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ABSTRACT:

The Dunhuang murals are a precious treasure of China's cultural heritage, yet they have long been affected by salt damage. 
Traditional methods for detecting salt content are costly, inefficient, and may cause physical harm to the murals. Among current 
techniques for measuring salt content in murals, hyperspectral remote sensing technology offers a non-invasive , circumventing 
issues of high costs, low efficiency. Building on this, our study developed a high-spectral feature inversion model for mural 
phosphate content using Fractional Order Differentiation (FOD), a novel three-band spectral index, and Partial Least Squares 
Regression (PLSR) algorithm. The specific research contents include: 1) Exploring the absorption mechanism of phosphates and 
their characteristic bands, combined with the optimal spectral index to construct a univariate linear regression model, providing a 
basis for rapid quantitative measurement of mural phosphate content. 2) By comparing the accuracy of the PSR and PNDI spectral 
indices based on the linear regression model, the first six orders of the highest accuracy spectral index were selected as the optimal 
three-band spectral index combination, used as explanatory variables, with mural plaster electrical conductivity as the response 
variable, employing the PLSR method to construct the mural phosphate content high-spectral feature inversion model. The study's 
findings include:1) By comparing the outcomes of different orders of fractional differentiation, it was found that the model 
performance reached its optimum at a 0.3 order of differentiation for both PSR and PNDI data, with a determination coefficient (R²) 
of 0.728. 2) Utilizing PLSR, this study employed the previously determined optimal six-order three-band spectral index combination 
as explanatory variables, with salt content as the response variable, successfully constructing the high-spectral feature inversion 
model for mural phosphate content with a determination coefficient (R²) of 0.815. This provides an effective technical means for 
monitoring the salt damage conditions of precious cultural heritage such as murals.

1. INTRODUCTION

Ancient mural sites, serving as a vivid annotation of history,
not only chronicle the evolution of human civilization but also
mirror the levels of production and daily life in ancient
societies. In China, the Dunhuang murals, heralded as national
treasures of cultural heritage, are world-renowned for their rich
themes, exquisite craftsmanship, and unique historical
significance. These murals not only depict the religious beliefs,
social life, and artistic styles from over a millennium ago but
also constitute invaluable resources for the study of cultural
exchanges along the ancient Silk Road(Sun, Tongxin, et al.,
2023). Regrettably, due to the ravages of time, these murals
have suffered from environmental impacts, resulting in fading,
efflorescence, erosion by wind and sand, and mold damage.
The detachment of the mural pigment layer from its mural
plaster base, as well as the separation of the plaster layer from
the cliff support layer, gravely diminishes the aesthetic and
historical value of these murals (Sharma, et al., 2023).
Preserving these murals is tantamount to salvaging a
civilization and art on the brink of extinction. Extensive
research indicates that changes in the hydrothermal
environment are a significant causative factor in the
deterioration of mural paintings due to salt crystallization.
Among existing methods for salt content analysis in mural
samples, Spectrometer Diagnostics stands out as a non-contact,
non-destructive technique (Li, D., et al., 2023). When studying
salt content in murals, hyperspectral imaging can provide
critical information on chemical composition, spatial
distribution, quantity estimation, crystallization monitoring,

environmental effects, and non-destructive testing, revealing
these characteristics through spectral reflection and absorption
(Peng, W., et al., 2022; Schodlok, M. C., et al., 2022; Ma, J., et
al., 2022).

