
Large-Scale 3D Terrain Reconstruction Using 3D Gaussian Splatting for Visualization and

Simulation

Meida Chen 1, Devashish Lal 1, Zifan Yu 2, Jiuyi Xu 1, Andrew Feng 1, Suya You 3, Abdul Nurunnabi 4, Yangming Shi 5

1 Institute for Creative Technologies, University of Southern California, Los Angeles, CA 90094, USA – (mechen, dlal, jiuxu,

feng)@ict.usc.edu
2 Department of Computer Science, Arizona State University, Arizona – zifanyu@asu.edu

3 DEVCOM Army Research Laboratory – suya.you.civ@army.mil
4 Geodesy and Geospatial Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg –

abdul.nurunnabi@uni.lu
5 the Department of Civil and Environmental Engineering, Colorado School of Mines – yangming.shi@mines.edu

Keywords: 3D Gaussian Splatting, Large-scale Terrain Reconstruction, 3D Visualization, Game Development, Simulation.

Abstract

The fusion of low-cost unmanned aerial systems (UAS) with advanced photogrammetric techniques has revolutionized 3D terrain

reconstruction, enabling the automated creation of detailed models. Concurrently, the advent of 3D Gaussian Splatting has introduced

a paradigm shift in 3D data representation, offering visually realistic renditions distinct from traditional polygon-based models. Our

research builds upon this foundation, aiming to integrate Gaussian Splatting into interactive simulations for immersive virtual

environments. We address challenges such as collision detection by adopting a hybrid approach, combining Gaussian Splatting with

photogrammetry-derived meshes. Through comprehensive experimentation covering varying terrain sizes and Gaussian densities, we

evaluate scalability, performance, and limitations. Our findings contribute to advancing the use of advanced computer graphics

techniques for enhanced 3D terrain visualization and simulation.

1. Introduction

The integration of low-cost unmanned aerial systems (UAS)

equipped with high-resolution cameras, alongside advances in

photogrammetric techniques, has significantly transformed the

domain of 3D terrain reconstruction. This evolution has

facilitated the automated creation of detailed and realistic 3D

meshes, marking a pivotal shift towards enhancing the accuracy

and realism of digital terrain models across various applications.

Within this innovative landscape, a compelling development has

emerged from the realm of computer graphics: the invention of

3D Gaussian Splatting (Kerbl, Bernhard, et al. 2023). This

novel technique, which represents a significant advancement in

the representation of 3D data, offers a visually realistic

rendering that stands apart from traditional polygon-based

models. 3D Gaussian Splatting demonstrates a superior

capability for generating visually realistic outputs, positioning it

as a valuable asset for applications that demand high-fidelity

visualizations, particularly in the creation of virtual gaming and

simulation environments.

Building upon the foundational advancements introduced by 3D

Gaussian Splatting, our research endeavors to bridge the gap

between high-quality visualization and interactive simulation

capabilities. This integration is critical for leveraging the full

potential of Gaussian Splatting within dynamic and immersive

applications. Our investigation focuses on the application of this

technique for reconstructing large-scale 3D terrains, thoroughly

examining its performance and effectiveness in creating virtual

gaming environments. In particular, the point cloud nature of

Gaussian Splatting presents specific challenges, notably its

incompatibility with interactive simulations that require

collision detection. To address this, our research adopts a hybrid

methodology, leveraging photogrammetry-derived meshes as

invisible collision substrates beneath the Gaussian Splatting

visual layer. This approach seeks to harness the visual

advantages of Gaussian Splatting while ensuring the dynamic

interactions essential for an immersive simulation environment.

Our experimentation covers a range of terrain sizes and tests the

Gaussian Splatting technique with varying numbers of 3D

Gaussians, from one million up to 28 million. This

comprehensive analysis seeks to assess the scalability,

performance, and potential limitations of using Gaussian

Splatting for the visualization of large-scale 3D terrains within

interactive simulations. Through this paper, we present our

methodology, experimental setup, and the insights gained,

contributing to the broader discussion on leveraging advanced

computer graphics techniques for enhanced 3D terrain

visualization and simulation.

