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Abstract

Semantic instance segmentation from scenes, serving as a crucial role for 3D modelling and scene understanding. Conducting
semantic segmentation before grouping instances is adopted by the existing state-of-the-art methods. However, without additional
refinement, semantic errors will fully propagate into the grouping stage, resulting in low overlap with the ground truth instance.
Furthermore, the proposed methods focused on indoor level scenes, which are limited when directly applied to large-scale outdoor
Airborne Laser Scanning (ALS) point clouds. Numerous instances, significant object density and scale variations make ALS point
clouds distinct from indoor data. In order to address the problems, we proposed a geometric characterization-aware semantic in-
stance segmentation network, which utilized both semantic and objectness score to select potential points for grouping. And in point
cloud feature learning stage, hand-craft geometry features are taken as input for geometric characterization awareness. Moreover,
to address errors propagated from previous modules after grouping, we have additionally designed a per-instance refinement mod-
ule. To assess semantic instance segmentation, we conducted experiments on an open-source dataset. Additionally, we performed
semantic segmentation experiments to evaluate the performance of our proposed point cloud feature learning method.

1. Introduction

ALS (Airborne Laser Scanning) point cloud refers to a collec-
tion of 3D coordinate points obtained through the use of air-
borne LiDAR (Light Detection and Ranging) technology, which
can represent the 3D structure of the terrain and objects on the
Earth’s surface(Polewski and Yao, 2019). Instance segmenta-
tion on the ALS point clouds, meanwhile, serving as a crucial
role for 3D modelling and scene understanding with a variety
of applications like autonomous driving, augmented reality and
robot navigation.

The development of instance segmentation have significant pro-
gress in recent years, which are driven by advancements in deep
learning, computer vision algorithms and sensor technology.
3D instance segmentation from outdoor scene is a challenge
task. Firstly, the label of instances have no fixed annotation like
semantic class, making it hard to directly predict. Secondly,
each scene contains different number of instance.

Figure 1. Comparison between outdoor ALS point cloud and
indoor scanning. Numerous instances, significant object

density and scale variations make ALS point clouds distinct
from indoor data.

Recent advancements in 3D instance segmentation, as demon-
strated by state-of-the-art methods such as 3D-SIS Hou et al.

(2019), and SoftGroup Vu et al. (2022), have yielded significant
progress. These methods employ two primary strategies: top-
down and bottom-up. The top-down approach is well-suited
for rapidly processing scenes, whereas the bottom-up approach
excels in achieving high-precision segmentation for complex
scenes.

In terms of data, the previous works primarily utilized indoor
scanning data as input. However, to the best of our knowledge,
there are still no study focused on ALS point cloud semantic
instance segmentation. ALS point clouds typically encompass
a wide range of outdoor scenes with complex instances. Unlike
indoor RGB-D data, ALS point clouds often contain obstructed
areas with sparse or no points due to scanning positions. Never-
theless, the presence of numerous instances, significant object
density, and scale variations make it distinct (Figure 1). Fur-
thermore, the boundaries between different categories in ALS
point clouds are ambiguous and irregular. And in our instance
segmentation task, the majority of input points are classified as
background, indicating that only a few points should be grouped
as instances.

In this study, we present an semantic instance segmentation
network, which particularly considered the geometry charac-
teristics of ALS point clouds and can be trained in an end-
to-end manner. To ensure the quality of our results, we ad-
opt a bottom-up strategy. Semantic predictions are utilized for
instance mask proposals, and an another per-instance refine-
ment module is employed for background points segmentation
in each proposed instance. As a result, we place particular em-
phasis on the performance of semantic segmentation. The core
idea of our network architecture is that we designed a geometric
characterization-aware method for input points’ feature learn-
ing, which leads to better performance in semantic segmenta-
tion for distinguishing instance category and background. To
address the issue of significant variations in object scale, our
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grouping parameters are specially designed based on the av-
erage number of points per instance category. Moreover, due
to the end-to-end training process, accumulated errors can be
avoided. In summary, the key objectives of our work are as fol-
lows:

(1) We first introduce a semantic instance segmentation network
for ALS point clouds, which can be trained in an end-to-end
manner. Both semantic and objectness score are utilized to se-
lect potential points for grouping, followed by per-instance re-
finement module.
(2) We design a geometric characterization-aware feature learn-
ing network GFLN. The method leverages the geometric char-
acteristics of point clouds to generate high-level feature repres-
entations, resulting in high-quality semantic and instance seg-
mentation for ALS point clouds.
(3) We have conduct evaluation experiments to show that our
work outperforms state-of-the-art semantic instance segmenta-
tion methods on labeled open-source dataset DALES Object-
Singer and Asari (2021).

