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Abstract 

 

The fusion of low-cost unmanned aerial systems (UAS) with advanced photogrammetric techniques has revolutionized 3D terrain 

reconstruction, enabling the automated creation of detailed models. Concurrently, the advent of 3D Gaussian Splatting has introduced 

a paradigm shift in 3D data representation, offering visually realistic renditions distinct from traditional polygon-based models. Our 

research builds upon this foundation, aiming to integrate Gaussian Splatting into interactive simulations for immersive virtual 

environments. We address challenges such as collision detection by adopting a hybrid approach, combining Gaussian Splatting with 

photogrammetry-derived meshes. Through comprehensive experimentation covering varying terrain sizes and Gaussian densities, we 

evaluate scalability, performance, and limitations. Our findings contribute to advancing the use of advanced computer graphics 

techniques for enhanced 3D terrain visualization and simulation. 

 

1. Introduction 

The integration of low-cost unmanned aerial systems (UAS) 

equipped with high-resolution cameras, alongside advances in 

photogrammetric techniques, has significantly transformed the 

domain of 3D terrain reconstruction. This evolution has 

facilitated the automated creation of detailed and realistic 3D 

meshes, marking a pivotal shift towards enhancing the accuracy 

and realism of digital terrain models across various applications. 

 

Within this innovative landscape, a compelling development has 

emerged from the realm of computer graphics: the invention of 

3D Gaussian Splatting (Kerbl, Bernhard, et al. 2023). This 

novel technique, which represents a significant advancement in 

the representation of 3D data, offers a visually realistic 

rendering that stands apart from traditional polygon-based 

models. 3D Gaussian Splatting demonstrates a superior 

capability for generating visually realistic outputs, positioning it 

as a valuable asset for applications that demand high-fidelity 

visualizations, particularly in the creation of virtual gaming and 

simulation environments. 

 

Building upon the foundational advancements introduced by 3D 

Gaussian Splatting, our research endeavors to bridge the gap 

between high-quality visualization and interactive simulation 

capabilities. This integration is critical for leveraging the full 

potential of Gaussian Splatting within dynamic and immersive 

applications. Our investigation focuses on the application of this 

technique for reconstructing large-scale 3D terrains, thoroughly 

examining its performance and effectiveness in creating virtual 

gaming environments. In particular, the point cloud nature of 

Gaussian Splatting presents specific challenges, notably its 

incompatibility with interactive simulations that require 

collision detection. To address this, our research adopts a hybrid 

methodology, leveraging photogrammetry-derived meshes as 

invisible collision substrates beneath the Gaussian Splatting 

visual layer. This approach seeks to harness the visual 

advantages of Gaussian Splatting while ensuring the dynamic 

interactions essential for an immersive simulation environment. 

 

Our experimentation covers a range of terrain sizes and tests the 

Gaussian Splatting technique with varying numbers of 3D 

Gaussians, from one million up to 28 million. This 

comprehensive analysis seeks to assess the scalability, 

performance, and potential limitations of using Gaussian 

Splatting for the visualization of large-scale 3D terrains within 

interactive simulations. Through this paper, we present our 

methodology, experimental setup, and the insights gained, 

contributing to the broader discussion on leveraging advanced 

computer graphics techniques for enhanced 3D terrain 

visualization and simulation. 

 

2. Literature Review 

2.1 3D Gaussian Splatting 

The seminal work on Gaussian splatting introduced an 

innovative approach to view synthesis, culminating in the 

achievement of real-time rendering of 1080p resolution at 30 

frames per second, concurrently obtaining comparable visual 

fidelity to conventional neural radiance field methodologies 

(Kerbl, Bernhard, et al. 2023). Gaussian splatting methodology 

integrates three-dimensional Gaussian distributions to depict the 

scene, thereby retaining the advantageous attributes of 

continuous volumetric radiance fields for scene optimization 

while circumventing superfluous computational overhead in 

void regions. Subsequent to the representation of the scene via 

three-dimensional Gaussians, an interleaved optimization and 

density control process is employed, which iteratively refines 

three-dimensional position, opacity, anisotropic covariance, and 

spherical harmonics parameters to establish a faithful rendition 

of the scene. Conclusively, a tile-based rendering approach, 

cognizant of visibility considerations, is implemented to 

facilitate anisotropic splatting, thereby expediting training and 

enabling real-time rendering capabilities. Many follow-up 
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works have occurred just for the past year that enabling 

different applications such as relighting, meshing, SLAM, etc. 

shows great potential of further R&D on the topic. 