The utilization of spectral indices constitutes a straightforward
and efficacious methodology for measuring surface properties,
with band optimization algorithms extensively applied in the
development of hyperspectral technology(Zhang, Z., et al
2020). Compared to one-dimensional spectral data, this
approach affords a richer spectrum of spectral features, thereby
fortifying the correlation between soil properties and spectral
characteristics(Noda, I., 2006). For instance, research
conducted by Lihan Chen et al(Chen, L., et al 2022)delves into
the efficacy of visible-near infrared spectroscopy in estimating
the content of heavy metals in soil. Through an analysis of 120
soil samples collected in Xuzhou City, Jiangsu Province, not
only were the heavy metal content and spectral characteristics
of the samples determined, but attempts were also made to
enhance the spectral information of soil heavy metals through
fractional order derivative spectral preprocessing methods
(FOD) and a novel three-band index, concurrently addressing
issues of collinearity and redundancy inherent in hyperspectral
data. Jing Yuan et al(Yuan, J., et al 2024) proposed a soil
organic matter content estimation method based on an
improved Hapke model, anchored in the radiative transfer
process of soil reflectance spectra. By transforming reflectance
and single scattering albedo, they constructed spectral indices,
thus facilitating the remote sensing estimation of soil organic
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matter content. According to the aforementioned analyses,
spectral indices are capable of effectively capturing the
hyperspectral response of soil components, and by expressing
them within two-dimensional or multidimensional spectral
spaces, they mitigate interference from other soil components
in estimation outcomes. Moreover, spectral indices enhance the
subtle correlations between bands, simplify model structures,
and eliminate redundant information variables. Therefore,
applying spectral indices to quantitatively analyze the
interactions between characteristic bands of phosphates in
mural plaster can significantly enhance the accuracy of
phosphate content estimation models. Existing research
employing various spectral index combination methods (such
as normalization, difference, and ratio) has leveraged
hyperspectral data to explore the relationship between soil
reflectance and soil components. Compared to dual-band
spectral indices, three-band indices incorporate a third band
within specific sensitive areas, a processing method that often
improves the precision of the estimate, enhances interference
resistance, eliminates the saturation phenomenon common to
dual-band indices, rendering the estimation of soil components
more robust and accurate.

In the process of safeguarding these irreplaceable cultural
assets, understanding the phosphate content within mural
plaster is crucial for the prevention and treatment of salt
damage. Phosphates, under certain hydrothermal conditions,
can form dodecahydrates, posing a greater threat to mural
cultural heritage compared to common sulfates. Therefore, this
study is dedicated to simulating the capillary salt ion adsorption
and crystalline erosion degradation processes within the in-situ
environment of murals, a method that diverges from traditional
laboratory practices of preparing samples with predetermined
salt content. This approach more closely mirrors the actual
conditions under which murals suffer salt damage, enabling a
thorough exploration of the specific impact mechanisms of
salts at the microscopic level, thereby providing a more precise
and practical scientific basis for mural conservation. Further, by
exploring the absorption mechanisms of phosphates and their
characteristic bands, and utilizing band optimization algorithms
to develop a new three-band spectral index, this study aims to
more accurately reflect phosphate content, filling the gap in
existing research regarding the precise inversion of phosphate
content in its various physical states. This represents a
relatively novel endeavor in the field of hyperspectral remote
sensing technology, where fractional order differentiation
methods offer a more flexible framework capable of capturing
finer spectral variations, particularly suited for handling
nonlinear and complex physical processes.

2. EXPERIMENT AREA AND SAMPLE
PREPARATION

Ancient murals were selected for study due to their
distinguished historical value and the characteristic phenomena
of salt damage they exhibit. The research site is located at the
Mogao Caves in Dunhuang City (approximately 25 km
southeast of Dunhuang City, with coordinates at 94.662°E
longitude and 40.142°N latitude). Figure 1 illustrates typical
types of salt damage to the murals in the research area,
including: (a) Plaster Detachment: Partial separation of the
plaster layer from the supporting structure, with the detached
portion still connected to the support around its periphery. This
includes instances where the upper layer of double-layered
murals partially detaches from the lower layer. (b) Cracks:
Misalignment and cracking phenomena in the murals. (c)
Craquelure: Fine network of surface cracking on the mural. (d)
Plaster Disruption: A state of looseness in the mural plaster
layer caused by the action of soluble salts.

Figure 1. (a)- (c) depict an overview of the research area. (d)
showcases typical pathological types found in mural paintings

of the study area: (i)Salt efflorescence, (ii)Alkaline
effervescence, (iii) Fissures, (iv) Crazing.