2. Literature Review

2.1 3D Gaussian Splatting

The seminal work on Gaussian splatting introduced an

innovative approach to view synthesis, culminating in the

achievement of real-time rendering of 1080p resolution at 30

frames per second, concurrently obtaining comparable visual

fidelity to conventional neural radiance field methodologies

(Kerbl, Bernhard, et al. 2023). Gaussian splatting methodology

integrates three-dimensional Gaussian distributions to depict the

scene, thereby retaining the advantageous attributes of

continuous volumetric radiance fields for scene optimization

while circumventing superfluous computational overhead in

void regions. Subsequent to the representation of the scene via

three-dimensional Gaussians, an interleaved optimization and

density control process is employed, which iteratively refines

three-dimensional position, opacity, anisotropic covariance, and

spherical harmonics parameters to establish a faithful rendition

of the scene. Conclusively, a tile-based rendering approach,

cognizant of visibility considerations, is implemented to

facilitate anisotropic splatting, thereby expediting training and

enabling real-time rendering capabilities. Many follow-up

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

49

mailto:zifanyu@asu.edu
mailto:suya.you.civ@army.mil
mailto:abdul.nurunnabi@uni.lu
mailto:yangming.shi@mines.edu

works have occurred just for the past year that enabling

different applications such as relighting, meshing, SLAM, etc.

shows great potential of further R&D on the topic.

2.2 Real-Time Terrain Systems

The domain of computer graphics has witnessed substantial

progress in terrain systems, particularly propelled by

advancements in game engine technology. These systems have

enabled real-time rendering of expansive environments through

the adoption of tiling and streaming methodologies. Notably,

Unreal Engine 5 has spearheaded numerous enhancements in its

terrain authoring toolkit, notably with the incorporation of

world partitioning, streamlining the creation of terrain tiles. This

feature dynamically regulates the streaming of tiles based on the

camera's perspective, facilitating the seamless exploration of

vast terrains in real-time. The fidelity of rendered terrain is

intricately linked to the density of the underlying mesh, with

heightened fidelity necessitating exponentially escalating vertex

counts. To mitigate this computational burden, level-of-detail

systems are conventionally employed, albeit with potential

implications for rendering quality. Texture mapping terrain

poses another formidable challenge, addressed through the

utilization of terrain materials that amalgamate multiple shaders

in a stratified arrangement. This framework enables the

texturing of a singular terrain surface with diverse textures,

governed by procedural mechanisms that leverage surface

information at discrete points. Gaussian splatting emerges as a

leading-edge technique for terrain representation, imbuing color

information via the acquired spherical harmonics. To tackle the

challenges inherent in managing large-scale terrains, a tile-

based optimization strategy is embraced, complemented by a

partitioned rendering scheme. This innovation effectively

circumvents the particle count limitations inherent in a singular

Niagara particle system, which constitutes the backbone of the

simulation-enabled renderer.

3. Method

3D Gaussian Splatting employs the output of Structure-from-

Motion (SfM), specifically camera poses and a sparse point

cloud, as its foundational input. This method models scenes

through the deployment of 3D Gaussians, each defined by

parameters such as position (x,y,z), scale (indicating the

Gaussian's size), rotation, an alpha value (α) determining its

transparency, and spherical harmonics (SH) for view-dependent

color representation. It offers an expressive framework, wherein

each Gaussian parameter is subject to direct optimization during

the training process, enhancing the accuracy and realism of the

rendered scene. Central to Gaussian Splatting is the

development of a fast-differentiable rasterizer that facilitates the

projection of 3D Gaussians onto a 2D plane, enabling the

comprehensive training of all Gaussian parameters.

