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Abstract： 
Accurate dense reconstruction of unknown spatial environments is crucial for applications such as underground exploration and 
planetary missions. Existing methods face challenges like observing blind spots and the difficulty of edge feature extraction in point 
clouds with non-repetitive scanning LiDARs. This paper first uses a novel odometry and mapping system integrating two solid-state 
LiDARs and an IMU to obtain distortion-compensated point clouds and corresponding poses, which are utilized to generate submaps. 
Our approach then leverages these accumulated submaps to efficiently extract edge features. Experimental results demonstrate that our 
submap-based method effectively identifies edge features within point clouds, which can be used for association with panoramas for 
joint optimization in the future.

1. Introduction

Dense reconstruction of unknown spatial environments has 
become a major focus of current research due to its broad 
applicability and significant importance. Utilizing robots for 
exploring and reconstructing unknown spaces plays a crucial role 
in various domains such as underground exploration, planetary 
exploration, and autonomous driving.  
Robots equipped with advanced sensors can leverage 
Simultaneous Localization and Mapping (SLAM) technology to 
achieve rapid localization and map construction even in GNSS-
denied environments. This is accomplished through multi-sensor 
fusion, which typically involves the integration of Light 
Detection and Ranging (LiDAR) sensors, cameras, and Inertial 
Measurement Units (IMUs). Each of these sensors contributes 
unique capabilities to the SLAM system. 
LiDAR sensors determine position and distance by emitting laser 
pulses and measuring the time taken for their reflections to return. 
One of the significant advantages of LiDAR technology is its 
independence from ambient lighting conditions, making it 
reliable in diverse environments. LiDAR sensors can be broadly 
categorized into two types: traditional spinning LiDARs with 
repetitive scanning patterns and solid-state LiDARs with non-
repetitive scanning patterns. Both types have their own 
advantages and applications depending on the requirements of 
the mapping task. Cameras, on the other hand, offer a cost-
effective means of capturing detailed texture information of the 
environment. They can capture high-resolution images that 
provide valuable visual context, which is essential for tasks such 
as object recognition and scene understanding. Additionally, 
IMUs measure acceleration and angular velocity at high 
frequencies, which helps in compensating for motion distortions. 
The fusion of these three types of sensors, LiDARs, cameras, and 
IMUs, enables the system to utilize the complementary strengths 
of each sensor. This multi-sensor fusion approach is essential for 
achieving robust and rapid mapping of unknown spaces, 
providing comprehensive environmental perception that is 
critical for successful navigation and reconstruction. 
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However, many existing methods (Lin and Zhang, 2022; Zheng 
et al., 2022) rely on combining cameras with small field of view 
(FOV) and single LiDAR to achieve localization and mapping. 
These approaches often fail to capture the full extent of the 
environment, resulting in blind spots. The integration of cameras 
and LiDARs with larger FOV can effectively address these 
limitations, significantly expanding the robot's perception range 
and improving the completeness of the generated maps. 
Recent advancements, such as the PanoVLM method (Tu et al., 
2023), have demonstrated the potential of using panoramic 
cameras and LiDAR for cost-efficient and dense mapping. 
However, their approach to edge feature extraction, which is 
similar to the method used in LOAM (Zhang and Singh, 2014), 
is optimized for traditional spinning LiDARs and is not suitable 
for the non-repetitive scanning patterns of solid-state LiDARs. 
Furthermore, their system does not incorporate high-frequency 
IMUs, making it less effective in scenarios involving rapid 
motion where precise motion compensation is critical. 
To address these challenges, this paper employs a novel multi-
LiDAR odometry and mapping system integrating two solid-state 
LiDARs and an IMU. As depicted in Figure 1, the system is also 
equipped with a panoramic camera to provide a wide FOV, 
capturing more comprehensive environmental information. 
Inspired by the method introduced by (Yuan et al., 2021), our 
approach utilizes accumulated submaps to overcome the 
difficulties associated with extracting edge features from the 
sparse scans of non-repetitive solid-state LiDARs. 
By integrating multiple LiDARs and an IMU, we can obtain real-
time poses and point clouds of the robot, which are then 
accumulated into sub-maps for subsequent edge extraction. This 
method effectively addresses the challenge of edge extraction 
from sparse point clouds in single frames by leveraging the 
combined data from multiple sensors. Our experimental results 
demonstrate that the submap-based edge extraction method is 
capable of efficiently identifying edge features within point 
clouds. These features can be associated with those in panoramic 
images for joint optimization in the future. 
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Figure 1. LuoJia Explorer-panoramic mapping system. Left: Photo of the system. Right: Panorama from a panoramic camera and 

multi-LiDAR point cloud data. 