The methodology for sample preparation was informed by the
study conducted by Bi (Bi,W. 2022), while the desalination
process adheres to the GB/T50123-2019 standard. Frist, the
raw materials—kaolinite clay, sand, and wheat straw—undergo
a desalination process to eliminate potential interference from
salts present in the original materials on the experimental
outcomes. The procedure entails sieving a certain amount of
dried soil sample through a 0.56 mm sieve, mixing it with
deionized water in a 1:5 ratio, and stirring clockwise for 0.5
hours to dissolve the salts. Subsequently, the mixture is allowed
to settle for 24 hours. After the supernatant water clears, it is
removed, and this desalination process is repeated a total of
five times. The effectiveness of the desalination is assessed by
measuring the electrical conductivity of the soil sample,
ensuring the total salt content does not exceed 0.1%. Following
desalination, the soil sample is dried, crushed, and sieved for
later use. Then, kaolinite clay, sand, and wheat straw are mixed
in a 64:36:3 ratio, and distilled water equal to 20% of the solid
mass is added. The uniformly mixed materials are filled into
pre-greased molds, with the surface smoothed and excess air
removed by vibration. Finally, the molds are placed in an oven
at 90°C to dry, reducing the moisture content of the samples as
much as possible to closely approximate a completely dry state.
This series of preparatory steps is designed to fabricate mural
plaster samples that meet experimental requirements,
facilitating subsequent studies on the effects of salt damage.

3. DATA SOURCE AND METHODOLOGY

3.1 Data Collection

To investigate the hyperspectral characteristics of mural plaster
in response to phosphate concentration, this experiment devised
solutions of disodium hydrogen phosphate dodecahydrate at
five different concentrations: 0.608, 0.808, 1.008, 1.208, and
1.408 mol/L, representing a range from the lowest to the
highest erosion conditions. A high-precision, low-temperature
constant temperature water bath was employed for temperature
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control of the samples, maintaining a constant temperature of
32.5°C to simulate capillary absorption effects eroding the
mural plaster samples(A total of 70 sets of samples, 14 samples
under each working condition). After the samples were air-
dried, their spectral reflectance was determined using an ASD-
FieldSpec 4 Hi-Res spectroradiometer, collecting hyperspectral
data. The wavelength range spanned from 350 to 2500 nm, with
sampling intervals of 1.4 nm (350–1000 nm) and 2 nm (1001–
2500 nm). To avoid the influence of other light sources,
measurements were conducted under indoor, enclosed
conditions devoid of external light sources at night. After a 30-
minute instrument warm-up and standard reflectance
calibration, the device's 57 optical fibers were embedded into
an ASDP analytical (Model: A122317) high-brightness contact
probe light source, a 70W quartz-tungsten-halogen lamp with
an aperture diameter of 25mm. The light aperture was inverted
directly above the center surface of the sample, the light source
was activated, and upon stabilization of the curve, data was
collected. The probe was then rotated 90° parallel to the sample
surface to repeat the collection in four directions, followed by
another measurement of the sample's center point, with the
average value taken as the sample's spectral data, all within a
darkroom.

To minimize the interference of salt content in the raw
materials on the experimental outcomes, a desalination process
was conducted on the raw materials. The phosphate content in
the eroded mural samples was assessed by changes in electrical
conductivity, with specific steps to measure conductivity as
follows: In the laboratory, the mural samples post-phosphate
erosion were sieved through a 2 mm soil sieve. A soil leachate
was prepared at a 1:5 soil-to-water ratio and filtered at an
indoor temperature of 25 °C. The soil leachate's electrical
conductivity (EC) was measured using a soil salinity EC
conductivity meter.Figure 2 presents the flowchart for sample
preparation and the collection process of hyperspectral data for
mural plaster.

Figure 2.Preparation of samples and collection of hyperspectral
data for Mural Plaster.

3.2 Statistical Analysis of Electrical Conductivity Data in
Mural Plaster

The coefficient of variation is employed to articulate the degree
of relative fluctuation or dispersion in conductivity
measurement values.The electrical conductivity data of Mural
Plaster collected under the five different conditions were

statistically described using data density distribution, mean,
standard deviation (SD), minimum value (Min), first quartile
(Q1), third quartile (Q3), and coefficient of variation (CV). The
first and third quartiles (Q1 and Q3) are indicated with red
dashed lines, while the mean is denoted with a blue dashed line.
OC1 to OC5 represent the five conditions ranging from
minimal to maximal concentration erosion. The coefficient of
variation (CV), also known as the dispersion coefficient, is a
standardized measure of the dispersion of a probability
distribution, defined as the ratio of the data's standard deviation
to its mean. Data is considered to have low concentration
variability when CV ≤ 15%, moderate variability when 15% <
CV ≤ 35%, and high variability when CV > 35%. The formula
for calculating the coefficient of variation (CV) is as follows(J.
Zhang, et al. 2023):