Results from applying Gaussian Splatting to existing datasets

reveal its capacity for achieving quality on par with or

surpassing that of previous state-of-the-art implicit radiance

field methods. However, tackling Large-Scale Terrain

reconstruction using Gaussian Splatting presents its own set of

challenges such as hardware constraints including limited

VRAM and RAM. Furthermore, the adequacy of training

iterations becomes a concern, as a large dataset of images may

require more iterations for optimal model refinement than is

feasible without significantly extending training time or

compromising on model quality. To circumvent these

challenges, we have designed and implemented an adaptive

tiling system that segments the entire scene into smaller, more

manageable pieces. This segmentation is determined by both the

quantity of images tied to each segment and the predicted count

of final Gaussians within them. Specifically, our partitioning

algorithm continued to split the entire 3D scene into smaller

chunks with a predefined threshold of number of pixels fall into

each chunk. This number of pixels threshold is determined by

the RAM that is available during the training process. In

addition, the source images were also cropped to smaller sizes

for each tile so that only the valid pixels on the tile are loaded

into the RAM which further ensure the effective uses of the

limited computing resources. Consequently, our approach not

only mitigates hardware limitations by distributing the

computational load across multiple GPUs/nodes but also

enhances the training efficiency and effectiveness of the

Gaussian Splatting model across extensive terrains, ensuring

consistent model performance and quality visualization across

all segments.

In order to seamlessly incorporate the output of our Gaussian

splatting process, represented as point clouds, into the Unreal

Engine environment, a meticulous approach is undertaken.

Initially, the train Gaussians are partitioned into smaller subsets,

each accommodating a maximum of two million points, thereby

adhering to the operational constraints of the Unreal Engine's

Niagra particle system. Concurrently, the alignment of collision

meshes, derived from the photogrammetry procedure, with the

Gaussians is conducted, streamlining the importation and scene

assembly workflows within the Unreal Engine framework.

Subsequent to this preparatory phase, rendering of the

Gaussians is facilitated through the utilization of a customized

iteration of the particle system, facilitated by the Luma AI

plugin, which furnishes enhanced simulation functionalities.

3.1 Collision Meshes

In physics engines, collisions are traditionally handled using

low-fidelity convex meshes that roughly describe the bounding

volume of the actual mesh. These meshes are optimized for fast

and efficient collision checking by the physics engine, which

cannot take advantage of highly parallel GPU computing.

Unreal Engine has two ways to import colliders for meshes: a

low-quality but optimized convex mesh, or a high-quality

performance mesh. To match the fidelity of our terrain, we

import the derived meshes from the photogrammetry process in

their high-quality collider representation. While this may have a

minor impact on performance, we cannot use convex meshes

with our high-fidelity terrain representation using Gaussian

Splatting. Our Gaussian portioning process aligns our meshes

with the point clouds using world positions for vertex positions,

and these meshes are finally imported as OBJ files.

For each mesh, we instantiate a Gaussian Collision actor - a

custom blueprint extending the actor class - solely responsible

for propagating simulation information, such as the hit point, to

the corresponding Niagara system for simulation purposes.

Figure 1. World space to point cloud space transformation

To ensure that the simulation effects are correctly applied

within the Niagara particle systems, it is essential to convert the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

50

world positions to the coordinate system used for storing point

clouds after the Gaussian splatting optimization process (Figure

1). This conversion accurately aligns the positions with the

intended region and allows for seamless integration with the

Unreal Engines coordinate system. At the instance level, each

Gaussian collision actor maintains a list of Niagara systems that

overlap the same region as the collider to ensure that the

simulation information is passed to the correct instances of

Niagara systems. Since updating variables in Niagara costs

similar to pushing uniforms to the GPU, minimizing the number

of updates is essential. Our tilling/partitioning approach helps us

achieve this by allowing us to describe the mapping between

Gaussian collision actor instances and Gaussian splatting

Niagara renderer instances.