 
2. Related Work 

For LiDAR Odometry (LO) methods, the LOAM method (Zhang 
and Singh, 2014) extracts edge features in real-time from point 
clouds by calculating and sorting local curvature. Many 
subsequent 3D LiDAR Odometry methods (Cong et al., 2023, 
2022; Shan and Englot, 2018) have built upon and improved 
LOAM. Specifically designed for LiDARs with small FOV and 
irregular sampling patterns, the LOAM Livox method (Lin and 
Zhang, 2020) addresses challenges in feature extraction and 
selection within a limited FoV, robust outlier rejection, moving 
object filtering, and motion distortion compensation. This 
approach registers the point cloud to a local map within a specific 
range, achieving real-time LiDAR odometry. To mitigate 
matching degeneration caused by the limited number of features 
due to small FoV and point selection, LOAM Livox not only 
integrates the LOAM methodology but also identifies edge 
feature points by detecting differences in LiDAR reflectivity. 
In the realm of LiDAR-Inertial Odometry (LIO) methods, the 
LiLi-OM method (Li et al., 2021) addresses feature extraction for 
the irregular scanning pattern of the Livox Horizon LiDAR. This 
method unfolds a scan frame and segments it based on time to 
filter valid points. Subsequently, it performs eigendecomposition 
on the valid points. By comparing the three eigenvalues, it 
extracts edge and plane features. Then, LiLi-OM integrates 
LiDAR and IMU measurements through hierarchical keyframe-
based sliding window optimization. The Fast-LIO series methods 
(Xu et al., 2022; Xu and Zhang, 2021) employ a tightly-coupled 
iterated Kalman filter (iEKF) to fuse LiDAR points with IMU 
data, utilizing a back-propagation process to compensate for 
motion distortion. They also introduce a new method for 
computing the Kalman gain, which reduces the computational 
load caused by a large number of LiDAR points. Fast-LIO2 
directly registers the raw point cloud to the map and updates it 
using the ikd-Tree data structure to manage the map efficiently. 
The AFLI-Calib method (Wu et al., 2023) enhances the accuracy 
of extrinsic self-calibration for LiDAR-IMU systems by 
dynamically adjusting the LiDAR frame length based on sensor 
motion state and scene matching stability. 
For LiDAR-Inertial-Visual Odometry (LIVO) methods, the 
R3live series methods (Lin and Zhang, 2022) couple a LIO 
subsystem with a VIO subsystem. These subsystems jointly and 
incrementally build a 3D map of the environment in real-time. 

The LIO subsystem reconstructs the geometric structure by 
registering new points from each LiDAR scan to the map, while 
the VIO subsystem recovers radiance information by rendering 
pixel colors from each image onto the map points. The Fast-
LIVO (Zheng et al., 2022) method consists of two tightly-
coupled odometry subsystems: the VIO subsystem and the LIO 
subsystem. To avoid the feature extraction, triangulation, or 
optimization, the VIO subsystem aligns new images and solves 
for pose by minimizing the direct photometric error, leveraging 
the point cloud map built by the LIO subsystem. 
 

3. Method 

Our method is divided into three main parts: data inputs, multi-
LiDAR-inertial odometry, and submap-based edge extraction, as 
illustrated in Figure 2. 
 
3.1 Multi-LiDAR-Inertial Odometry and Mapping 

In this section, we build upon our previous work PMLIO (Xu et 
al., 2023), employing it as the multi-LiDAR-inertial odometry 
and mapping algorithm to achieve robust pose estimation. The 
global frame (∙)𝐺𝐺   is defined by the first frame of the IMU, while 
the body frame (∙)𝐵𝐵 is defined by the IMU frame. 
Firstly, the method employs spatial-temporal fusion to combine 
the point cloud 𝑃𝑃𝐿𝐿 obtained by LiDAR mid and the point cloud 
𝑃𝑃𝐴𝐴 obtained by the LiDAR avia. This fusion ensures that data 
from different LiDARs is integrated seamlessly, providing a 
comprehensive point cloud for further processing. Subsequently, 
the algorithm compensates for motion distortion, which is 
beneficial for more accurate pose estimation. Through the use of 
an iterated extended Kalman filter, observations from both the 
IMU and the LiDARs are fused. This process results in a 
distortion-compensated and fused point cloud 𝑃𝑃𝑀𝑀 =
�𝑝𝑝0𝐵𝐵, 𝑝𝑝1𝐵𝐵, … 𝑝𝑝𝑖𝑖𝐵𝐵�  within the body frame. Additionally, the 
corresponding set of poses in the global coordinate system (∙)𝐺𝐺  
is denoted as TG = �𝑡𝑡0𝐺𝐺 , 𝑡𝑡1𝐺𝐺 , … 𝑡𝑡𝑖𝑖𝐺𝐺�. 
This approach not only integrates data from multiple LiDAR 
sensors but also ensures that the resulting point cloud is accurate 
from motion-induced distortions. By fusing IMU and LiDAR 
data, the method provides robust and reliable pose estimation, 
crucial for applications requiring precise navigation and mapping. 
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Figure 2. The workflow of the proposed method. 