100%CV
u


  (1)

where CV = the coefficient of variation (expressed as a perc
entage)
� = the standard deviation of the sample
� = the mean value of the sample

3.3 Preliminary Processing of Hyperspectral Data

Initially, the spectral reflectance data for mural plasters was
cleansed of low signal-to-noise ratio bands between 350-399nm
and 2401-2500nm. Following this, the Savitzky-Golay filter
was applied to smooth the hyperspectral reflectance data of 100
simulated plaster layer samples(J. Chen, et al. 2004), utilizing
21 window points and a second-order polynomial (Guo
Zhouqian, et al. 2023).
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where ��' = the spectral reflectance at position i after smoothi
ng.
��+� = points within the original data series.
�� = coefficients in the convolution kernel, acquired t
hrough polynomial fitting.
m = half the size of the window.
∆ = hypically 1, unless the intervals between data poi
nts are non-uniform.

3.4 Research Methodology

3.4.1 Grünwald-Letnikov Fractional Differentiation
Fractional Order Differentiation (FOD) represents an extension
of traditional integer-order differentiation and manifests in
various forms within the realms of mathematics and
engineering (Karaca, Yeliz, and Dumitru Baleanu. 2022), such
as Riemann-Liouville (R-L), Lévy, Weyl, Caputo, and
Grünwald-Letnikov (G-L) (Wang, X et al. 2020). The current
experiment employs the Grünwald-Letnikov method, which,
owing to its discrete nature, is particularly suitable for the
numerical computation of hyperspectral signals (Equation
3),�denotes the Gamma function (Γ v = v − 1 !).
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where v = the fractional order
h = step size
t and a = upper and lower bounds of FOD

In this experiment, assuming the function f (x) as a one-
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dimensional hyperspectral signal with a band range of [a, t],
where x∈ [a, t] divided by the differential step length h. Given
that the ASD FieldSpec® 3 Hi-Res Spectrometer's retention
interval is 1nm, the differential step length can be set to h=1.
Consequently, the expression for the v-th order fractional
differentiation of the function f (x) can be derived from
Equation (3) as follows(Wang,X et al. 2018):
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where ν = the fractional order
x = the wavelength

3.4.2 Construction of the Spectral Reflectance Index In
recent years, numerous studies have focused on estimating soil
components through spectral indices, particularly by employing
dual-band spectral indices. These indices facilitate the
elucidation of both the external responses and intrinsic
meanings of spectral data, and they are capable of amplifying
the subtle correlations between bands. Concurrently, the
Phosphate Simple Ratio (PSR) and the Phosphate Normalized
Difference Index (PNDI) place the strongest and weakest
reflection bands in the numerator and denominator, respectively.
Through operations of ratios and normalized ratios, they further
expand the disparity between bands to maximize the sensitivity
of the measured property attributes. The constructions of the
PSR index and the PNDI index are represented by Equation 5
and Equation 6, respectively.

��� =
��
�� (5)

���� =
�� − ��
�� + �� (6)

Where Ra and Rb = denote the spectral reflectance at a given
wavelength.

In this study, we introduce a novel three-band index—
Phosphate Three Simple Ratio (PTSR)—aimed at enhancing
the precision of spectral index estimates and bolstering their
resistance to interference, thereby improving the monitoring of
phosphate content in mural plaster. Further, by analyzing the
best-performing spectral indices from the univariate regressions
up to the sixth order, these indices were utilized as explanatory
variables in a Partial Least Squares Regression (PLSR) analysis
of ground phosphate content. In the accuracy comparison
between the PSR-PLSR and PNDI-PLSR models, the best-
performing model was selected as the basis for the three-band
index study. Rc, denoting the waveband corresponding to the
spectral index with the highest correlation coefficient with
phosphate content, was incorporated as a specific sensitive
waveband to further refine the spectral index design. The
ultimately formulated three-band index, PTSR, is defined as
Equation 7:

���� =
��

�� − �� (7)

Where Ra and Rb = represent the reflectance at specific
wavebands a and b within the range of 400-2400 nm,
respectively
Rc = denotes a particular waveband selected based on
the optimal model.