3.2 Destruction Simulation

Figure 2. Niagara system modules

Niagara, a programmable particle system provided by Unreal

Engine, can run on either CPU or GPU. While the GPU mode

allows for higher particle counts and improved performance, its

capabilities are limited compared to the CPU mode. Niagara's

basic building block of programmable logic is called a module

(Figure 2), and the Engine includes several modules out of the

box for common tasks like particle color changes over time and

velocity manipulation. Although these modules can be created

visually in the editor, Niagara also allows for the creation of

modules using HLSL code for GPU simulation. The Luma AI

plugin leverages this capability by implementing various layers

of the Gaussian Splatting renderer, such as frustum culling and

view sorting, through Niagara modules. Modules in Niagara are

registered into two lifecycle events: particle spawn and particle

update. The initialization phase, during which 3D Gaussians are

instantiated from the point cloud, occurs in particle spawn. The

crux of the Gaussian splatting renderer is formed by modules

registered in particle update. The LumaAI plugin's modules

perform culling, sorting, view-dependent computation or

splatting, and update each Gaussian's position, opacity, shape,

and color. Each particle represents a splatted 2D Gaussian with

an ellipse shape. The simulation logic is chained after the

rendering logic of the LumaAI plugin. Each instance of the

Niagara system exposes a hit point vector and other variables to

the Gaussian collision actor. These variables are read in the

destruction simulation logic to apply a combination of forces in

a spherical radius. All Gaussians within this masked region have

a velocity applied to simulate destruction.

The interactive capabilities of the simulation-enabled renderer,

in tandem with collision meshes, provide high-fidelity

interactions within large-scale Gaussian environments.

Regardless of the number of simulated particles, the simulation

maintains a constant cost as the calculations are performed for

each Gaussian. However, only the Gaussians within the region

mask exhibit non-zero velocities. This constant-time simulation

is essential for conducting large-scale destruction simulations in

expansive terrains.

4. Experiments

To assess Gaussian Splatting's efficacy in visualizing and

simulating large-scale 3D terrains, we imported the trained

models into Unreal Engine 5 (UE5) for dynamic simulations.

Photogrammetry-derived meshes were utilized to construct

invisible collision layers, facilitating accurate physical

interactions within the terrains rendered by Gaussian Splatting.

The import process was simplified and made efficient with the

LumaAI UE5 plugin, ensuring the retention of GS's high visual

fidelity. For added realism and interactive engagement, we

leveraged UE5's Niagara System, enabling the simulation of

complex destruction effects that seamlessly interact with the

Gaussian models.

Figure 3: Environmental destruction in Soibelman Bld

Figure 4: Wall destruction in Building scene

Figure 5: Destruction of a house in RA scene

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

51

Figure 6: Destruction of a building in Feihong scene

Our experiments were conducted on the real-world Residential

Area (RA) as shown in Figure 3, dataset from our previously

published large-scale aerial photogrammetric benchmark i.e.,

STPLS3D (Chen, Meida, et al. 2022), along with three newly

acquired datasets that mirrored the data collection methodology

of STPLS3D, as visualized in Figure 4, Figure 5 and Figure 6.

These datasets, representing a variety of urban settings, were

chosen to test the model's adaptability and performance across

different scales and complexities of terrain. During our

experiments, we documented VRAM usage as well as frames

per second (FPS) in both the original Gaussian Splatting viewer

i.e., SIBR and within UE5 to evaluate the model's rendering

efficiency and responsiveness in real-time simulations,

summarized in Table 1 and Table 2. Characteristics about the

actual data are presented in Table 3. This dual-phase testing

provided comprehensive insights into the model's capability to

deliver high-quality visualizations and its responsiveness under

interactive conditions.