2. Related work

2.1 Point cloud feature learning

2.1.1 Hand-craft feature When processing point clouds for
segmentation task, previous works Yao et al. (2012) and Amiri
et al. (2017) focused on hand-craft features based on mathem-
atical principles. Generally, it can effectively express the char-
acteristics of points in a certain domain or condition. While the
fixed explanation of algorithm leads to it heavily relies on com-
putational parameters. As a result, the methods are difficult to
apply in complex and ever-changing environments.

2.1.2 Deep learning Thanks to the development of deep learn-
ing technology, recent deep learning methods are capable to
learn features directly from points. Based on the network archi-
tecture employed for feature learning at each point, representat-
ive methods can be categorized into three flows: (1) point-wise
multi-layer perceptron (MLP), (2) convolution-based, and (3)
graph-based. PointNetQi et al. (2017), as a pioneering work,
proposed to conduct point-wise feature learning through shared
MLPs and extract global features with a max-pooling layer. In
terms of convolution-based methods, Thomas et al. (2019) pro-
posed Kernel Point Convolution (KPConv) with both rigid and
deformable kernel strategies, which achieved impressive results
in the task of point cloud semantic segmentation. Graph-based
works such as ECC Simonovsky and Komodakis (2017) and
DGCNN Phan et al. (2018) considered point cloud as a graph
with vertexes. Edges are generated based on the neighbors of
each point. Then, feature learning will be conducted in the do-
main of vertexes and edges.

2.2 Point cloud instance segmentation

Point cloud instance segmentation form scene can be generally
divided into three main methods: (1) proposal-based and (2)
grouping-based and (3) dynamic convolution-based.

2.2.1 Proposal-based Proposal based methods typically in-
volve generating proposals for where objects might be located
in the point cloud and then refining these proposals to accur-
ately segment the individual instances. And it’s considered to
be a top-down strategy. For instance, Yi et al. (2019) introduced

a generative model for shape proposal. Hou et al. (2019) pro-
posed 3D-SIS, which uses a 3D convolutional neural network to
generate feature-rich embeddings for voxelized instance mask
prediction. However, when processing complex scene with densely
arranged objects, the strategy may hard to locate objects from
instance proposal prediction.

2.2.2 Grouping-based Grouping-based methods is a bottom-
up strategy that focus on clustering or grouping points belong to
the same object instance. Unlike proposal-based methods that
generate proposals, grouping-based methods directly segment
the point cloud into clusters, each representing an individual
instance. These methods often leverage per-points geometric
or semantic predictions to perform the segmentation. Proposed
by Pham et al. (2019) JSIS3D performs semantic segmentation
and instance segmentation jointly. It uses a multi-value condi-
tional random field (CRF) to enforce consistency between se-
mantic and instance labels, that effectively grouped points into
instances. However, simply apply the bottom-up strategy may
leads to high objectness loss. Vu et al. (2022) introduced Soft-
Group, which performs a bottom-up soft grouping followed by
a top-down refinement. Semantic segmentation and instance
offset prediction are conducted simultaneously. When perform-
ing semantic segmentation before grouping, the method allows
the point to be associated the multiple class soft predictions to
alleviate the propagation of errors to the subsequent processing.
In summary, for the grouping based bottom-up strategy, utilize
per-point predictions will make instance predictions more pre-
cise and finally refine themselves.

2.2.3 Dynamic convolution-based Dynamic convolution is
a technique in convolutional neural networks that allows the
shape and size of the convolutional kernel to change dynamic-
ally during the forward pass of the network. In 3D semantic in-
stance segmentation, this strategy allows the point-wise convo-
lutional kernel’s shape to be adjusted, making the kernel instance-
aware. For instance, techniques such as DyCo3D He et al.
(2021) can effectively address the inevitable variation in the
instance scales by generating instance-aware dynamic convo-
lution kernels in the stage of point cloud feature learning.

