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ABSTRACT 
Wildlife research in both terrestrial and aquatic ecosystems now deploys drone technology for tasks such as monitoring, census counts 
and habitat analysis. Unlike camera traps, drones offer real-time flexibility for adaptable flight paths and camera views, thus making 
them ideal for capturing multi-view data on wildlife like zebras or lions. With recent advancements in animals’ 3D shape & pose 
estimation, there is an increasing interest in bringing 3D analysis from ground to sky by means of drones. The paper reports some 
activities of the EU-funded WildDrone project and performs, for the first time, 3D analyses of animals exploiting oblique drone 
imagery. Using parametric model fitting, we estimate 3D shape and pose of animals from frames of a monocular RGB video. With the 
goal of appending metric information to parametric animal models using photogrammetric evidence, we propose a pipeline where we 
perform a point cloud reconstruction of the scene to scale and localize the animal within the 3D scene. Challenges, planned next steps 
and future directions are also reported. 

1. INTRODUCTION

Drones, also known as Unmanned Aerial Vehicles (UAV) or 
Systems (UAS), have become an indispensable asset for wildlife 
conservation research (Wirsing et al., 2022; Tuia et al., 2022; 
Duffy et al., 2020). Their application is now widespread in 
ecological studies as they enable upscaled, replicable (Schroeder 
et al., 2020) and non-invasive acquisition of high-quality data 
(Fust and Loos, 2020; Jiménez López and Mulero-Pázmány, 
2019). They are also more easily available, safer, and more cost-
effective than traditional ground-based or aerial data collection 
methods (Duffy et al., 2020). Drones can help conduct flexible 
studies with more intricately designed flight paths as compared to 
remote sensing, thus making room for adding more complexity 
and nuances in surveys with varying altitudes (Fust and Loos, 
2020). There is also the potential to access difficult or 
inaccessible terrains, and drones can bring to such locations a 
variety of high-resolution payloads, ranging from visual to 
environmental sensors, depending on the objectives of the study 
(Krishnan et al., 2023; Mou et al., 2023; Corcoran et al., 2021).  
The use of photogrammetry and computer vision on drone-
acquired data can boost quantitative products that can be derived 
from collected data while reducing the processing time and 
human effort. For instance, Koger et al. (2023) demonstrate how 
high-altitude top-view RGB videos and photogrammetry could 
support habitat reconstruction and herd movement estimation, 
linking group action to the ecological context. Drones are also 
employed to create approximations of visual field of each animal 
within its habitat by learning pose and orientation when observed 
overhead (Schad and Fischer, 2023; Walter and Couzin, 2021). 
Most drone-based animal studies, particularly the ones involving 
some level of automation, work with nadir data whereas oblique 
imagery remains mostly unexplored (Chabot and Bird, 2015). 
This is due to the added ground distortion and viewing 
complexity of oblique videography, e.g. for morphometric 
analyses. Oblique views, however, have potential to be utilized 
for gaining visual insights that nadir imagery cannot be used for, 

especially when studying terrestrial animal characteristics, 
appearances, or behavior (Shero et al., 2021). Oblique views can 
capture data on animals that are occluded by surrounding 
vegetation (Tuia et al., 2022) and contain additional information 
about shape, coat patterns, gait, and activity such as grazing 
(Figure 1). A relevant dataset of oblique videos on animals is the 
KABR dataset (Kholiavchenko et al., 2024): it comprises high-
resolution footages of Grevy’s zebras, plains zebras and giraffes. 
Authors have also presented a computer vision-based pipeline for 
simultaneously focal sampling several terrestrial animals in the 
scene at the same time, using deep learning for behavior 
recognition. Focal sampling (Altmann, 1974) refers to the 
observation of one specific individual animal for a set time 
duration, done with the purpose of gaining behavioral insights. 
Monitoring health, movement, behavior, and responses of the 
animal not only sheds light on the individual but helps form a 
more refined understanding of the collective behavior (Koger et 
al., 2023).  

Figure 1: (a) Nadir vs oblique views for animal’s surveying. (b) 
Nadir imagery sees animals only from the top. (c) Oblique views 
offer better scope for studying individual animal characteristics.  

