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Abstract 

Vector-borne diseases pose a significant threat to human health, particularly in regions vulnerable to climate change. Among these 

diseases, malaria, caused by the parasite Plasmodium falciparum and transmitted through the Anopheles mosquito, remains a major 

global health concern, particularly in sub-Saharan Africa. This study explores the use of machine learning techniques to identify and 

predict the impact of climate change on the transmission dynamics of P. falciparum malaria in Africa.

The research utilizes a combination of climate data, epidemiological records, and machine learning algorithms to analyze historical 

patterns and project future trends in malaria transmission. Key climate variables such as temperature, precipitation, humidity, and 

vegetation cover are integrated into predictive models to assess their influence on the abundance and distribution of mosquito vectors 

and the parasite's lifecycle. Through the application of machine learning models such as Maximum Entropy, this study aims to 

uncover complex relationships between climatic factors and malaria transmission dynamics. By training these models on historical 

data, they can accurately predict future scenarios under various climate change scenarios. The findings of this research will provide 

valuable insights into the potential impact of climate change on the spatial and temporal distribution of P. falciparum malaria in 

Africa. Such insights are crucial for designing targeted interventions and adaptation strategies to mitigate the anticipated rise in 

malaria cases and associated morbidity and mortality in the region. Moreover, the methodology developed in this study can serve as 

a framework for assessing and addressing the impact of climate change on other vector-borne diseases globally. 
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1. Introduction

Vector-borne diseases, such as malaria, dengue fever, Zika 

virus, and Lyme disease, pose significant public health 

challenges worldwide, particularly in regions where 

environmental conditions are favorable for the proliferation of 

disease vectors. Among these diseases, malaria remains a major 

global health concern, with the majority of cases occurring in 

sub-Saharan Africa. Climate change is increasingly recognized 

as a key driver influencing the distribution, abundance, and 

transmission dynamics of vector-borne diseases. In recent years, 

there has been growing interest in utilizing machine learning 

techniques to better understand and predict the impact of 

climate change on these diseases, particularly focusing on 

malaria caused by the parasite Plasmodium falciparum. Studies 

examining the relationship between climate change and vector-

borne diseases have a rich history dating back several decades. 

Early research primarily focused on statistical modeling 

approaches to assess the association between climatic variables 

and disease incidence. These studies laid the groundwork for 

understanding the complex interactions between climate, 

vectors, hosts, and pathogens in disease transmission cycles. 

However, traditional statistical methods often have limitations 

in capturing nonlinear relationships and complex interactions 

within large and heterogeneous datasets. 

Seasonal variations in vector abundance have a significant 

impact on the seasonal dynamics and geographic distributions 

of vector borne parasites abundance (Chavasse et al., 1999; 

Emerson, Bailey, Mahdi, Walraven, & Lindsay, 2000; Mabaso, 

Craig, Vounatsou, & Smith, 2005). For example, malaria is one 

the vector-borne diseases that often shows seasonal abundance 

to annual rainfall and temperature in various regions, such as 

Kenyan Highlands (Hay et al. 2002). These diseases have 

become increasingly common in recent years in many parts of 

the world, including Saudi Arabia (dengue) (Alkhaldy and 

Barnett, 2021), Senegal (chikungunya) (Dieng et al., 2022), 

Brazil (high incidence of dengue, Zika, and chikungunya 

(Lisboa et al., 2022), and China (dengue fever (FD) outbreaks in 

epidemic areas (Zhang et al., 2022). Generally, their survival 

depends upon food, water and shelter at certain geographic 

locations, but now they are surpassing their geographical 

barriers and becoming endemic in other regions of the globe. 

For example, the Aedes aegypti species is the main vector 

known for the predominance of malaria in the Americas (WHO, 

2023) and now it is prevalent in entire world. The five protozoa 

that cause malaria are Plasmodium falciparum, P. vivax, P. 

malariae, P. ovale, and most recently P. knowlesi are spread by 

mosquitoes. More than 90% of malaria-related deaths 

worldwide are attributed to P. falciparum infection, which 

means that the disease still poses a serious threat to public 

health on a global scale (Snow, 2015). According to the World 

Health Organization's (WHO) 2019 World Malaria Report, 

there were 228 million cases of malaria worldwide in 2018, 

which resulted in 405 000 deaths, many of them children under 

the age of 5. Approximately 40% of the world's population is 
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affected by malaria, which is endemic in more than 90 nations 

(Garcia, 2010). 