Through out these works, they focused on indoor scene, which
contain objects of similar size with less occlusion compared
with ALS point clouds. Simply using the proposed methods on
ALS point clouds is still far from satisfactory Han et al. (2024).
Therefore, our method pay more attention to the characterist-
ics of ALS data. On the one hand, in the stage of point cloud
feature learning, we take some hand-craft features as input to
enhance its geometric awareness. On the other hand, we de-
veloped a grouping-based network that specifically tailored the
grouping parameters based on the average number of points per
instance category. Moreover, as most of the points are back-
ground, we designed a semantic segmentation refinement mod-
ule to enhance the background classification performance for
each grouped instance proposal.

3. Method

The goal of our work is to take ALS point clouds as input and
segment instances. Thus, we propose this end-to-end semantic
instance segmentation network. Moreover, for ALS point clouds
with special geometric features, we also introduce a novel strategy
for 3D point feature learning. The overall architecture is illus-
trated in Figure 3, which consists of three main parts: semantic
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Figure 2. Overview of the proposed method. Our network is consisted of the instance center prediction, semantic segmentation, and
per-instance refinement modules. Taking ALS point cloud P with K extend dim features as input, instance proposals are obtained by

semantic and center prediction modules. Features of each grouped instance are taken into per-instance refinement module for final
instance outputs.

segmentation, instance center prediction, and per-instance re-
finement modules.

Specifically, given an input point cloud P (x|f) with N points
and extended by K-dim features. First, point-wise hand craft
geometric characterizations are calculated for point cloud fea-
ture learning. Then, semantic segmentation and instance center
prediction are conducted simultaneously for grouping prelimin-
ary instance proposals. Finally, per-instance refinement module
is used to re-segment background points of grouped instances.

3.1 Geometric characterization learning

Numerous instances, significant object density and scale vari-
ations make the geometric characterization of ALS point clouds
distinct. Moreover, compare with the indoor data, outdoor ALS
point clouds including much more background points. But for
our task of point cloud instance segmentation, the classifica-
tion of background points becomes essential. For optimal per-
formance, special attention should be paid to the geometric re-
lationship at both local and global scales. Thus, we propose
GFLN, a geometric characterization-aware feature learning net-
work (illustrated in Figure 3) which is inspired from Li et al.
(2020). Geometric characterization of a point can describe the
shape, structure and topological properties. While it’s generic
and low-level, which leads limitation of its ability to represent
complex scenes. Thus, in GFLN, we take geometric character-
izations as prior knowledge with a weight matrix as multi-layer
perception (MLP) for learning and generating high-level fea-
tures. Due to the task, we first get the point and its spherical
neighbor area for following analysis. Normal vector N , and the
first three eigenvalues E(λ1 > λ2 > λ3) of covariance matrix
C in the area are chosen to define the input low-level feature
gl[N,E]. Simultaneously, rigid KPConv is adopted as back-
bone for feature learning of input original points according its
impressive results on several open datasets. Figure 4 illustrates
the comparison between KPConv (as baseline) and GFLN in
the task of semantic segmentation. According to the results, the
use of GFLN can result in a more precise division of boundar-
ies between different categories, which can be highly beneficial
for the subsequent task of instance grouping. Specifically, our
method of point-wise feature learning is a convolution-based U-
Net. To enhance both local and global geometric understanding,
the radius of neighborhood area will expand after skip connec-
tion layer. In this work, GFLN is used for initial point cloud

feature learning.

𝑃(3 + K) Concat 𝑓𝑜𝑢𝑡Neighbors

MLP

KPConv 

Blocks

𝐿𝑜𝑤 − 𝑙𝑒𝑣𝑒𝑙 
𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑔𝑙

Figure 3. Geometric characterization-aware feature learning
network (GFLN). For input point P within a spherical range.
Low-level geometric features gl are first be calculated, then it

will go through a MLP to generate high-level feature gh.

3.2 Semantic prediction branch

For all of the input N points’ semantic label prediction, we
leverage a softmax layer to obtain the score vector
S = s1, s2, ..., sn ∈ RN×C where C represents the number of
semantic class. The predicted semantic score are supervised by
weighted cross entropy loss and illustrated as

Lsem = − 1

N

N∑
i=1

∑
j

tij log(yij) (1)

Where tij represents the true label of class j for sample i, and
yij denotes the probability that model predicts sample i as class
j.