 

2.2 Real-Time Terrain Systems 

The domain of computer graphics has witnessed substantial 

progress in terrain systems, particularly propelled by 

advancements in game engine technology. These systems have 

enabled real-time rendering of expansive environments through 

the adoption of tiling and streaming methodologies. Notably, 

Unreal Engine 5 has spearheaded numerous enhancements in its 

terrain authoring toolkit, notably with the incorporation of 

world partitioning, streamlining the creation of terrain tiles. This 

feature dynamically regulates the streaming of tiles based on the 

camera's perspective, facilitating the seamless exploration of 

vast terrains in real-time. The fidelity of rendered terrain is 

intricately linked to the density of the underlying mesh, with 

heightened fidelity necessitating exponentially escalating vertex 

counts. To mitigate this computational burden, level-of-detail 

systems are conventionally employed, albeit with potential 

implications for rendering quality. Texture mapping terrain 

poses another formidable challenge, addressed through the 

utilization of terrain materials that amalgamate multiple shaders 

in a stratified arrangement. This framework enables the 

texturing of a singular terrain surface with diverse textures, 

governed by procedural mechanisms that leverage surface 

information at discrete points. Gaussian splatting emerges as a 

leading-edge technique for terrain representation, imbuing color 

information via the acquired spherical harmonics. To tackle the 

challenges inherent in managing large-scale terrains, a tile-

based optimization strategy is embraced, complemented by a 

partitioned rendering scheme. This innovation effectively 

circumvents the particle count limitations inherent in a singular 

Niagara particle system, which constitutes the backbone of the 

simulation-enabled renderer. 

 

3. Method 

3D Gaussian Splatting employs the output of Structure-from-

Motion (SfM), specifically camera poses and a sparse point 

cloud, as its foundational input. This method models scenes 

through the deployment of 3D Gaussians, each defined by 

parameters such as position (x,y,z), scale (indicating the 

Gaussian's size), rotation, an alpha value (α) determining its 

transparency, and spherical harmonics (SH) for view-dependent 

color representation. It offers an expressive framework, wherein 

each Gaussian parameter is subject to direct optimization during 

the training process, enhancing the accuracy and realism of the 

rendered scene. Central to Gaussian Splatting is the 

development of a fast-differentiable rasterizer that facilitates the 

projection of 3D Gaussians onto a 2D plane, enabling the 

comprehensive training of all Gaussian parameters. 

 

Results from applying Gaussian Splatting to existing datasets 

reveal its capacity for achieving quality on par with or 

surpassing that of previous state-of-the-art implicit radiance 

field methods. However, tackling Large-Scale Terrain 

reconstruction using Gaussian Splatting presents its own set of 

challenges such as hardware constraints including limited 

VRAM and RAM. Furthermore, the adequacy of training 

iterations becomes a concern, as a large dataset of images may 

require more iterations for optimal model refinement than is 

feasible without significantly extending training time or 

compromising on model quality. To circumvent these 

challenges, we have designed and implemented an adaptive 

tiling system that segments the entire scene into smaller, more 

manageable pieces. This segmentation is determined by both the 

quantity of images tied to each segment and the predicted count 

of final Gaussians within them. Specifically, our partitioning 

algorithm continued to split the entire 3D scene into smaller 

chunks with a predefined threshold of number of pixels fall into 

each chunk. This number of pixels threshold is determined by 

the RAM that is available during the training process. In 

addition, the source images were also cropped to smaller sizes 

for each tile so that only the valid pixels on the tile are loaded 

into the RAM which further ensure the effective uses of the 

limited computing resources. Consequently, our approach not 

only mitigates hardware limitations by distributing the 

computational load across multiple GPUs/nodes but also 

enhances the training efficiency and effectiveness of the 

Gaussian Splatting model across extensive terrains, ensuring 

consistent model performance and quality visualization across 

all segments. 

In order to seamlessly incorporate the output of our Gaussian 

splatting process, represented as point clouds, into the Unreal 

Engine environment, a meticulous approach is undertaken. 

Initially, the train Gaussians are partitioned into smaller subsets, 

each accommodating a maximum of two million points, thereby 

adhering to the operational constraints of the Unreal Engine's 

Niagra particle system. Concurrently, the alignment of collision 

meshes, derived from the photogrammetry procedure, with the 

Gaussians is conducted, streamlining the importation and scene 

assembly workflows within the Unreal Engine framework. 