3.4.3 Modeling PLSR In this study, univariate regression
and Partial Least Squares (PLS) regression are employed to
estimate the phosphate content in mural plaster. Univariate
regression refers to a method involving only one independent
variable and one dependent variable. For variable selection, the
Pearson correlation coefficient is used to measure the strength
of the linear relationship between the independent and
dependent variables. This paper calculates the correlation
coefficients between the PNDI, PSR, PTSR spectral indices,
and the phosphate content in mural plaster. The absolute value
of the correlation coefficient describes the degree of linear
correlation between two variables. Consequently, this research
selects the spectral index corresponding to the highest
correlation coefficient as the independent variable, with the
phosphate content in mural plaster as the dependent variable.
The test and validation sets are split in a 7:3 ratio, conducting
univariate regression to identify the optimal order and band
position, providing a basis for establishing a multivariate
regression model subsequently.To enhance the model's
precision, data underwent standardization and mean centering
as preprocessing steps. The model's framework is based on the
Kernel PLS algorithm, with the number of principal
components capped at seven. Optimal component numbers
were determined through random cross-validation, and specific
model warning parameters were set (thresholds for the
calibration and validation residual variance ratio set at 0.5 and
0.75, respectively, and the upper limit for residual variance
increase set at 6%) to ensure the model's stability and reliability.

In this study, the selection of specific three-band bands no
longer simply relies on the outcomes of previous research but
instead employs a data-driven analytical approach. The essence
of this method lies in delving into the domain of fractional
order differentiation, systematically identifying the most
appropriate orders and band positions.

3.4.4 Evaluation This paper employs accuracy assessment
metrics to evaluate the efficacy of the predictive modeling
(Tian, A et al. 2021;Zhang,J et al. 2023). The computation
formulas for R², RMSE (Root Mean Square Error), and MAE
(Mean Absolute Error) are delineated as follows in Equations
(8) to (10).
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where n = the number of mural plaster samples
�� = the EC measurement value of the i-th mural
plaster sample
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�� = the average value of the measured values of all
mural plaster samples
�� = the predicted EC value of the i-th mural plaster
sample
�� = the average EC predicted value of all mural floor
samples

The coefficient of determination of the calibration data set is
expressed as ��2 . The root mean square error of the calibration
data set and the validation data set is expressed as ����� and
�����. The coefficient of determination of the validation data
set is expressed as ��2 , and the performance of the model is
expressed as MAE. Among them, �2 is used to evaluate the
model fitting degree. The closer the value is to 1, the higher the
model accuracy. RMSE and MAE are used to evaluate the
stability of the model. The closer the value is to 0, the better the
RMSE and MAE are.

4. RESULTS

4.1 Statistical Description of Mural Plaster Electrical
Conductivity

The electrical conductivity (EC) values of the mural plaster
samples directly reflect the variance in salt content within the
same material, exhibiting a certain degree of variability. As
illustrated in Figure 3, the range of sample EC values spans
from 2.20 ms·m^-1 to 4.86 ms·m^-1. The mean and standard
deviation of the sample EC values are calculated to be 3.50 ±
0.76 ms·m^-1. The first quartile (Q1) and third quartile (Q3) of
the data are respectively 2.92 ms·m^-1 and 4.15 ms·m^-1,
indicating that 50% of the sample EC values fall between these
two figures. Additionally, the coefficient of variation (CV)
stands at 21%, signifying that the relative variability of the EC
values is at a moderate level

Figure 3.Statistical description of the Electrical Conductivity (EC) values in Mural Plaster.

4.2 Hyperspectral Characteristics of Simulated Mural
Plaster under Different Salt Concentration Erosion

Based on Equation 2, the spectral data are smoothed to
highlight these spectral features. As observed in Figure 4, the
reflectance spectra of Mural Plaster, subjected to varying
concentrations of salt erosion, exhibit similar shapes. The
colored curve represents the average spectrum of the Mural
Plaster samples. Within the 400-2400 nm wavelength range,
shows reflectance values between 0.08 and 0.45, displaying
notable fluctuations.

Figure 4. Spectral reflectance curves of mural samples under
different conditions.