 
3.2 Submap-based LiDAR Edge Extraction 

Due to the sparsity of point clouds in each frame scanned by 
solid-state LiDAR, robustly extracting edge features for data 
association between images and point clouds proves challenging. 
Therefore, this paper utilizes the distortion-compensated and 
fused point cloud 𝑃𝑃𝑀𝑀  and the corresponding poses TG  to 
accumulate submap 𝑆𝑆 . The method employs Equation 1 to 
accumulate point clouds from frame 𝑖𝑖  to frame 𝑖𝑖 + 𝑛𝑛  to form 
submap. 

𝑆𝑆 = ∑ 𝑡𝑡𝑗𝑗𝐺𝐺𝑝𝑝𝑗𝑗𝐵𝐵𝑖𝑖+𝑛𝑛
𝑗𝑗=𝑖𝑖                               (1) 

 
The presence of phenomena such as fake points and bleeding 
points in depth-discontinuous edges can significantly affect the 
accuracy of data association. These issues arise due to the 
inherent limitations of LiDAR's scanning and reflection 
mechanisms. To address these challenges and ensure precise 
association, we employ the method (Yuan et al., 2021) to focus 
on extracting the depth-continuous edge feature from the 
accumulated submap 𝑆𝑆 through a detailed four-step process: 
Voxel map construction: The submap is segmented into fixed-
size voxels based on the specific scene requirements. This step 
facilitates efficient processing, and reduces computational 
complexity. 
Plane fitting: Within each voxel, the RANSAC algorithm is used 
to fit planes to the point cloud data. RANSAC is effective in 
dealing with noisy data and outliers, making it suitable for plane 
detection. 
Intersecting planes selection: Only planes that intersect at 
defined angles are considered for edge extraction. This selective 
process evaluates the angular relationships between planes to 
filter out those that do not contribute meaningfully to edge 
formation. 
Plane intersection lines computation: The intersections of 
these selected planes are computed to produce depth-continuous 
edge lines. 
This method is adaptable to various scanning modalities, 
expanding its applicability to different types of LiDAR sensors. 
 
3.3 Panorama Line Extraction 

For common feature-based methods used to associate LiDAR and 
camera data, edge features are one of the most commonly used 
types due to their prevalence in structured environments. This 
section introduces a method for line extraction from panoramas 
captured by panoramic cameras. 
Due to the severe distortion present in panoramas, traditional line 
extraction methods designed for frame cameras perform poorly. 
This paper utilizes the method proposed by (Tu et al., 2023) to 

extract line features, which involves four main steps: First, LSD 
(Line Segment Detector) method is used to extract initial lines 
from the panoramas. Next, for each extracted line, its two 
endpoints are transformed onto the unit sphere and a plane is 
formed with the camera center. Then, lines are fused if they are 
adjacent, have an angle difference of less than 2 degrees, and the 
minimum Normalized Cross Correlation (NCC) value between 
their endpoints is greater than 0. The angle difference is 
determined by the angle between the previously formed planes. 
Finally, lines shorter than 1/20 of the image height are filtered 
out. 
Future work might explore the PanoVLM method (Tu et al., 2023) 
to associate panoramas and point clouds using these line features. 
By leveraging the complementary strengths of panoramas and 
LiDAR point clouds, it is possible to achieve joint optimization, 
leading to more accurate and comprehensive dense 
reconstructions. This integrated approach has the potential to 
improve the performance of robotic systems in complex 
environments. 
 

4. Experiments 

4.1 Experimental Data Collection and Setup 

The data for the experiment were collected using the LuoJia 
Explorer panoramic mapping system, which is equipped with 
multiple sensors including the Livox Mid360, Livox Avia, and a 
panoramic camera, as illustrated in Figure 1. The system's 
specific parameters are listed in Table 1. The Livox Mid360 is a 
solid-state LiDAR with a wide horizontal FoV of 360°, so we 
placed it at the top of the system. The Livox Avia, in contrast, has 
a smaller horizontal FoV of 70.4° but a longer observation range. 
To take advantage of this, we positioned the Livox Avia facing 
forward to focus on objects directly ahead, supplementing the 
coverage of the Livox Mid360. As shown in Figure 1, the overall 
point cloud distribution validates our strategy. The Livox 
Mid360's point cloud (blue) is sparse at long distances but covers 
a wide area, while the Livox Avia's point cloud (yellow) is denser, 
more concentrated, and extends further. Our placement 
effectively leverages the strengths of each LiDAR sensor. 
Additionally, we positioned a panoramic camera at the top of the 
device, which provides a 360-degree FoV to thoroughly observe 
the surrounding environment and offers visual texture 
information. The panoramic images obtained from this camera 
are shown in Figure 1. 
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Hardware Parameters 