1.1 Paper aims 

In this paper, we propose a methodology (Figure 2) to perform a 
scaled 3D pose and shape extrapolation on individual zebras 
building upon 3D knowledge of the surveyed scene and the 
skinned parametric model SMAL (Zuffi et al., 2017). Our work 
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acts as a first step towards drone-based research on capturing 
scale in addition to 3D pose and shape of animals using oblique 
views and photogrammetric knowledge of the scene. Since the 
parametric model can in principle characterize several species, 
this will be extendable to oblique drone data of different types of 
animals. The contributions of our paper include: 
• to perform animals’ 3D pose and shape estimation based on 

oblique drone imagery;  
• to combine photogrammetrically extracted camera poses and 

flights logs to geolocate and scale the 3D animal models; 
• to bring together parametric fitting and photogrammetry for 

comprehensive scene recovery. 
 

2. RELATED WORK 

2.1 Animal 3D pose and shape estimation  

3D shape of animals can provide valuable knowledge on their 
health, reproductive status, and age (Postma et al., 2015). The 3D 
postural information allows for several types of kinematic 
analyses (Tuia et al., 2022). However, it remains an under-
explored problem when compared to the analogous challenge of 
3D human shape and pose estimation (Xu et al., 2024). This is 
true because of various reasons such as inter-species shape and 
appearance diversity, and shortage of datasets. 3D reconstruction 
through neural representations is progressing rapidly and can be 
generalized to several species. Some instances of research in this 
direction include 3D Fauna (Li et al., 2024), LASSIE (Li et al., 
2024), MagicPony (Wu et al., 2023), 3D Style Birds (Wang et al., 
2023), BANMo (Yang et al., 2022), TAVA (Li et al., 2022), 
DOVE (Wu et al., 2022) and LASR (Yang et al., 2021). However, 
the accuracy with which they represent animals, particularly for 
ecological use-cases, is not yet comparable to statistical fitting 
methods (Rüegg et al., 2023). Since large-scale 3D digitization 
operations of animals are not practically achievable. 3D 
parameterized quadruped models, such as SMAL (Zuffi et al., 
2017), were proposed by learning a low-dimensional shape space 
using scans of toys. The manual process of labelling pose key-
points and segmentation mask required for SMAL fitting was 
supplemented by Biggs et al. (2018) with a deep learning based 
front-end for 2D joint predictions. SMALR (Zuffi et al., 2018) 
improves SMAL fitting through incorporation of multi-view 
imagery to refine the shape and extract texture information. 
SMALST (Zuffi et al., 2019) uses an end-to-end network to 
regress SMAL parameters to extract shape, pose and texture from 
Grevy's zebras’ images in the wild. Li and Lee (2021) add a layer 
of refinement to the SMAL fitting by integrating per-vertex 
deformation prediction using graph convolutional networks.  
Generalization over diverse species is the main challenge for 
parametric methods. SMAL-like models can be used with high 
realism for animals belonging to the Felidae, Canidae, Equidae, 
Bovidae and Hippopotamidae family with a highly specific shape 
prior; the problem with generalization becomes more pronounced 
with animals such as elephants and giraffes. Their particularity 
and precision have, however, been taken advantage of for studies 
not focusing on generalization but instead where breed priori is 
exploited, such as SMBLD in Biggs et al. (2018). This is an 
extension of SMAL for representing dogs with better shape 
accuracy using augmented shaped parameters. These augmented 
shape parameters are picked up in BARC (Rüegg et al., 2022), a 
method incorporating breed-awareness, which has been followed 
by BITE (Rüegg et al., 2023) that additionally utilizes ground 
contact information for modelling more realism in dog shape and 
posture. Kanazawa et al. (2018) deform spherical meshes to birds 
for extracting shape, texture and pose. The deformation is done, 
however, without parameterizing the posture information. 
Therefore Badger et al. (2020) introduced a low-dimensional bird 