4.3 Fractional Order Differentiation Results of Spectral
Curves

Given the rich high-dimensional information in hyperspectral
data and the difficulty in capturing sensitive bands and features
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(Song, G et al. 2023), the FOD calculation method delineated
in Section 3.4.1 was utilized on the samples, employing
Equation (4) to enhance the analysis. This method allows for
the control of differential step length, thereby enhancing the
accuracy of salt content detection. Following the approach of
(Zhang,J et al. 2023), the interval and step length were set at [0-
2] and 0.1, respectively. Figure 7 illustrates the average
spectrum of the Mural Plaster samples.

After treatment with FOD, the Mural Plaster samples exhibited
three distinct hygroscopic troughs near 1400nm, 1900nm, and
2200nm, indicative of enhanced water absorption
characteristics. This enhancement is associated with an increase
in both porosity and surface roughness of the samples
following phosphate treatment, thereby augmenting their water-

absorptive capacity. As the stages of FOD treatment progressed,
a decline in the spectral curve profiles was observed. At the 0.5
stage, the reflectance corresponding to the full spectral
wavelength fluctuated primarily between 0 and 0.03, beginning
to show negative values; by the 0.8 stage, the reflectance had
already fallen below 0.1. Following the 0.6 differential
spectrum stage, substantial, readily observable fluctuations in
the curves emerged, amplifying differences between the
spectral lines. However, increasing the stage did not allow for
further expansion of these differences, and from stage 1.1
onward, this trend gradually slowed. After stage 1.4, the
spectral curve profiles became blurred and superimposed,
indicating that at higher order differentials, the profiles of the
spectral curves are progressively obscured, and the distinct
intervals between the curves are lost.

Figure 5. Average fractional-order derivative spectra of Mural Plaster samples. The range of orders spans from 0 to 2, with a step
size of 0.1. Colored curves represent the average spectra of Mural Plaster samples, while the gray shadow indicates their standard

deviation.

4.4 Spectral index analysis

From Table 1, it can be observed that the Maximum Absolute
Correlation Coefficient (MACC) between PNDI and phosphate
content exhibits a trend of initial increase followed by a
decrease with the advancing stages of FOD treatment. Notably,
at the 0.6 stage, the MACC reaches its peak value of 0.652,
indicating that at this stage, FOD treatment is most effective in
enhancing the correlation between PNDI and phosphate
content.We can observe the performance of linear regression
models based on the two-band spectral index (PNDI) across
various stages of FOD treatment. The analysis encompasses
FOD stages including 0.3, 0.8, 0.2, 0.4, 0.9, and 1.2, with these
stages ranking among the top six in model accuracy out of all
the stages tested.

Table 1. Employing linear regression, we have derived the
estimation results for the characteristic wavelengths of

phosphate content in Mural Plaster and the Two-Band Spectral
Index (PNDI)

Table 2 reveals that the Maximum Absolute Correlation
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Coefficient (MACC) between PSR and phosphate content also
exhibits a trend of initial increase followed by a decrease with
the progression of FOD stages, mirroring the trend observed
with PNDI. Notably, at stage 0.6, the MACC reaches its apex at
0.653. Further in-depth analysis using the data presented in
Table 2 indicates that when employing the single two-band
spectral index (PSR) for model construction, the 0.3 stage of
Fractional Order Derivative (FOD) processing achieves the
highest determination coefficient (R² = 0.728), significantly
enhancing the accuracy of phosphate content estimation.
Moreover, a comparative analysis of FOD treatments from
stages 0.1 to 0.8 versus 1 to 2 reveals that lower-order
derivatives (0.1 to 0.8 stages) are more effective in estimating
phosphate content.

Table 2. Employing linear regression, we have derived the
estimation results for the characteristic wavelengths of

phosphate content in Mural Plaster and the Two-Band Spectral
Index (PSR)

The correlation coefficients between the three-band spectral
indices at various FOD stages and the phosphate content in
Mural Plaster are depicted in Figure 6 and Table 3. The
horizontal and vertical axes represent spectral bands. Table 3
lists the Maximum Absolute Correlation Coefficients (i.e., the
greatest value among the maximum positive and negative
correlation coefficients). Employing a cumulative comparative
method, the Maximum Absolute Correlation Coefficient for the
three-band spectral indices increased by 5.32% compared to
PSR, indicating that the adoption of a three-band combination
for fractional order derivative processing substantially enhances
the correlation between the spectral indices and phosphate
content.