Subsequent to this preparatory phase, rendering of the 

Gaussians is facilitated through the utilization of a customized 

iteration of the particle system, facilitated by the Luma AI 

plugin, which furnishes enhanced simulation functionalities. 

 

3.1 Collision Meshes 

In physics engines, collisions are traditionally handled using 

low-fidelity convex meshes that roughly describe the bounding 

volume of the actual mesh. These meshes are optimized for fast 

and efficient collision checking by the physics engine, which 

cannot take advantage of highly parallel GPU computing. 

Unreal Engine has two ways to import colliders for meshes: a 

low-quality but optimized convex mesh, or a high-quality 

performance mesh. To match the fidelity of our terrain, we 

import the derived meshes from the photogrammetry process in 

their high-quality collider representation. While this may have a 

minor impact on performance, we cannot use convex meshes 

with our high-fidelity terrain representation using Gaussian 

Splatting. Our Gaussian portioning process aligns our meshes 

with the point clouds using world positions for vertex positions, 

and these meshes are finally imported as OBJ files.  

 

For each mesh, we instantiate a Gaussian Collision actor - a 

custom blueprint extending the actor class - solely responsible 

for propagating simulation information, such as the hit point, to 

the corresponding Niagara system for simulation purposes.  

 

 
 

Figure 1. World space to point cloud space transformation 

 

To ensure that the simulation effects are correctly applied 

within the Niagara particle systems, it is essential to convert the 
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world positions to the coordinate system used for storing point 

clouds after the Gaussian splatting optimization process (Figure 

1). This conversion accurately aligns the positions with the 

intended region and allows for seamless integration with the 

Unreal Engines coordinate system. At the instance level, each 

Gaussian collision actor maintains a list of Niagara systems that 

overlap the same region as the collider to ensure that the 

simulation information is passed to the correct instances of 

Niagara systems. Since updating variables in Niagara costs 

similar to pushing uniforms to the GPU, minimizing the number 

of updates is essential. Our tilling/partitioning approach helps us 

achieve this by allowing us to describe the mapping between 

Gaussian collision actor instances and Gaussian splatting 

Niagara renderer instances. 

 

3.2 Destruction Simulation 

 

Figure 2. Niagara system modules 

 

Niagara, a programmable particle system provided by Unreal 

Engine, can run on either CPU or GPU. While the GPU mode 

allows for higher particle counts and improved performance, its 

capabilities are limited compared to the CPU mode. Niagara's 

basic building block of programmable logic is called a module 

(Figure 2), and the Engine includes several modules out of the 

box for common tasks like particle color changes over time and 

velocity manipulation. Although these modules can be created 

visually in the editor, Niagara also allows for the creation of 

modules using HLSL code for GPU simulation. The Luma AI 

plugin leverages this capability by implementing various layers 

of the Gaussian Splatting renderer, such as frustum culling and 

view sorting, through Niagara modules. Modules in Niagara are 

registered into two lifecycle events: particle spawn and particle 

update. The initialization phase, during which 3D Gaussians are 

instantiated from the point cloud, occurs in particle spawn. The 

crux of the Gaussian splatting renderer is formed by modules 

registered in particle update. The LumaAI plugin's modules 

perform culling, sorting, view-dependent computation or 

splatting, and update each Gaussian's position, opacity, shape, 

and color. Each particle represents a splatted 2D Gaussian with 

an ellipse shape. The simulation logic is chained after the 

rendering logic of the LumaAI plugin. Each instance of the 

Niagara system exposes a hit point vector and other variables to 

the Gaussian collision actor. These variables are read in the 

destruction simulation logic to apply a combination of forces in 

a spherical radius. All Gaussians within this masked region have 

a velocity applied to simulate destruction. 

 

The interactive capabilities of the simulation-enabled renderer, 

in tandem with collision meshes, provide high-fidelity 

interactions within large-scale Gaussian environments. 

Regardless of the number of simulated particles, the simulation 

maintains a constant cost as the calculations are performed for 

each Gaussian. However, only the Gaussians within the region 

mask exhibit non-zero velocities. This constant-time simulation 

is essential for conducting large-scale destruction simulations in 

expansive terrains. 