shape space, further developed by Wang et al. (2021). The most 
recent advancement has been the Animal3D Dataset (Xu et al., 
2024), which is a dataset consisting of over 3000 images of 40 
mammal species with annotations of not just 2D pose key points, 
but also the accompanying pose and shape parameters of high-
quality SMAL fitting. Note that none of these methods have been 
utilized on drone-based imagery, which introduces a new domain 
of modelling and posture challenges.  
From an application standpoint, the use of 3D statistical models 
can be seen where Stennett et al. (2022) combined deep learning, 
3D shape analysis with parametric modelling process SMALST 
and metric learning for re-identification of individual Grevy’s 
zebra on camera-trap data. The authors highlight how 3D model 
fitting can improve re-identification results as compared to 
widely used 2D bounding box methods, but even though they lay 
foundation for an animal identification system which could be 
applicable to open population settings, there is still no solution to 
the two-side problem. The two-side problem refers to how one 
lateral view of an animal has no identifiable correspondence to 
the other lateral view and one zebra can be assigned with two 
separate ids when viewed from different sides, an issue prevalent 
with camera-trap data. Flight paths designed to acquire a 
combination of oblique and nadir views, combined with real-time 
tracking, can be the solution to the two-side problem. Our 
application of parametric 3D pose analysis to drone data lays the 
perfect groundwork for testing such re-identification pipelines 
with drones.  
2.2 Drones, Photogrammetry and Computer Vision in 

Wildlife Conservation 
The contribution of drones to wildlife conservation efforts has 
multiplied with the assimilation of machine learning, computer 
vision and photogrammetry in both real-time analysis and post-
processing. This can be seen across a variety of applications such 
as census surveys and animal counts (Rahman et al., 2023; Burke 
et al., 2019; Kellenberger et al., 2019), social and individual 
behavioral analysis (Jagielski et al., 2022; Hartman et al., 2020; 
Torney et al., 2018), morphometric analysis (Torney et al., 2018), 
sample collection (Álvarez-González et al., 2023; Aucone et al., 
2023), individual re-identification (Andrew et al., 2019), 
environment analysis (Koger et al., 2023), large-scale ground 
truthing of remote-sensing data (Wirsing et al., 2022) and security 
related applications such as poacher detection (Bhatia et al., 2024; 
Anbalagan et al., 2023; Doull et al., 2021). This combination has 
helped produce valuable and layered datasets comprising of 
quantified metrics on movement and social interactions at high-
resolution (Koger et al., 2023; Haalck et al., 2023; Torney et al., 
2018). Drones have helped capture the 3D structure of 
surrounding habitats using photogrammetry, for analyzing 
patterns in animal grouping and decision making and linking it to 
spatial knowledge (Maeda and Yamamoto, 2023; Koger et al., 
2023). Data fusion of visible and thermal spectrum has been 
utilized for studying and distinguishing individuals from their 
environment in drone data (Krishnan et al., 2023).  
Most of these instances study ways of disentangling several 
strands of information, for instance gauging animal movement 
from drone videos or reconstructing the environmental context 
around the monitored animal that is continuously engaging with 
its environment and changing positions. For videos acquired in 
the wild, photogrammetry can provide metric information of the 
scene but cannot recover 3D shape and pose of the animals due to 
their continuous movement and change in posture. Through 
statistical fitting, 3D shapes and pose of the moving animals in 
the scene can be recovered but without scale information. Our 
methodology thus brings together these two 3D analysis methods 
- photogrammetry and parametric modelling - for a more 
comprehensive form of terrestrial animals analyses.   
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Figure 2: The proposed methodology which includes 3D environment reconstruction as well as 3D shape and pose estimation of 
animals seen in oblique drone imagery.  

 
3. METHODOLOGY AND RESULTS 

3.1 Data 
The used data are standard videos collected for manual 
surveillance at the Ol Pejeta Conservancy, located in Laikipia 
County in Kenya, using a DJI Mavic 3E (Figure 3). The videos 
(3840 x 2160 pixels resolution) feature a herd of Plains Zebras 
(Equus quagga) and were captured from relative altitude ranging 
from 15 to 35 meters above ground. Generally, the flight starts 
with a circular trajectory around the herd and subsequently 
proceeds to follow the herd. The zebras can be distinctly observed  
in their environment and engage in a variety of activities such as 
grazing and self-grooming. Working with these videos poses a 
different set of challenges when compared to working with 
traditional nadir data acquired for wildlife studies, as they feature 
oblique viewpoints, varying distance from the herd, changing 
altitude from the ground, zooming effects, continuous movement 
of animals, etc.  
 

 
Figure 3: Ol Pejeta Conservancy area as seen in Google Maps 
(left). UAV views from the WildDrone data acquisition in July 
2023 (right). 
 