Dataset SIBR Unreal Engine 5

Building (Bld) 60fps 60fps

Residential Area (RA) 30fps 16fps

Soibelman Bld 110fps 50fps

Feihong Bld 32fps 17fps

Table 1: Frame rate comparison

Dataset SIBR Unreal Engine 5

Building (Bld) 3.2GB 2.4GB

Residential Area (RA) 15.5GB 11.5GB

Soibelman Bld 5.2GB 4.2GB

Feihong Bld 15.6GB 12GB

Table 2: GPU memory usage comparison

Figure 7 presents our visualization results, with the top row

depicting three distinct Gaussian Splatting models applied to a

single building, a residential area, and an urban area featuring a

mix of commercial, residential, and industrial buildings. The

lower rows illustrate the visualization of the STPLS3D RA

Gaussian Splatting model within Unreal Engine 5 with

additional simulations. 60 fps could be achieved while

visualizing the single-building GS model inside of the original

GS SIBR viewer. However, visualization of large areas such as

the STPLS3D - RA dataset in the SIBR viewer resulted in a

reduced frame rate of 30 fps, which further decreased to 16 fps

upon transferring the simulation into UE5.

Dataset Size Gaussian Count

Building (Bld) 282MB 1,196,163

Residential Area (RA) 6.64GB 28,778,729

Soibelman Bld 1.45GB 6,304,311

Feihong Bld 5.35GB 23,177,147

Table 3: Dataset statistics

Figure 7. Visualization results

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

52

To enhance the interactive experience, users can navigate the

scenes using a first-person controller and a weapon that fires

projectiles. These features are provided by the standard assets

included in the Unreal Engine 5. Gaussian colliders and Niagara

renderers are utilized for each sense and can be customized as

desired. Upon impact, the destruction simulation is applied to

Gaussians within a 2-meter radius sphere, which can be adjusted

to suit individual preferences. This process is efficient and does

not impact performance, as the destruction simulation operates

at a constant speed regardless of the number of Gaussians with

non-zero velocity.

Figure 8. Timings for a random single frame

We utilized Unreal Engine's built-in profiler as shown in Figure

8 to measure our performance metrics. While running the

profiler can impact performance, it provides reasonable

measures for relative comparisons. Our focus was on the GPU

markers, specifically Niagara. This represents the time spent by

the Niagara system not accounted for by more granular markers.

We also analyzed GpuKeyGenAndSort, which represents the

time spent creating keys for Gaussian and performing view-

dependent sorting, Translucency which is the time spent

performing alpha blending for the Gaussians, and

RenderVelocities, which indicates the time spent computing

destruction simulation. These metrics were captured during

initialization, first frame, and general frame average. Unreal

Engine caches compiled Niagara code for performance reasons,

but we purged the cache for each level to ensure accurate

measurements. As a result, the startup time was increased by

roughly 100ms.

In Table 4, we illustrate the timings for the period between

pressing the play button and the level becoming playable.

During this time, a significant portion is devoted to the

initialization of the gameplay framework by the Unreal Engine,

as well as the unpacking of the level from disk and the

initialization of all the actors within it. Additionally, if the cache

for the Niagara system is absent, a re-compilation of the system

may take place, which typically takes around 100ms.

Metric Bld RA Soibelman Feihong

Niagara

Initialization

100.3ms 100.1ms 99.9ms 100.6ms

Level Startup 85.7ms 1100ms 336.6ms 647.4ms

Table 4: Initialization and Startup Performance

In Table 5, we present an analysis of the initial frame

performance. Typically, performance exhibits significant

enhancement subsequent to the initial frames, partially

attributable to engine overheads and the garbage collection

mechanisms inherent in the Unreal Engine. Furthermore, it is

during the first frame that we predominantly observe the most

substantial fluctuations in our timing measurements.