Therefore, when it comes to vector-borne disease epidemiology, 

temporal variation along with its spatial distribution is most 

concentrated aspect in infectious disease transmission. As 

evident from various studies on vector-borne diseases, the 

association of environmental variables were explored, and this 

topic is gaining recognition in spread of diseases in rural and 

diverse urban environments (Abd Majid et al., 2019; Almeida et 

al., 2020; Cordeiro et al., 2011; Khalid & Ghaffar, 2015; Maftei 

et al., 2021; Rose et al., 2020; Tunali et al., 2021). The 

knowledge about the variables which can influence the 

spreading of the mosquito throughout the world is of utmost 

importance, as it can be used in the proposition of preventive 

models (Sriklin et al., 2021). Therefore, it is necessary to know 

about the predictor variables that can imply the existence of P. 

falciparum, so that it becomes possible to apply more assertive 

measures for the sake of epidemiologic vigilance, prevention of 

diseases and health promotion. It is crucial to be aware of the 

environmental factors that can affect how widely a mosquito 

breeds since this information can be utilised to develop 

preventive models. Recently, various machine learning (ML) 

algorithms such as maximum entropy modelling (Maxent), 

random forests, and artificial neural networks have all been used 

successfully to assess the risk of invasive species (Abdulkareem 

et al., 2021; Hu et al., 2020; Kaur et al., 2022; Mbunge et al., 

2022; Nkiruka et al.,2021; Peters et al., 2020).  

The knowledge of predictor variables that can suggest the 

existence of P. falciparum. In this study, the environmental 

conditions for the occurrence of P. falciparum in Benin are 

evaluated and its potential distribution are predicted for risk 

assessment through commonly used machine learning 

algorithm, i.e. maximum entropy (maxent), to help in 

establishing the surveillance and preventive programs. 

Therefore, this study aims to propose methodology for the 

purposes of epidemiologic vigilance, preventing vector-borne 

diseases, and promoting public health. 

In recent years, the emergence of machine learning techniques 

has provided new opportunities to overcome the limitations of 

traditional statistical approaches in modeling the impact of 

climate change on vector-borne diseases. Machine learning 

algorithms, such as Random Forest, Support Vector Machines, 

Gradient Boosting, and Neural Networks, offer powerful tools 

for analyzing large and multidimensional datasets, identifying 

complex patterns, and making accurate predictions.  

Several studies have applied machine learning techniques to 

assess the impact of climate change on malaria transmission 

dynamics, with a particular focus on P. falciparum in Africa. 

These studies have utilized diverse datasets, including climate 

data from remote sensing satellites, epidemiological records, 

land cover data, and entomological surveys. By integrating 

these datasets and applying machine learning algorithms, 

researchers have been able to identify key environmental factors 

influencing mosquito abundance, parasite development, and 

disease transmission. While machine learning holds promise for 

improving our understanding of the impact of climate change on 

vector-borne diseases, several challenges remain. These include 

the need for high-quality and spatially explicit data, addressing 

issues of data bias and uncertainty, and ensuring the 

interpretability and generalizability of machine learning models. 

Additionally, there is a need for interdisciplinary collaboration 

between climatologists, epidemiologists, entomologists, and 

data scientists to effectively leverage machine learning 

techniques for disease modeling and prediction. 

2. Research Impact

The discussion surrounding the identification and prediction of 

climate change impacts on vector-borne diseases, focusing on 

Plasmodium falciparum malaria in Africa and employing 

machine learning techniques, encompasses several key points: 

Methodological Advances and Contributions: The utilization 

of machine learning techniques represents a significant 

advancement in the field of disease ecology and epidemiology. 

By leveraging sophisticated algorithms, researchers can analyze 

large and complex datasets to uncover intricate relationships 

between climatic variables and disease transmission dynamics. 

The case study focusing on P. falciparum malaria in Africa 

serves as an illustrative example of how machine learning can 

be applied to address pressing public health challenges in 

regions highly susceptible to climate change. 

Insights into Climate-Vector-Pathogen Interactions: 

Through the integration of climate data, epidemiological 

records, and entomological surveys, machine learning models 

can provide valuable insights into the intricate interactions 

between climate, vectors (e.g., Anopheles mosquitoes), and 

pathogens (e.g., Plasmodium parasites). These models can 

identify key environmental factors influencing vector 

abundance, parasite development, and disease transmission, 

thereby elucidating the underlying mechanisms driving malaria 

dynamics in Africa. 

Predictive Capabilities and Future Projections: One of the 

primary strengths of machine learning approaches is their ability 

to make accurate predictions based on historical data. By 

training models on past climate and disease data, researchers 

can project future scenarios under various climate change 

scenarios. These projections are essential for anticipating the 

potential impact of climate change on malaria transmission 

dynamics, guiding the development of targeted intervention 

strategies, and informing public health policies in endemic 

regions. 

Challenges and Limitations: Despite their promise, machine 

learning techniques also pose certain challenges and limitations. 

These include the need for high-quality and spatially explicit 

data, issues related to data bias and uncertainty, and concerns 

regarding the interpretability and generalizability of models. 

Addressing these challenges requires interdisciplinary 

collaboration between climatologists, epidemiologists, 

entomologists, and data scientists, as well as ongoing efforts to 

improve data collection, validation, and model validation 

processes. 
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Implications for Public Health and Adaptation Strategies: 

The findings derived from machine learning models have 

significant implications for public health and adaptation 

strategies in malaria-endemic regions of Africa. By identifying 

areas at high risk of malaria transmission under different 

climate change scenarios, policymakers can prioritize resource 

allocation, implement targeted vector control measures, and 

strengthen healthcare infrastructure to mitigate the anticipated 

rise in malaria cases and associated morbidity and mortality. 