 
1 https://github.com/3DOM-FBK/deep-image-matching 

3.2 Photogrammetric scene reconstruction  
For our experiments, we selected a video that showcases all the 
above-mentioned challenges. Given the continuous movement of 
both herd and drone, we extracted frames at 12 fps. This allowed 
us to create a set of images suitable for photogrammetric 
purposes, while also to correctly determine poses and shape of the 
zebras. During the drone flight, frequent camera zooms are 
required to better examine the herd or single animals. Therefore, 
using the DJI flight logs and frame metadata, the frames were 
automatically split into bins of similar focal lengths to assist the 
photogrammetric processing. For the image orientation, the 
SuperPoint (DeTone et al., 2018) feature extractor and the 
LightGlue (Lindenberger et al., 2023) feature matcher, both 
available in the Deep Image Matching toolbox (Morelli et al., 
2024)1, were used. Camera trajectories and sparse 3D 
reconstruction of the scenes were then recovered in COLMAP 
(Figure 4a-b). After individual scene recovery (for each bin), the 
scenes were co-registered in Agisoft Metashape exploiting the 
GNSS information stored in the flight logs (Figure 4c). This 
process allowed to create a scaled 3D result of the scene.  
 

3.3 3D pose and shape estimation of zebras 
SMAL (Zuffi et al., 2017) is a statistical 3D shape space 
descriptor mesh model represented as M(β, θ, γ), where β is the 
shape, θ is the pose and γ is the translation. These parameters 
collectively describe the modulation in shape (or postural 
representation), thus making them suitable for integration in 
graphic-based pipelines. Shape β is a descriptor for the 
coefficients of the low-dimensional shape space of the animal that 
are learned through Principal Component Analysis. The joints are 
denoted via a kinematic tree analogous to the skeletal structure, 
the root of which undergoes the translation γ. Pose θ is described 
through joints rotation. Starting from the SMAL mesh model, the 
fitting based SMALR method (Zuffi et al., 2018) is then applied 
for high accuracy shape retrieval.  
Silhouette masks and 2D pose keypoints are extracted from the 
UAV frames as inputs for the parametric fitting: 
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a)  

b)  

c)  
 

Figure 4: Recovered camera poses and sparse 3D scene from bins 
of 194 (a) and 227 (b) frames, respectively. Fusion of the separate 
processing results exploiting GNSS information extracted from 
the flight logs (c). 
 
• for extracting zebra silhouettes, a MaskRCNN (He et al., 

2018) architecture is trained using PyTorch’s Detectron2. 
Once masks are extracted, the selection of frames for SMALR 
fitting is performed by calculating the ratio between mask and  
image size and considering frames with a mask detection 
accuracy above 80%. For the former, frames with ratio above 
the median value are considered.  

• for 2D pose estimation, the MMPose2 toolkit is used, 
applying transfer learning from a pre-trained HRNet (Wang 
et al., 2020) backbone. Pose estimation with HRNet 
calculates the maximum likelihood of body keypoints 
through a ‘top-down approach’ i.e. body detection followed 
by joints estimation. In its first stage, the HRNet architecture 
processes the input image through parallelized network 
architecture, each branch corresponding to a different 
resolution scale with the goal to preserve both granular local 
details and global semantic contextual information. The 
multi-scale features are aggregated in the pose estimation 
head of the network through a fusion mechanism - each 
representation takes input from its immediate neighboring 
scales and from other parallel branches iteratively. This 
aggregation method ultimately generates keypoint heatmaps 

 
2 https://github.com/open-mmlab/mmpose_ 

predicting the joint presence likelihood from the multi-spatial 
representations (Figure 5).  

 
Figure 5: 2D pose estimation with HRNet. 

 
Finally, using the Equidae or Horse family specific shape prior, 
we input 2D key points and silhouette-based image evidence of 
the zebra’s shape in the frame as pose and shape target for 
iterative 3D model fitting optimization process inspired by 
SMALR fitting method (Figure 6). The 3D model is aligned via 
error minimization on an objective function which represents 
both pose key points errors and the silhouette errors. 
   

 

 
Figure 6: Visualization of SMALR fitting results in Blender. 