Metric Bld RA Soibelman Feihong

Niagara 0.2ms 56.8ms 1ms 2.9ms

View-based

sorting

0.2ms 39.4ms 1.8ms 7.7ms

Alpha blending 2.5ms 59.4ms 5.1ms 17.4ms

Simulation 1.3ms 22.1ms 4.7ms 16.6ms

Frame Time 23.8ms 477ms 336.6ms 647.4ms

Table 5: First frame performance

Table 6 exhibits the average performance metrics garnered from

numerous three-minute iterations, wherein participants traversed

the scene in first-person perspective, concurrently engaging in

projectile launches and orchestrating destruction simulations

involving a substantial quantity of Gaussian entities.

Metric Bld RA Soibelman Feihong

Niagara 0.28ms 5.5ms 1.2ms 4.4ms

View-based

sorting

0.25ms 9.9ms 1.8ms 8.1ms

Alpha blending 2.2ms 22.7ms 7.1ms 23.4ms

Simulation 1.2ms 21ms 5.4ms 18.4ms

Frame Time 16.3ms 61.3ms 19.8ms 58.5ms

Table 6: Average frame performance

5. Discussion and Limitations

During our experiments, we utilized a high-end desktop with an

Nvidia RTX 3090 graphics card that boasted 24GB of VRAM.

Despite this, we encountered an issue during testing where our

custom renderer, created using the LumaAI plugin in Unreal

Engine, was unable to render one of our test datasets (not

included in the experiments) due to GPU memory limitations.

This highlighted the importance of Gaussian streaming when it

comes to efficiently rendering large environments. By streaming

Gaussian splats, we can eliminate the size limitations of the

environment and allow for the rendering of expansive scenes.

Additionally, these systems can be designed to maintain a

consistent number of active Gaussians in the scene and GPU

memory, ensuring near-constant frame rates. To take the first

step towards streaming, we partitioned our Gaussian point cloud

into smaller clouds, each with a limit of 2 million Gaussians.

This approach allows us to stream these smaller clouds

independently and overcome the 2 million particle limit of

Unreal Engine's Niagara system.

Our current collision detection relies on meshes generated

through photogrammetric methods. However, even the most

advanced methods available today struggle with producing

high-fidelity meshes when it comes to thin objects like poles

(Figure 9). Since these objects are not present in the collision

mesh, it becomes difficult to detect projectile hits. Gaussian

point clouds can represent thin objects as highly stretched

ellipsoids, but this approach can limit the accuracy of our

destruction simulation. Moreover, photogrammetry meshes may

not always align with the renderer point cloud, leading to

slightly inaccurate hit point detection. One possible solution is

to mesh the Gaussians with high-resolution voxel meshing

algorithms, but this can impact memory and slow down the

physics engine. A better approach would be to test collisions

against the point cloud directly. Unfortunately, no off-the-shelf

physics engines support this, and custom solutions would be

needed. By using the position, covariance matrix, and opacity of

a Gaussian, we can determine whether a given point is inside or

outside the bounding Gaussian volume. This approach involves

discretizing the continuous Gaussian volume based on an

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

53

opacity threshold, which also controls collision detection

accuracy. The advantage of this approach is that we can

simplify the workflow and save memory used by collision

meshes as part of the physics system by eliminating the need for

photogrammetry.

Figure 9. No vertices for thin objects in collision mesh

The Niagara renderer, powered by the LumaAI plugin, is not

open source, which makes it difficult to modify its modules.

This becomes a problem when we need to adjust the

GpuKeyGenAndSort modules responsible for view-dependent

sorting of Gaussians, which is crucial for rendering speed. To

enable streaming for large-scale Gaussian environments, we

divided the Gaussian point cloud into multiple smaller point

clouds, each with a limit of two million Gaussians. These small

clouds are then instantiated as separate Niagara systems in the

scene, with the GpuKeyGenAndSort module running in

isolation and localized to each system. Unfortunately, this

causes artifacts in the alpha blending phase, resulting in

flickering when sorting is localized to the two million Gaussians

of that particular instance of the Niagara renderer. As the

number of active Niagara systems grows, the flickering

becomes more evident and less immersive. Currently, there isn’t

an off-the-shelf package workaround for this issue, but a

possible solution would be to have the GpuKeyGenAndSort

module run globally for all active Gaussians. In addition, due to

the closed-source nature of the LumaAI plugin, we can only

suggest changes that would fix this issue if we use an open-

source renderer or create our renderer. Further development on

a custom renderer with complete control for Gaussian streaming

is needed to achieve high-fidelity, large-scale 3D Gaussian

splatting environments with maximum performance.