3.3 Center prediction network

Inspired from VoteNet Qi et al. (2019), we learn the 3D off-
set from object center for each point. However, for ALS point
clouds, the scale of objects from different categories vary sig-
nificantly. To address this issue, our approach utilizes a 6-layer
MLP with a pooling layer to enhance awareness of both local
and global context features of points. The output offset vec-
tor O = o1, o2, ..., on ∈ RN×3, that represents the x, y, z off-
sets from point to the geometric center of corresponding object.
Shifted points are obtained according to the offsets prediction.
Specially, for the background points, the ground truth offset is
0. Furthermore, the features of offset points will be leveraged
to obtain the objectness score in the subsequent task. To evalu-
ate the 3D offset oi, we compare the predicted and ground truth
center yi = xi + oi and gi = xi + ogi to obtain whether the
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Figure 4. Semantic segmentation comparison between KPConv (left) and GFLN (right). GFLN have better performance at
boundaries between different categories. KPConv made obvious incorrect predictions within the red circled area.

shifted points is on the object surface. Thus, the 3D offset can
be supervised by a regression loss, which is denoted as:

Lshift =

∑
i min||Y − gi|| ∗M

Msum
(2)

Where Y is the vector of predicted instance center. M rep-
resents the ground truth mask of instance points. If point pi
belongs to an instance, Mi = 1, otherwise Mi = 0. Msum is
the ground truth total number of instance points.

3.4 Grouping instance

After point-wise semantic and center prediction, the results are
used in the instance grouping stage. Initially, the features of
offset points are filtered based on their semantic predictions to
obtain subsets where all points within each subset belong to the
same class. Then, features of offset points are utilized to gener-
ate class-wise objectness scores Sobj = s1, s2, ..., sm ∈ RM×1

where M represents the number of filtered subset points. Con-
sidering that the score represents if points belong to the instance
classes, we opt sigmoid as activation function. Then, the points
with object scores above a certain threshold t are regarded as
positive prediction of object (potential points), which will sub-
sequently perform DBSCAN grouping to get instance propos-
als. The operation of selecting potential points can improve the
semantic precision of the grouping points. As a result, it largely
prevents previous semantic errors propagate into the grouping
stage. Considering significant variation in the object scale, for
each category of instance, we apply different grouping paramet-
ers, which depends on the mean instance point number. The
loss of objectness scores is calculated by mean squared error
(MSE) of instant predictions, which is denoted as:

Lobj =
1

N

N∑
i=1

(yi − ti)
2 (3)

Where y and t represents prediction and ground truth labels re-
spectively.

3.5 Per-instance refinement

The per-instance refinement stage reclassify and refines the in-
stance proposals from the previous bottom-up grouping stage.
To reduce the error propagated from the previous modules, an
additional semantic prediction is conducted. It can be under-
stand as a binary classification to classify background and ob-
ject points, which take GFLN output features as input, then
fed into 3 MLP layers. The output semantic score vector is
Srefine = s1, s2, ..., sn ∈ RN×2. For loss computation in

this stage, we adopt the same approach as initial point-wise se-
mantic segmentation in section 3.2.

3.6 Loss and training process

The entire network can be trained end-to-end, with the loss
propagated at each stage. The general loss computation is il-
lustrated as:

L = λ1×Lshift+λ2×Lobj +λ3×Lsem+λ4×Lrefine (4)

Where vector λ donates the corresponding weights. Specific-
ally, we set λ1 = 10, λ2 = 4, λ3 = 3 and λ4 = 4.

4. Experiments

4.1 Experiments dataset and preprocessing

In order to verify our work, we conduct experiments on a labeled
open source dataset: DALES Object.

4.1.1 DALES Object dataset The DALES Object dataset
is a large-scale aerial LiDAR point cloud dataset designed for
semantic and instance segmentation tasks. It provides detailed
annotations for various natural and man-made objects in urban
and suburban environments, which include both semantic and
instance-based labeling. The dataset includes over half a billion
accurately labeled points covering an area of approximately 10
square kilometers.

We consider originally labeled 7 classes: ground, vegetation,
car, power line, fence, pole and building in the experiments.
For the task of semantic instance segmentation, we merge the
classes of ground, power line and fence as background of in-
stance class that will be ignored when processing. And the
format of the utilized features was x, y, z.