3.4 Metric parametric model 
To maintain the accuracy of the scaling, we take advantage of the 
extracted 2D and 3D keypoints of the hooves of the focal zebra. 
We chose hooves as animal reference because they have ground 
contact, they show good image replication trend when using 
SMALR and can help gauge orientation. We locate the 2D hoof 
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keypoints within the image using the already obtained 2D pose 
estimates and label them as markers across a set of five frames. 
These points are labelled as Hrf (image right front hoof), Hlf 
(image left front hoof), Hrb (image right back hoof), and Hlb 
(image left back hoof) in x,y image coordinates. The next step 
involves initiating a ground plane that denotes the maximum 
length covered within the x range: 
 

dist2DX = | distance (maxext (Hrf,, Hlf), maxext (Hrb, Hlb)) 
 

where maxext represents the maximum extension in either front or 
back to calculate distance from the most extended front hoof to 
the most extended back hoof either left or right. This distance is 
chosen because the SMALR model fitting, on rare occasions, can 
show distortions when differentiating between the left and right 
limb in both the front and back of the animal model, but, 
irrespective of the selection of limbs, it mimics extension along 
the head-to-tail length very accurately. Our goal here is to 
preserve this length and therefore go with the maximally extended 
limb in both front and back. We calculate the mean of this 
distance dist2DXmean across a set of five frames to minimize the 
error. We then perform rigid scaling on the model mesh using the 
Python library Trimesh3. With the 3D pose estimates from the 
model hoof keypoints, labelled as HRF (right front hoof: yellow in 
Figure 7), HLF (left front hoof: green in Figure 7), HRB (right back 
hoof: red in Figure 7), and HLB (left back hoof: blue in Figure 7), 
a rigid mesh scaling is performed through the following steps: 
• key point distances computation between Pi and the most 

extended back hoof, which in Figure 7 is HRB. Pi is the x-axis 
component of the furthest extended front hoof, in this case is 
HLF, along HRB; 

• scaling factor computation as  
dist2DXmean / | distance (Pi, maxext3D (HRB, HLB)) | 

• rigid transformation application and mesh scaling with the 
computed factor. In case artefacts are created, a mesh 
regularization is applied. 

After this scaling process, we calculated the distance between 
nose keypoint and tail-start keypoint using the corresponding 3D 
pose coordinate mesh vertices. In the sample case shown in 
Figure 7, the zebra length is 232 cm. In the literature (Kingdon, 
1988), the average head-body length of a Plains Zebras can range 
anywhere between 217-244 cm. Figure 8 shows examples of the 
fitting results for 3D shape recovery. 
 

4. CONCLUSIONS 

In this paper, we perform parametric model fitting on zebras using 
monocular videos captured by drones in-the-wild.  

 
Figure 7: Scaling results visualized in Blender. Visualization of 
the rigid scaling factor deduction using the properties of similar 
triangles in the plane of △HLF Pi HRB. 

 
The results suggest that combining photogrammetric processing 
and parametric model fitting to oblique monocular drone footage 
is an effective technique for quantifying the posture and shape of 
zebras observed in the wild. At the moment, we do not have 
ground truth to verify the error in this metric estimation, but such 
ground truthing will be pursued in further research activities in 
the framework of WildDrone project. We plan to use toy animals 
moved around while drones are surveying the area and acquiring 
multi-view images.  
A standard issue, as seen with SMALR fitting, is estimation of 
shape on dorsal viewpoints and missed gaze direction and these 
problems were observed with drone footage as well. To address 
this, we plan to collect aerial multi-view data with simultaneous 
multi-drone flights to understand the scope of improving fitting 
to odd poses and dorsal view with multiple perspectives. This was 
an important reason for choosing SMALR as the parametric 
model fitting algorithm in this pipeline. Since the model can 
represent several other species of interest, we will be looking at 
collecting data for different species as well.  
Aerial high-resolution oblique viewpoints open doors for 3D 
insights in wildlife conservation and introduce opportunities to 
increase the granularity and depth in pipelines such as pose 
estimation. The performance of most current methods worsens 
when they are used outside the domain they were developed for 
(Jiang et al., 2022) therefore it is highly crucial that drone data 
start to be considered as an essential domain for these 3D methods 
to be experimented on and adapted to wildlife monitoring and 
conservation.

 

      

      
Figure 8: Fitting results and 3D shape recovery on zebras from multiple drone frames: automatically extracted joints and 3D shape 
without/with superimposed original image. 

 
3 https://trimesh.org/  
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