 

4. Experiments 

To assess Gaussian Splatting's efficacy in visualizing and 

simulating large-scale 3D terrains, we imported the trained 

models into Unreal Engine 5 (UE5) for dynamic simulations. 

Photogrammetry-derived meshes were utilized to construct 

invisible collision layers, facilitating accurate physical 

interactions within the terrains rendered by Gaussian Splatting. 

The import process was simplified and made efficient with the 

LumaAI UE5 plugin, ensuring the retention of GS's high visual 

fidelity. For added realism and interactive engagement, we 

leveraged UE5's Niagara System, enabling the simulation of 

complex destruction effects that seamlessly interact with the 

Gaussian models. 

 

 

Figure 3: Environmental destruction in Soibelman Bld 

 

 

Figure 4: Wall destruction in Building scene 

 

 

Figure 5: Destruction of a house in RA scene 
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Figure 6: Destruction of a building in Feihong scene 

Our experiments were conducted on the real-world Residential 

Area (RA) as shown in Figure 3, dataset from our previously 

published large-scale aerial photogrammetric benchmark i.e., 

STPLS3D (Chen, Meida, et al. 2022), along with three newly 

acquired datasets that mirrored the data collection methodology 

of STPLS3D, as visualized in Figure 4, Figure 5 and Figure 6. 

These datasets, representing a variety of urban settings, were 

chosen to test the model's adaptability and performance across 

different scales and complexities of terrain. During our 

experiments, we documented VRAM usage as well as frames 

per second (FPS) in both the original Gaussian Splatting viewer 

i.e., SIBR and within UE5 to evaluate the model's rendering 

efficiency and responsiveness in real-time simulations, 

summarized in Table 1 and Table 2. Characteristics about the 

actual data are presented in Table 3. This dual-phase testing 

provided comprehensive insights into the model's capability to 

deliver high-quality visualizations and its responsiveness under 

interactive conditions. 

 

Dataset SIBR Unreal Engine 5 

Building (Bld) 60fps 60fps 

Residential Area (RA) 30fps 16fps 

Soibelman Bld 110fps 50fps 

Feihong Bld 32fps 17fps 

Table 1: Frame rate comparison 
 

Dataset SIBR Unreal Engine 5 

Building (Bld) 3.2GB 2.4GB 

Residential Area (RA) 15.5GB 11.5GB 

Soibelman Bld 5.2GB 4.2GB 

Feihong Bld 15.6GB 12GB 

Table 2: GPU memory usage comparison 

Figure 7 presents our visualization results, with the top row 

depicting three distinct Gaussian Splatting models applied to a 

single building, a residential area, and an urban area featuring a 

mix of commercial, residential, and industrial buildings. The 

lower rows illustrate the visualization of the STPLS3D RA 

Gaussian Splatting model within Unreal Engine 5 with 

additional simulations. 60 fps could be achieved while 

visualizing the single-building GS model inside of the original 

GS SIBR viewer. However, visualization of large areas such as 

the STPLS3D - RA dataset in the SIBR viewer resulted in a 

reduced frame rate of 30 fps, which further decreased to 16 fps 

upon transferring the simulation into UE5. 

 

Dataset Size Gaussian Count 

Building (Bld) 282MB 1,196,163 

Residential Area (RA) 6.64GB 28,778,729 

Soibelman Bld 1.45GB 6,304,311 

Feihong Bld 5.35GB 23,177,147 

Table 3: Dataset statistics 

Figure 7. Visualization results 
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To enhance the interactive experience, users can navigate the 

scenes using a first-person controller and a weapon that fires 

projectiles. These features are provided by the standard assets 

included in the Unreal Engine 5. Gaussian colliders and Niagara 

renderers are utilized for each sense and can be customized as 

desired. Upon impact, the destruction simulation is applied to 

Gaussians within a 2-meter radius sphere, which can be adjusted 

to suit individual preferences. This process is efficient and does 

not impact performance, as the destruction simulation operates 

at a constant speed regardless of the number of Gaussians with 

non-zero velocity. 

 

 

Figure 8. Timings for a random single frame 

 

We utilized Unreal Engine's built-in profiler as shown in Figure 

8 to measure our performance metrics. While running the 

profiler can impact performance, it provides reasonable 

measures for relative comparisons. Our focus was on the GPU 

markers, specifically Niagara. This represents the time spent by 

the Niagara system not accounted for by more granular markers. 