 Scanning 
pattern FOV Points Frequency Range Built-in IMU 

Livox Avia Non-repetitive Vertical:77.2° 
Horizontal: 70.4° 

240,000/s (first or 
strongest return) 10 Hz 190 m@10% BMI088 

Livox Mid360 Non-repetitive Vertical:59° 
Horizontal: 360° 200,000/s 10 Hz 0.1m-

40m@10% 
ICM40609, 

200Hz, 6axis 

360° Camera Model: THETA Z1 360° Camera 

Table 1.  Sensor Configurations of LuoJia Explorer-panoramic mapping system.
 
In the experiment, we used the built-in IMU from the Livox 
Mid360 as the IMU input for our method. The external 
parameters between the IMU and LiDAR were obtained from the 
factory settings. The external parameters between the LiDARs 
had been calibrated in advance, following the calibration method 
described in our previous work (Xu et al., 2023). Moreover, time 
synchronization was performed between the multiple LiDARs 
and the panoramic camera. 
We utilized the system to gather data from the underground 
parking garage at Wuhan University, which served as the 
experimental validation site. As shown in the panoramic image 
in Figure 1, the parking garage is a structured environment with 
edge features that are suitable for experimental validation. 
 
4.2 Results 

The point cloud map of the experimental site obtained by the 
method clearly reflects the structure of the parking garage 
without any stratification, as shown in Figure 3. The edge 
features in the complete point cloud map are clearly visible. This 
demonstrates the effectiveness of integrating data from multiple 
LiDARs and the IMU, providing reliable point cloud and pose 
estimations for subsequent submap-based edge extraction. 
To fully validate the effectiveness of submap-based edge 
extraction method, we tested multiple submaps with 𝑛𝑛 = 20. As 
shown in Figure 4, the first column displays the results after voxel 
segmentation of the submaps. It can be observed that voxel 
segmentation is well-executed in dense areas of the point cloud, 
providing a solid foundation for subsequent edge extraction. 
The second column highlights edge features extracted from the 
submaps, represented in red. It can be seen that the edge features 

extracted from the point cloud are mostly accurate, especially in 
dense areas of the point cloud. However, some edge features in 
sparse areas of the point cloud were not effectively extracted. 
The third column displays the corresponding panoramic image 
and the line features extracted, shown in color. It is evident that 
line features in the panoramic images have been successfully 
extracted. 
These experimental results qualitatively validate the 
effectiveness of the proposed method. It is evident that most edge 
features have been successfully extracted, thereby confirming the 
efficacy of the method. 
 
4.3 Discussion 

Although the proposed method effectively extracts edge features 
from point clouds, there are still some limitations. For instance, 
edge features in sparse areas of the point cloud are not effectively 
extracted, and the results show a relatively low number of edge 
features. Future work will explore using a sliding window to 
accumulate submaps. Experimental results indicate that edge 
feature extraction is more successful in areas with well-
performed voxel segmentation. Currently, a fixed-size voxel 
segmentation method is used and adopting an adaptive voxel 
segmentation method may improve the effectiveness of edge 
feature extraction. 
Following the completion of edge extraction from both point 
clouds and images, future research could investigate the 
PanoVLM method (Tu et al., 2023) to associate panoramas and 
point clouds using these line features, and then achieve joint 
optimization to obtain more accurate and comprehensive dense 
reconstructions. 
 

 
Figure 3. The point cloud map of the underground parking garage. 
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Figure 4. The results of submap-based edge extraction and panorama line extraction. 

5. Conclusion

Employing robots for accurate dense reconstruction of unknown 
environments is crucial. However, existing methods often face 
challenges, such as the observation of blind spots and difficulties 
in extracting edge features from point clouds generated by non-
repetitive scanning LiDARs. In this paper, we employed a novel 
odometry and mapping system that integrates two solid-state 
LiDARs and an IMU to obtain distortion-compensated point 
clouds and corresponding poses. These are then used to generate 
submaps, which our approach leverages to efficiently extract 
edge features. Experimental results have demonstrated that our 
submap-based edge extraction method effectively identifies edge 
features within point clouds. These features can potentially be 
associated with panoramas for joint optimization in future 
applications. 
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