Figure 6. Correlation Coefficient Between Phosphate Content
in Mural Plaster and the Three-Band Spectral Index (PTSR)

Table 3. Employing linear regression, we have derived the
estimation results for the characteristic wavelengths of

phosphate content in Mural Plaster and the Two-Band Spectral
Index (PTSR).

4.5 Predictive Model for Phosphate Content in Mural
Plaster Based on Fractional Order Differential Combined
with Novel Spectral Indices

In this study, we employed Fractional Order Derivative (FOD)
technology and the three-band spectral index (PTSR) to develop
a high-precision model for monitoring phosphate content in
Mural Plaster. Figure 7 presents the optimal model for Mural
Plaster phosphate monitoring constructed using FOD spectra
and the PTSR index (based on validation set data). The color
bar in the figure represents the density of data points,
determined through Gaussian Kernel Density Estimation (KDE),
where darker regions indicate higher densities of data points,
and lighter regions signify lower densities. Upon detailed
analysis, the PTSR-PLSR model demonstrated a significant
enhancement in performance compared to the previous PNDI-
PLSR and PSR-PLSR models, specifically achieving a
coefficient of determination (R²) of 0.815 and reducing the root
mean square error (RMSE) to 0.327, an improvement of 10.4%
and 7.38% in accuracy, respectively. These results not only
confirm the high accuracy and reliability of the PTSR-PLSR
model in monitoring the phosphate content of Mural Plaster but
also highlight the potential of FOD technology and the
innovative three-band spectral index in the field of
hyperspectral remote sensing.

Figure 7. The Optimal Mural Plaster Phosphate Monitoring
Model Established Based on FOD Spectra and Three-Band
Spectral Index (PTSR) Using Validation Set Data

5. DISUSSION

The innovations of this study are as follows:

(1) In this research, we have developed an innovative three-
band spectral index, named the Phosphate Three Simple Ratio
(PTSR). This index is designed to enhance the accuracy of
estimations and to augment resistance to environmental
interferences, thereby optimizing the monitoring of phosphate
content in Mural Plaster

(2)The research has developed a model combining Fractional
Order Differentiation and Partial Least Squares Regression
(PTSR-FOD-PLSR) for the hyperspectral feature inversion of
Mural Plaster phosphate content. This enables non-destructive
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detection and accurate prediction of phosphate content in
Dunhuang Mural Plaster, which holds significant value for
cultural heritage conservation.

However, it is pertinent to acknowledge the limitations of this
study. The limitations of this study are primarily manifested in
several areas: Firstly, although the efficacy of the Phosphate
Three Simple Ratio (PTSR) three-band spectral index has been
demonstrated to surpass that of the two-band PNDI and PSR
indices, a comprehensive cross-comparison of different model
construction forms (such as normalization, quadratic,
logarithmic, exponential, etc.) with specific research subjects
has not been conducted, thereby restricting a thorough
understanding of the factors influencing model precision.
Furthermore, the potential of machine learning methods to
enhance computational efficiency has not been fully explored,
which may hinder advancements in the processing and analysis
of hyperspectral data. Moreover, although the Partial Least
Squares Regression (PLSR) model has proven effective,
insufficient exploration of its analogous alternative methods has
limited the possibilities for model optimization and innovation.
Lastly, the effectiveness of the research methodologies has not
been further validated through field tests using hyperspectral
cameras. Future research directions will focus on addressing
these limitations, particularly through field testing to deeply
explore the performance of hyperspectral cameras under
complex field conditions; systematic comparative analysis of
different three-band spectral index construction forms to
identify the most suitable model types; and seeking effective
alternatives to Partial Least Squares Regression to optimize
existing models, thereby enhancing their accuracy and
practicality. These research directions not only aim to overcome
the present limitations but also to advance the application of
hyperspectral technology in soil composition monitoring and
other fields.

6. CONCLUSION

This research successfully developed a hyperspectral
characteristic inversion model for the quantification of
phosphate content in Mural Plaster, utilizing a novel three-band
spectral index in conjunction with Fractional Order Differential
and Partial Least Squares Regression algorithms. This model
offers an efficient and precise method for non-invasive, non-
destructive salt damage monitoring, overcoming various
limitations associated with traditional methodologies, such as
high costs, low efficiency, and potential physical damage risks.
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