4.2 Implementation details

4.2.1 Point cloud feature learning backbone In line with
the KPConv method, our implementation includes encoder and
decoder blocks (Figure 5). To mitigate gradient vanishing, we
employ skip connections through feature concatenation. Within
each block, as the neighborhood area radius of the points in-
creases or decreases, down-sampling or up-sampling of points
occurs to enhance the understanding of local and global know-
ledge. Additionally, batch normalization is utilized to improve
training speed and stability.

Each batch consists of several spherical areas. Specifically, for
the hand-crafted features of points, we adjust the radius of the
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Figure 5. Illustration of our point cloud feature learning
backbone: GFLN’s architecture. In the forward propagation
process, feature dimension of points are transformed. Points of

each layer experienced sampling operation. And skip
connections are employed to mitigate the issue of vanishing

gradients.

neighborhood area based on the radius of the batch spherical
areas. Considering the point density, we have set the sampling
resolution to 0.5m for the DALES dataset.

4.2.2 Instance grouping During the grouping stage, we em-
ploy DBSCAN grouping. Given the significant variation in
the average number of object points, we set the grouping para-
meters based on the object size, as outlined in Table 1. Here,
”eps” denotes the parameter used to define the neighborhood ra-
dius, specifying the maximum distance threshold at which two
samples are considered neighbors. Specifically, for the filtered
subset points fewer than np, they will be grouped with np = 6.

Mean point number eps min point number
nobj >= 2000 r ∗ 4 np/100
nobj > 500 r ∗ 6 np/35
nobj <= 500 r ∗ 8 np/20

Table 1. 3D DBSCAN grouping parameters.

4.2.3 Instance merging For trained model validation, a prob-
lem arises due to the batch outputs consisting of spherical re-
gions that may not cover the entire scene, resulting in one in-
stance being segmented into parts across different spherical re-
gions. To obtain the complete semantic instance segmentation
result, these instances need to be merged. Our solution is as
follows:
Let’s assume there is a predicted instance vector pins in a spher-
ical region si of the batch inputs, and the previously predicted
instances are stored in vector Vins. First, we calculate the in-
tersection of the two vectors. If there is a sufficient intersection
with a stored instance, the two instances will be treated as one.
Although the grouping strategy for each instance is based on
semantic segmentation, the merge operation may lead to differ-
ent semantic predictions within a single instance. Therefore, for
classification consistency in predicted instances, we filter each
instance based on the class with the most occurrences. The re-
maining points will be converted to background points (not part
of any instance).

4.3 Evaluation metrics

4.3.1 Semantic segmentation evaluation For the task of
point cloud semantic segmentation we adopt overall accuracy
(OA) and F1 scores to evaluate the performance of our method
(Equ. 5). Where OA represents is a measure of the proportion
of correctly classified points, which provides a general assess-
ment of the model’s performance across all classes. And F1
score is the harmonic mean of precision and recall, which is

a single metric that takes into account both false positives and
false negatives, making it a useful measure for imbalanced class
distributions.

OA =
TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision×Recall

Precision+Recall

(5)

Where TP , FP and FN represents the number of true positive,
false positive and false negative predicted points respectively.

4.3.2 Semantic instance segmentation evaluation For the
task of semantic instance segmentation, we evaluate the mean
class coverage mCov (Equ. 6) and mean class-weighted cov-
erage mwCov, which represent the average instance-wise in-
tersection over union (IoU). In order to conduct comprehensive
evaluation for the task performance, we test the predicted in-
stances which obtain IoU more than threiou from the scene (in
our experiments, we set threiou = 0.1). Moreover, mean pre-
cision and recall of the predicted instances are also calculated
in our work.

mCov =
∑
i=1

1

M
maxjIoU(pi, gj)

mwCov =
∑
i=1

1

M
wimaxjIoU(pi, gj)

wi =
ni∑
j=1 nj

(6)

Where IoU(., .) means the IoU between two point sets. pi and
gi donate the predicted and ground truth instance point clouds.
maxjIoU(pi, gj) represents the highest IoU of ground truth
instance point cloud gj . M represents the number of instance
prediction. And ni is the point number of ground truth instance
i.