We also analyzed GpuKeyGenAndSort, which represents the 

time spent creating keys for Gaussian and performing view-

dependent sorting, Translucency which is the time spent 

performing alpha blending for the Gaussians, and 

RenderVelocities, which indicates the time spent computing 

destruction simulation. These metrics were captured during 

initialization, first frame, and general frame average. Unreal 

Engine caches compiled Niagara code for performance reasons, 

but we purged the cache for each level to ensure accurate 

measurements. As a result, the startup time was increased by 

roughly 100ms. 

 

In Table 4, we illustrate the timings for the period between 

pressing the play button and the level becoming playable. 

During this time, a significant portion is devoted to the 

initialization of the gameplay framework by the Unreal Engine, 

as well as the unpacking of the level from disk and the 

initialization of all the actors within it. Additionally, if the cache 

for the Niagara system is absent, a re-compilation of the system 

may take place, which typically takes around 100ms. 

 

Metric Bld RA Soibelman Feihong 

Niagara 

Initialization 

100.3ms 100.1ms 99.9ms 100.6ms 

Level Startup 85.7ms 1100ms 336.6ms 647.4ms 

Table 4: Initialization and Startup Performance 

 

In Table 5, we present an analysis of the initial frame 

performance. Typically, performance exhibits significant 

enhancement subsequent to the initial frames, partially 

attributable to engine overheads and the garbage collection 

mechanisms inherent in the Unreal Engine. Furthermore, it is 

during the first frame that we predominantly observe the most 

substantial fluctuations in our timing measurements. 

 

 

 

 

Metric Bld RA Soibelman Feihong 

Niagara 0.2ms 56.8ms 1ms 2.9ms 

View-based 

sorting 

0.2ms 39.4ms 1.8ms 7.7ms 

Alpha blending 2.5ms 59.4ms 5.1ms 17.4ms 

Simulation 1.3ms 22.1ms 4.7ms 16.6ms 

Frame Time 23.8ms 477ms 336.6ms 647.4ms 

Table 5: First frame performance 

 

Table 6 exhibits the average performance metrics garnered from 

numerous three-minute iterations, wherein participants traversed 

the scene in first-person perspective, concurrently engaging in 

projectile launches and orchestrating destruction simulations 

involving a substantial quantity of Gaussian entities. 

 

 

Metric Bld RA Soibelman Feihong 

Niagara 0.28ms 5.5ms 1.2ms 4.4ms 

View-based 

sorting 

0.25ms 9.9ms 1.8ms 8.1ms 

Alpha blending 2.2ms 22.7ms 7.1ms 23.4ms 

Simulation 1.2ms 21ms 5.4ms 18.4ms 

Frame Time 16.3ms 61.3ms 19.8ms 58.5ms 

Table 6: Average frame performance 

 

5. Discussion and Limitations 

During our experiments, we utilized a high-end desktop with an 

Nvidia RTX 3090 graphics card that boasted 24GB of VRAM. 

Despite this, we encountered an issue during testing where our 

custom renderer, created using the LumaAI plugin in Unreal 

Engine, was unable to render one of our test datasets (not 

included in the experiments) due to GPU memory limitations. 

This highlighted the importance of Gaussian streaming when it 

comes to efficiently rendering large environments. By streaming 

Gaussian splats, we can eliminate the size limitations of the 

environment and allow for the rendering of expansive scenes. 

Additionally, these systems can be designed to maintain a 

consistent number of active Gaussians in the scene and GPU 

memory, ensuring near-constant frame rates. To take the first 

step towards streaming, we partitioned our Gaussian point cloud 

into smaller clouds, each with a limit of 2 million Gaussians. 

This approach allows us to stream these smaller clouds 

independently and overcome the 2 million particle limit of 

Unreal Engine's Niagara system. 

 

Our current collision detection relies on meshes generated 

through photogrammetric methods. However, even the most 

advanced methods available today struggle with producing 

high-fidelity meshes when it comes to thin objects like poles 

(Figure 9). Since these objects are not present in the collision 

mesh, it becomes difficult to detect projectile hits. Gaussian 

point clouds can represent thin objects as highly stretched 

ellipsoids, but this approach can limit the accuracy of our 

destruction simulation. Moreover, photogrammetry meshes may 

not always align with the renderer point cloud, leading to 

slightly inaccurate hit point detection. One possible solution is 

to mesh the Gaussians with high-resolution voxel meshing 

algorithms, but this can impact memory and slow down the 

physics engine. A better approach would be to test collisions 

against the point cloud directly. Unfortunately, no off-the-shelf 

physics engines support this, and custom solutions would be 

needed. By using the position, covariance matrix, and opacity of 

a Gaussian, we can determine whether a given point is inside or 

outside the bounding Gaussian volume. This approach involves 

discretizing the continuous Gaussian volume based on an 
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opacity threshold, which also controls collision detection 

accuracy. The advantage of this approach is that we can 

simplify the workflow and save memory used by collision 

meshes as part of the physics system by eliminating the need for 

photogrammetry. 

