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ABSTRACT:

The surge in data across diverse fields presents an essential need for advanced techniques to merge and interpret this information.

With a special emphasis on compiling geospatial data, this integration is crucial for unlocking new insights from geographic data,

enhancing our ability to map and analyze trends that span across different locations and environments with more authenticity and

reliability. Existing techniques have made progress in addressing data fusion; however, challenges persist in fusing and harmonizing

data from different sources, scales, and modalities. This research presents a comprehensive investigation into the challenges and

solutions in vector map alignment, focusing on developing methods that enhance the precision and usability of geospatial data.

We explored and developed three distinct methodologies for polygonal vector map alignment: ProximityAlign, which excels in

precision within urban layouts but faces computational challenges; the Optical Flow Deep Learning-Based Alignment, noted for its

efficiency and adaptability; and the Epipolar Geometry-Based Alignment, effective in data-rich contexts but sensitive to data quality.

In practice, the proposed approaches serve as tools to benefit from as much as possible from existing datasets while respecting a

spatial reference source. It also serves as a paramount step for the data fusion task to reduce its complexity.

1. INTRODUCTION

Over time, technological advancements, from aerial photo-

graphy to satellite imaging, have revolutionized the way we

capture and represent geographical data. This progression not

only enhanced the accuracy but also increased the scale and

frequency of data collection, making it a vital tool for various

applications today. This rapid progress has given us access to a

wealth of geospatial data, varying in scale, resolution, and mod-

ality. Despite their inherent value, the utility of maps is con-

tingent upon their accuracy, detail, and relevance. While they

enable the development of detailed and comprehensive maps,

they also require sophisticated methods to combine data from

different sources accurately. However, misalignments between

different types of maps can hinder accurate interpretation and

analysis. The main research question this study addresses is:

How can we align different maps where misalignment can be

due to various causes, such as differences in perspective, vari-

ations in map interpretation (e.g., manual vs. automatic digitiz-

ation), or changes in maps over time?

The significance of addressing this problem lies in the fact that

accurate map alignment is crucial for geospatial map fusion.

Aligning maps effectively reduces the complexity of matching

between maps, which is an essential step in the fusion proced-

ure. Additionally, map alignment can serve as a useful tool for

map creators who want to utilize legacy maps by aligning them

with updated data, allowing them to build upon existing inform-

ation rather than starting from scratch.

This study delves into a wide range of methods and concepts

related to map alignment, focusing primarily on vector maps

representing specific features with polygonal geometries such

as building maps.

2. CAUSES OF MISALIGNMENT

Misalignment in geospatial maps is a prevalent issue, primarily

attributable to various causes spanning different domains and

scales. A comprehensive understanding of these causes is vital

for developing effective and reliable alignment techniques. Fol-

lowing is a set of the major causes of misalignment that we are

aiming to tackle.

• Differences in Perspective: The perspective from which

geographical information is acquired plays a crucial role

in shaping the final product. For instance, a map sourced

from an aerial survey would have a fundamentally differ-

ent perspective compared to one derived from satellite im-

agery. Also, the angle at which geospatial data is acquired

can significantly impact the geometric properties of the

map generated from that data as illustrated in Figure 1.

This effect, commonly referred to as ”relief displacement”,

can cause the same geographical feature to be represented

in different locations on different maps, thereby leading to

misalignment.

• Variation in Map Interpretation: The subjective interpret-

ation of geographic features can result in significant dis-

crepancies between different maps, particularly those di-

gitized manually. This subjectivity can manifest in sev-

eral ways, such as variations in defining the signific-

ance of geographic features or disagreements about fea-

ture boundaries. Consequently, two maps of the same

area, interpreted by different cartographers, may exhibit

marked differences, thereby leading to misalignment. As

such, maps generated through different automated extrac-

tion techniques or even the same technique under different
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(a) Orthorectified satellite image 1

with acquisition angle a) satellite

azimuth: 320 °and b) satellite

elevation 65 °

(b) Orthorectified satellite image 2

with acquisition angle a) satellite

azimuth: 222 °and b) satellite

elevation 62 °

Figure 1. Illustration of perspective variations of maps with

different acquisition angles, an example of high buildings over

Los Angeles (USA).

parameters can have significant variations. This can in-

clude differences in the level of detail, the interpretation of

complex features, or the handling of ambiguous elements

within the geographical space. These inconsistencies can

be exacerbated when considering the challenge of detect-

ing changes over time. Figure 2 displays this phenomenon

between a manually digitized map (subfigure c) and auto-

matically extracted maps (subfigure a,b).

(a) Building delineation

automatically extracted from

satellite image

(b) Building delineation

automatically extracted from

satellite image

(c) Building delineation

manually digitized (OSM) (d) Overlay of vector maps

Figure 2. Visualization of different maps building delineation

over Paris. (a) and (b) shows the automatically extracted maps

from satellite images (c) shows the manually digitized vector

map over Google satellite image as background (basemap), (d)

is an overlay of all vector maps where one clearly can perceive

the positional and geometrical dissimilarity.

