameters from pseudo-

waveforms. In a first step the water column segment is extrac-

ted from the pseudo-waveform. For this purpose, the volume

backscatter is defined as the signal component between the wa-

ter surface and water bottom echo. For detection and extraction,

the full-waveform analysis methods presented in Section 3.3 are

used. Subsequently, a segment-wise exponential function ap-

proximation (sEFA) is carried out. For this purpose, several ex-

ponential segments are fitted into the water column part of the

signal. The principle is shown schematically in Fig. 10. The

sEFA provides an estimate of the exponential attenuation coef-

ficients ki, which represent a quantitative, integral, and non-

metric measure of water turbidity in the water column.

The number of segments required is derived from the full-

waveform itself. Based on the water surface echo, only the first

part of the water column signal is initially taken into account

in the exponential function approximation. In addition to the

exponential attenuation coefficient, the quality of the approx-

imation can be assessed using the RMS value from the fit of the

measured values to the functional model. Subsequently, further

samples are included step by step and the function approxim-

ation is repeated until the end of the water column signal is

reached. Then, the RMS values of all function approximations

are examined. The following cases can occur:

1. The water turbidity in the considered section is constant.

The data are well described by the functional model and

the RMS is small.

2. The considered part of the water column contains signal

components from a different turbidity layer. The data are

poorly described by the functional model. The more signal

components of the different turbidity layer are included,

the higher the RMS value.

An empirically determined threshold value is used to determine

the point above which the RMS value increases (Fig. 10). A

new exponential segment is added at this point. The process is

repeated until all exponential segments have been found.
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sigFWFS volFWFS
Accuracy
∆h̄ −0.13m −0.15m
σ∆h̄ 0.34m 0.26m
RMS 0.36m 0.30m
σMAD(median) 0.23m 0.22m
Inlier Rate (Litman et al., 2015)
|∆h| ≤ IHO Depth TVU Special Order 62.39% 62.65%
(25.0 cm – 27.4 cm; Value depends on depth)
|∆h| ≤ Depth TVU Order 1a 87.80% 92.43%
(50.0 cm – 53.4 cm; Value depends on depth)

Table 1. Statistical comparison of the height coordinates of hydroacoustic measurements and sigFWFS or volFWFS. Negative values

for ∆h̄ mean that sigFWFS and volFWFS are higher than the hydroacoustic measurements. The IHO Depth TVU Special

Order/Order 1a was used for the inlier rate (International Hydrographic Organization, 2020).

sigFWFS volFWFS
Water depth range 1m – 7m 7m – 15m 1m – 7m 7m – 15m

Accuracy
∆h̄ −0.119m −0.146m −0.180m −0.056m
σ∆h̄ 0.34m 0.32m 0.26m 0.21m
RMS 0.36m 0.36m 0.32m 0.21m
σMAD(median) 0.21m 0.26m 0.22m 0.20m
Inlier Rate (Litman et al., 2015)
|∆h| ≤ IHO Depth TVU Special Order 65.58% 52.79% 58.76% 77.25%
(25.0 cm – 27.4 cm; Value depends on depth)
|∆h| ≤ Depth TVU Order 1a 88.62% 85.31% 90.86% 98.28%
(50.0 cm – 53.4 cm; Value depends on depth)

Table 2. Statistical comparison of the height coordinates of hydroacoustic measurements and sigFWFS or volFWFS for different

water depth ranges. Negative values for ∆h̄ mean that sigFWFS and volFWFS are higher than the hydroacoustic measurements. The

IHO Depth TVU Special Order/Order 1a was used for the inlier rate (International Hydrographic Organization, 2020).
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Figure 11. Derivation of depth-resolved water turbidity

parameters from a volFWFS pseudo-waveform. The sample

distance of the pseudo-waveform is 10 cm.

4.2 Results of high-resolution depth-resolved water tur-

bidity parameter fields determination using sEFA

Figure 11 shows an example of the depth-resolved water tur-

bidity parameters derived from a volFWFS pseudo-waveform.

Three layers of different water turbidity were detected, extend-

ing from the water surface to a depth of 2.3m (corresponding

to 23 samples of the pseudo-waveform), from 2.3m – 2.8m

(corresponding to 5 samples of the pseudo-waveform) and from

2.8m to the maximum analyzable water depth of 14.5m (cor-

responding to 117 samples of the pseudo-waveform). The

detected turbidity stratification is confirmed by the reference

measurements for water turbidity (Fig. 12). The evaluation of

the measurements of the acquired local water characteristics

(temperature, dissolved oxygen, pH value, conductivity, pho-

tosynthetically active radiation and chlorophyll concentration)

has not yet been completed at the time of this publication.

Basically, ALB is used to investigate the properties of the wa-

ter column in the green wavelength range. The water turbidity

parameters derived from ALB data can therefore not be readily

compared with the measurement results of other measurement

methods. However, this also applies to conventional measure-

ment methods, which examine different optical properties of

the water column and are not compatible with each other. The

area-wide and depth-resolved determination of water turbidity

from ALB data or UAV-based LiDAR bathymetry data is a valu-

able addition to conventional point measurement methods and

is ideally suited for describing spatio-temporal variations in wa-

ter turbidity.

5. Conclusion

The aim of this paper was to investigate the potential of full-

waveform stacking evaluation methods on a water body with an

analyzable water depth of more than 10m and to validate the

method of depth-resolved water turbidity parameter determin-

ation on the basis of water turbidity measurements. Both full-

waveform stacking methods enable the detection of the water

bottom up to a water depth of approx. 14.5m. This corres-

ponds to an increase in the analyzable water depth of about

58% compared to the results of the standard processing (OWP

data), whereby the specific value depends on the parameters

used for the OWP. In the UAV-based LiDAR bathymetry data,
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Figure 12. Results of the water turbidity measurement with the

CTD probe.

three layers of different water turbidity were detected, which

was confirmed by the in-situ water turbidity measurements. The

results presented here are part of the first investigations carried

out on this data set. Future work will focus on the following

aspects:

1. enhancement of full-waveform stacking filter methodo-

logy for water bottom topographies with larger and more

dynamic gradients;

2. investigation of the influence of different laser beam di-

vergences on the results of OWP, full-waveform stacking

processing methods, and determination of depth-resolved

water turbidity parameter fields;

3. further investigation of the performance of sigFWFS and

volFWFS by comparison with refraction-corrected OWP

data and hydroacoustic measurements;

4. comprehensive validation of depth-resolved water turbid-

ity parameters including all in-situ measurements.
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