5. Results and discussion

5.1 Semantic segmentation results

5.1.1 DALES Object dataset We compared the perform-
ance of our proposed point cloud feature learning backbone
GFLN with the baseline method KPConv. Figure 7 illustrates
results of the two methods. And the accuracy evaluation is
shown in Table 3.

The results show that our proposed method for semantic seg-
mentation reached the highest OA of 98.20%. Particularly, when
dealing with limited training and testing samples, such as for car
and pole classes in this dataset, the improvement is even more
significant. Additionally, the results of semantic instance seg-
mentation (GFLN SIS) indicate that the workflow enhanced the
classification performance for classes that were previously chal-
lenging to classify. For instance, in the case of poles with sparse
geometry distribution, employing GFLN as the backbone for
point feature learning resulted in an increase in the F1 score
from 0 to 0.054. Furthermore, with the constraints of the in-
stance segmentation task, the F1 score further increased from
0.054 to 0.14.
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Method mCov mwCov mPre mRec mF1 mIoU
SoftGroup 0.575 0.519 0.927 0.544 0.686 0.522

Ours 0.645 0.656 0.905 0.697 0.788 0.65

Table 2. Accuracy evaluation of point cloud semantic instance segmentation on DALES Object dataset.

Figure 6. Point cloud semantic instance segmentation performance on DALES Object dataset. Ours (left), ground truth (right),
where different instances are shown in different colors.

5.2 Semantic instance segmentation results

5.2.1 DALES Object dataset We conduct semantic instance
segmentation by our proposed method. And for comparison,
we choose SoftGroup Vu et al. (2022) as baseline, which util-
ized a bottom-up strategy to generate soft grouping proposals
and then refines the results with a top-down per-instance refine-
ment module. For each instance, although grouping strategy is
based on semantic segmentation, the merge operation may leads
to different semantic prediction in one instance. The segment
results are depicted in Figure 6. Table 2 provides the general
accuracy evaluation result. And Table 5 shows the class-wise
evaluation results.

Upon analyzing the results, our proposed method demonstrates
superior overall performance compared to the baseline, partic-
ularly for large-scale building and vegetation. However, the F1
score for cars was the lowest, despite high precision. This is
likely due to the small number of points for each car object,
leading to errors in predicting the instance center offset. Dur-
ing the grouping stage, some shifted points were disregarded,
while others were grouped into different objects (Figure 8). We
attribute this to subsampling, which resulted in low geometric
resolution and ambiguity for small-sized instances. In the eval-
uation of vegetation objects, high precision but low recall was
observed. Upon reviewing the ground truth label, we believe
this is due to the subjective definition of ground truth vegetation
objects (Figure 9), resulting in over-segmentation, particularly
in low vegetation areas.

5.3 Ablation study

5.3.1 Per-instance refinement We compared the results of
two models (on DALES Object dataset), one of which utilized
per-instance refinement, while the other did not. Our experi-
ments demonstrate that the per-instance refinement module has
a positive impact, increasing mean class coverage and mmIoU
in accuracy evaluation. We provide the comparison result in
Table 4.

5.4 Discussions

5.4.1 Runtime analysis The training and validation are con-
ducted in a same GTX 1080Ti GPU. Based on our testing on
DALES Object dataset, for the task of point cloud semantic in-
stance segmentation the average time for one step in a epoch is
8 seconds (with per-instance refinement module) and 5 seconds
(without per-instance refinement module). And for the task of
semantic segmentation the average time are decreased to 0.5
seconds.

5.4.2 Downstream work challenge: semantic instance com-
pletion Since our work follows a bottom-up grouping-based
approach, after grouping the instance points, we can proceed
with other downstream tasks such as instance completion.
Instance completion refers predicting missing part of 3D in-
stances from incomplete or occluded 3D data. Methods for
example, Yuan et al. (2018) proposed the first learning-based
architecture PCN, which leveraged global feature from incom-
plete input point cloud to generate coarse result, and then pre-
dict detailed output via folding operation. In this case, we fol-
lowed PCN, and tried to train an end-to-end point cloud se-
mantic instance completion network.But during the implement-
ation, we found it is still a challenge task.
(1)When working with outdoor data, it is not feasible to input
the entire scene in a single batch. Consequently, objects near
the boundary will be truncated, resulting in unavoidable struc-
tural deficiencies.
(2)During the end-to-end training process, the input points for
the completion sub-network module consist of the output of the
previous module, containing numerous error predictions that
propagate into the subsequent completion network.
(3)Some scenes do not contain target instances that can be fed
into the completion module, resulting in the inability to calcu-
late loss for that batch, leading to gradient anomalies.
To ensure model convergence, we propose a potential solution.
Inspired from Wang and Yao (2022), a prediction with a high
posterior probability is typically more likely to be correct. There-
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Method OA F1 Score
Ground Vegetation Car Power line Fence Pole Building