 

 

Figure 9. No vertices for thin objects in collision mesh 

 

The Niagara renderer, powered by the LumaAI plugin, is not 

open source, which makes it difficult to modify its modules. 

This becomes a problem when we need to adjust the 

GpuKeyGenAndSort modules responsible for view-dependent 

sorting of Gaussians, which is crucial for rendering speed. To 

enable streaming for large-scale Gaussian environments, we 

divided the Gaussian point cloud into multiple smaller point 

clouds, each with a limit of two million Gaussians. These small 

clouds are then instantiated as separate Niagara systems in the 

scene, with the GpuKeyGenAndSort module running in 

isolation and localized to each system. Unfortunately, this 

causes artifacts in the alpha blending phase, resulting in 

flickering when sorting is localized to the two million Gaussians 

of that particular instance of the Niagara renderer. As the 

number of active Niagara systems grows, the flickering 

becomes more evident and less immersive. Currently, there isn’t 

an off-the-shelf package workaround for this issue, but a 

possible solution would be to have the GpuKeyGenAndSort 

module run globally for all active Gaussians. In addition, due to 

the closed-source nature of the LumaAI plugin, we can only 

suggest changes that would fix this issue if we use an open-

source renderer or create our renderer. Further development on 

a custom renderer with complete control for Gaussian streaming 

is needed to achieve high-fidelity, large-scale 3D Gaussian 

splatting environments with maximum performance. 

 

6. Conclusion 

The 3D Gaussian Splatting models demonstrate significant 

potential for both visualization and simulation, offering 

promising avenues for rendering detailed urban environments 

with high fidelity. However, when addressing large-scale areas, 

the GS model reveals the necessity for further research into 

optimized data formats and visualization techniques. 

 

The key factor contributing to the impressive performance boost 

in Gaussian splatting compared to neural radiance field 

techniques is the visibility-aware sorting method. This method 

allows for direct updating of the frame buffer with alpha 

blended values, eliminating the need for per-pixel alpha 

blending through depth testing. As a result, rendering 

performance is significantly improved, allowing for real-time 

rendering at over a hundred frames per second. The benefits of 

this approach extend beyond rendering, as it also speeds up 

training times by enabling a fast backpropagation step through 

reverse sorted traversal of the Gaussians. Additionally, 

increasing the number of Gaussians that receive gradients has 

little to no impact on performance, making it an efficient choice 

for training. 

 

In order to facilitate the training of expansive scenes, we have 

implemented a tiling methodology that partitions the scenes into 

smaller sections and trains them using the corresponding subset 

of images. The outcome is then merged into a single point cloud 

or divided into multiple manageable point clouds that can be 

streamed seamlessly. 

 

The LumaAI plugin boasts a competitive Gaussian splatting 

renderer for Unreal Engine. However, it has a two million 

particle count restriction of Niagara that limits its potential. To 

address this, we introduced a partitioning technique that divides 

Gaussian point clouds into smaller point clouds. These can be 

instantiated as individual Niagara systems and streamed on 

demand, thus optimizing performance and resource usage. 

Taking it a step further, we integrated simulation capabilities 

into the renderer provided by the LumaAI plugin. To 

communicate simulation data with the Niagara particle system, 

we introduced Gaussian collider actors, along with a scene-

specific mapping of renderers to colliders. This minimizes the 

number of GPU calls to push data into the VRAM. With these 

techniques, we achieved a first-person interactive Gaussian 

splatting environment at playable frame rates with high fidelity. 

Our next steps involve developing more efficient streaming 

mechanisms, integrating with Unreal Engine's chaos destruction 

engine, and implementing Gaussian-based collisions without the 

need for photogrammetric meshes. These advancements will 

help increase performance and simplify the workflow for 

creating large-scale 3D terrain reconstruction using 3D 

Gaussian splatting for visualization and simulation. 
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