6. Conclusion

The 3D Gaussian Splatting models demonstrate significant

potential for both visualization and simulation, offering

promising avenues for rendering detailed urban environments

with high fidelity. However, when addressing large-scale areas,

the GS model reveals the necessity for further research into

optimized data formats and visualization techniques.

The key factor contributing to the impressive performance boost

in Gaussian splatting compared to neural radiance field

techniques is the visibility-aware sorting method. This method

allows for direct updating of the frame buffer with alpha

blended values, eliminating the need for per-pixel alpha

blending through depth testing. As a result, rendering

performance is significantly improved, allowing for real-time

rendering at over a hundred frames per second. The benefits of

this approach extend beyond rendering, as it also speeds up

training times by enabling a fast backpropagation step through

reverse sorted traversal of the Gaussians. Additionally,

increasing the number of Gaussians that receive gradients has

little to no impact on performance, making it an efficient choice

for training.

In order to facilitate the training of expansive scenes, we have

implemented a tiling methodology that partitions the scenes into

smaller sections and trains them using the corresponding subset

of images. The outcome is then merged into a single point cloud

or divided into multiple manageable point clouds that can be

streamed seamlessly.

The LumaAI plugin boasts a competitive Gaussian splatting

renderer for Unreal Engine. However, it has a two million

particle count restriction of Niagara that limits its potential. To

address this, we introduced a partitioning technique that divides

Gaussian point clouds into smaller point clouds. These can be

instantiated as individual Niagara systems and streamed on

demand, thus optimizing performance and resource usage.

Taking it a step further, we integrated simulation capabilities

into the renderer provided by the LumaAI plugin. To

communicate simulation data with the Niagara particle system,

we introduced Gaussian collider actors, along with a scene-

specific mapping of renderers to colliders. This minimizes the

number of GPU calls to push data into the VRAM. With these

techniques, we achieved a first-person interactive Gaussian

splatting environment at playable frame rates with high fidelity.

Our next steps involve developing more efficient streaming

mechanisms, integrating with Unreal Engine's chaos destruction

engine, and implementing Gaussian-based collisions without the

need for photogrammetric meshes. These advancements will

help increase performance and simplify the workflow for

creating large-scale 3D terrain reconstruction using 3D

Gaussian splatting for visualization and simulation.

Acknowledgements

The authors would like to thank our primary sponsors of this

research: US Army Simulation and Training Technology Center

(STTC). They would also like to acknowledge the assistance

provided by Army Futures Command (AFC) and Synthetic

Training Environment (STE). This work is supported by

University Affiliated Research Center (UARC) award

W911NF-14-D-0005. Statements and opinions expressed and

content included do not necessarily reflect the position or the

policy of the Government, and no official endorsement should

be inferred.

References

Kerbl, B., Kopanas, G., Leimkühler, T., & Drettakis, G. (2023).

3D Gaussian Splatting for Real-Time Radiance Field

Rendering. ACM Transactions on Graphics, 42(4).

Chen, M., Hu, Q., Yu, Z., Thomas, H., Feng, A., Hou, Y.,

McCullough, K., Ren, F., & Soibelman, L. (2022). STPLS3D:

A large-scale synthetic and real aerial photogrammetry 3d point

cloud dataset. 33rd British Machine Vision Conference,

(BMVC), London, UK.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-49-2024 | © Author(s) 2024. CC BY 4.0 License.

54