Additionally, machine learning can facilitate the development of 

early warning systems for malaria outbreaks, enabling proactive 

responses to emerging threats. 

3. Methodology

This study is carried in four succeeding steps: 1) identification 

of endemic site and data collection on occurrences of P. 

falciparum at the site, 2) evaluation of the environmental 

elements that influence the incidence of P. falciparum, 3) 

construction of predictive model using ML, and 4) analysis of 

contribution of each environmental factors to P. falciparum 

occurrence in model. 

2.1. Data Collection and Preprocessing 

The targeted area is Benin country in West Africa where P. 

falciparum is the deadliest malaria parasite posing the 

greatest threat to African continent. The current environ-

mental data of African continent are obtained from the 

Worldclim (http://worldclim.org) project, which has gath-

ered high resolution worldwide climate coverages. For 

this study, the environmental data of bioclimatic variables 

at spatial resolution of 2.5 arc seconds. The next step is to 

obtain the occurrence of P. falciparum from Global Biodi-

versity Information Facility (GBIF) repository (GBIF.org, 

2023). The GBIF is a global repository that holds com-

piled records of millions of species worldwide. The occur-

rences are then pre-processed to remove duplicate points 

and NA values. 

2.2. Model Construction 

The occurrence and environmental predictors are ready 

for model construction and predicting the potential range 

of P. falciparum. Before this, it is required to discover 

how well the model can perform. Therefore, some of the 

occurrences are reserved for testing of model as test data 

and remaining are considered as train data used in model 

training. In this study, 20% of the observations will be 

randomly withheld as test data while the remaining 80% 

would be kept as training data. 

4. Results

3.1. Model Assessment 

The Area Under the Curve (AUC) or sensitivity vs. 1-

specificity graph generated by Maxent model explains the 

precision and fit of the predicted model. If AUC values 

are close to 1.0, this indicates the improved model per-

formance, whereas 0.5 suggested no better performance 

than random model. However, if the species has a wide 

range of distribution, AUC values may be lower because 

of the greater commission. The AUC value of this Maxent 

model is 0.871 signifying that this model is better than the 

random, shown in Figure 1. 

Figure 1. Sensitivity vs. 1-specificity graph of Maxent 

model 

3.2. Important predictors evaluation 

The environmental predictors contributed to model are 

evaluated by comparing the relative importance of the 

given predictors in the final model. The three main envi-

ronmental predictors that contributed significantly to pre-

dicting the preferred prevalence site of P. falciparum out 

of the 19 variables were precipitation seasonality as bio15 

(68.7%), precipitation of coldest quarter as bio19 (18.1%), 

and precipitation of warmest quarter as bio18 (8.8%), 

shown in Figure 2. The relative contribution of 19 varia-

bles is depicted in Jackknife graph (Figure 3). The re-

sponse curves, depicted in Figure 4, from the Maxent out-

put depicts the variations in the logistic value imparted by 

the changes in each predictor when all other variables are 

kept at its mean value. These plots demonstrate the proba-

bility of species occurrence at Y-axes which each climatic 

predictors in X-axes.  

Figure 2. Variables contribution in modelling 

3.3. Projecting Model for Site Prediction 

The model determined the present appropriate existence 

site for P. falciparum in south coast of Benin, in West Af-

rica based on the Maxent model (Figure 5). Based on the 

'max SSS' logistic threshold, the logistic distribution was 

transformed to a binary raster. The Maxent model with se-
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lected predictors is then projected on Africa extent to pre-

dict the potential zones for this malaria parasite. 

 

Figure 3. Jackknife graph 

Figure 4. Response curves of predictors 

Figure 5. Predicted potential zone for P. falciparum. 

4. Conclusions

In conclusion, the application of machine learning techniques in 

identifying and predicting the impact of climate change on 

vector-borne diseases, such as malaria caused by P. falciparum 

in Africa, represents a promising avenue for future research. By 

integrating diverse datasets and employing advanced modeling 

approaches, researchers can gain valuable insights into the 

complex interactions between climate, vectors, and pathogens, 

thereby informing evidence-based strategies for disease control 

and adaptation in the face of changing environmental 

conditions. These modelling approach suggested to understand 

the widespread prevalence of malaria parasite, and this could be 

used to have preventive models. Through the study of variable 

importance and partial dependence plots, it is discovered that 

the most important climatic parameters, that influenced the 

prevalence of malaria parasite, P. falciparum. The model's 

predicted risk map for malaria parasite incidence closely tracked 

actual field data, demonstrating its strong capacity for 

prediction and management. The model also demonstrated the 

expanded incidence of parasite in African continent under the 

same climatic space. Therefore, when developing management 

and control strategies for malaria, this information could be 

considered. 

Despite the challenges and limitations associated with these 

approaches, continued research efforts and interdisciplinary 

collaboration are essential for harnessing the full benefits of 

machine learning in the fight against vector-borne diseases in 

the context of a changing climate. 
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