KPConv (Baseline) 98.00% 0.991 0.965 0.89 0.904 0.796 0 0.988
GFLN (ours) 98.20% 0.992 0.969 0.908 0.911 0.862 0.054 0.989

GFLN SIS (ours) 97.37% 0.99 0.957 0.834 0.791 0.744 0.14 0.982

Table 3. Accuracy evaluation of point cloud semantic segmentation.

Ground

Vegetation

Car

Power 

Line

Fence

Pole

Building

Figure 7. Comparison of point cloud semantic segmentation performance on DALES Object dataset. KPConv base line (left),
GFLN (middle) and ground truth (right).

Figure 8. Point cloud semantic instance segmentation results
on DALES Object dataset. Ours (left), ground truth (right).

For relatively small size of instance like car within the red
circled area, three of them are grouped as one instance.

Figure 9. Point cloud semantic instance segmentation results
on DALES Object dataset. Ours (left), ground truth (right).

Our results segment individual trees, whereas the ground truth
label combines trees that are close to each other as one instance.

fore, we define a soft instance proposal as an instance proposal
with predicted scores exceeding a fixed threshold t. This op-
eration ensures the high precision of the input instance points,
enabling the subsequent completion tasks to proceed normally.
By adopting the soft instance proposal strategy, the whole train-
ing will be divided into two steps. Step 1 aims to train soft
instance proposal to feed into the completion network. Step 2

involves the completion training process to generate completed
instances with semantic labels.

5.5 Limitations

Our method focuses on ALS point cloud semantic instance seg-
mentation. While the framework achieved segmentation of dif-
ferent categories of objects in outdoor scenes, the overall per-
formance is still relatively lower than in indoor scenes. We be-
lieve that future proposed networks can lead to further improve-
ments. Throughout the entire semantic instance training pro-
cess, the performance of semantic segmentation only showed a
partial increase for certain classes compared to training with
only the semantic segmentation network. However, we still
believe that the overall performance of semantic segmentation
will be enhanced by the instance segmentation module. Addi-
tionally, in the instance grouping stage, there is a sensitivity to
parameters. When changing the scene domain, such as from a
suburb to an urban area, the grouping parameters (see Table 1)
should be reset, as the object attributes have changed signific-
antly.

6. Conclusion

In this study, we have introduced an end to end geometric
characterization-aware semantic instance completion network
for ALS point clouds. The network incorporates hand-crafted
geometry features into the point feature learning stage, resulting
in a better understanding of the geometric relationship between
points. Points offset to its corresponding instance center are
learned for the task of instance segmentation. Both semantic
and offset prediction are utilized to enhance the instance group-
ing. Moreover, a final per-instance refinement are conducted to
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Per-instance refinement mCov mwCov mPre mRec mF1 mIoU
No 0.483 0.496 0.916 0.521 0.664 0.497
Yes 0.645 0.656 0.905 0.697 0.788 0.65

Table 4. Ablation study on performance of per-instance refinement module.

Methods Class Precision Recall IoU F1 Score

SoftGroup
Vegetation 0.881 0.63 0.574 0.697

Car 0.887 0.577 0.514 0.641
Building 0.955 0.669 0.638 0.737

Ours
Vegetation 0.893 0.693 0.642 0.74

Car 0.904 0.609 0.553 0.68
Building 0.941 0.793 0.745 0.825

Table 5. Class-wise accuracy evaluation of point cloud semantic instance segmentation on DALES Object dataset.

refine the instance proposal and semantic segmentation results.
For future work, we intend to explore how to improve the over-
all instance accuracy and conduct the down stream task of se-
mantic instance completion. We believe that the performance of
semantic segmentation will be enhanced through instance com-
pletion. Furthermore, instances after completion are expected
to exhibit improved performance in 3D modeling and scene un-
derstanding.
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