• Temporal Variations: Geographical landscapes are dy-

namic and evolve over time due to both natural and human-

induced changes. Consequently, maps created at different

times can have significant disparities. Rivers change their

courses, roads, and structures are built or demolished, and

land use patterns alter over time. These temporal vari-

ations can result in misalignment when comparing or mer-

ging maps from different periods. Figure 3 depicts a visu-

ally noticeable temporal variation due to human-induced

change.

• Data Processing Variations: Different methodologies and

algorithms used in the processing and preparing maps for

final use can induce discrepancies. For example, variations

(a) Satellite image at construction

time of the buildings

(b) Satellite image after

construction of the buildings

Figure 3. Illustration of temporal variations of maps; an example

of a reconstructed building from satellite images at different

timestamps.

in the orthorectification process, which corrects satellite

imagery for tilt and terrain displacement, can result in mis-

alignment between maps.

3. PROBLEM DEFINITION

Given a vector map of polygons, henceforth referred to as

the ”to-align” map, and a reference map of building features

deemed spatially more accurate, the goal is to determine an ap-

propriate transformation function to apply to the group of poly-

gons in order to increase spatial similarity. The reference map

can either be a vector map or a probability map derived from an

automatic feature extraction model. Our objective is to find an

affine transformation per geometry or more precisely a transla-

tion transformation since we assume that input maps have the

same scale and same orientation, preserving the structural integ-

rity of the geometries. The optimal transformation is measured

by the fitness of the transformed geometry within the reference

map.

4. RELATED STUDIES

4.1 Traditional Methods for Geospatial Map Alignment

Traditional approaches to geospatial map alignment primarily

revolve around manual techniques and rule-based algorithms.

These methods often utilize geometric transformations and con-

trol points to align features in different maps.

• Geometric Transformations: This method involves us-

ing affine or projective transformations to align features

based on manually selected control points. While effect-

ive for small-scale adjustments, this approach can be labor-

intensive and prone to human error.

• Rubber Sheeting: A technique that stretches or compresses

map features to align with a reference map. This method

can be effective for local adjustments but may not maintain

the integrity of geometrical properties over large areas as

shown in (Doytsher, 2000) and (Sun et al., 2020).

• Feature-Based Alignment: Involves aligning maps based

on shared features, such as road intersections or landmark

buildings. This method is dependent on the availability

and accuracy of shared features, limiting its applicability

as studied in (Zhang et al., 2018).
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4.2 Learning-Based Methods for Geospatial Map Align-

ment

Recent advancements in machine learning, particularly deep

learning, have introduced new methodologies for map align-

ment. These methods leverage large datasets to learn complex

patterns and transformations, enabling more accurate and effi-

cient alignments.

Deep Learning for Cadastre Map Alignment (Girard et al.,

2018) proposed a multi-task, multi-resolution deep learning

framework that aligns existing building polygons to new im-

ages and detects new buildings. This method outperforms tra-

ditional alignment methods, especially in handling large and

complex datasets. The approach uses neural networks to pre-

dict displacement fields, offering significant improvements in

alignment accuracy and the ability to update maps with new

constructions.

MapRepair for Temporal Inconsistencies (Zorzi et al., 2020)

introduced an end-to-end deep learning approach, MapRepair,

to align and correct temporal inconsistencies in cadastre maps.

This method uses a neural network to generate aligned cadastre

masks and segment new buildings, effectively managing mis-

alignments and updating maps to reflect recent constructions.

It demonstrates superior performance in dealing with heavily

distorted annotations, a common issue in traditional methods.

4.3 Comparison and Integration

Comparing traditional and learning-based methods reveals dis-

tinct advantages and challenges. For instance, learning-based

methods generally offer higher accuracy, especially in com-

plex and large-scale scenarios, due to their ability to learn from

extensive datasets. While traditional methods can be time-

consuming and require manual intervention, learning-based ap-

proaches automate the alignment process, significantly redu-

cing the time and effort required. Also deep learning models,

once trained, can adapt to a variety of scenarios and datasets,

whereas traditional methods may need manual adjustments for

different contexts. Learning-based methods require large, an-

notated datasets for training, which can be a limitation in areas

where such data is unavailable or of poor quality. Finally, tradi-

tional methods, being rule-based, often offer more interpretabil-

ity compared to the ’black-box’ nature of deep learning models,

which can be a concern in certain applications.

In conclusion, while traditional methods retain relevance for

specific, small-scale applications or in scenarios with limited

data, learning-based approaches, as exemplified by (Girard et

al., 2018) and (Zorzi et al., 2020), represent the forefront of

technology in map alignment, offering scalability, accuracy, and

efficiency. The integration of these methods can lead to more

robust and versatile map alignment solutions.

5. PROXIMITYALIGN: ENERGY OPTIMIZATION

BASED ALIGNMENT

5.1 Approach overview

Figure 4 shows an overview of the proposed pipeline which is

composed of a preprocessing step, a clustering step, and an en-

ergy minimization step.

The first step in our proposed pipeline is to preprocess the ref-

erence map into a georeferenced raster map of the polygon con-

tour’s proximity which represents the distance of each pixel in

Figure 4. Overview of the ProximityAlign pipeline.

the map to the nearest contour of a polygon. For vector input

maps, we apply a process of rasterization on polygon contours,

followed by the generation of a proximity raster from the binary

rasterized map. For probability maps, we apply a thresholding

operation on the contours’ probability band.

Given a user-defined list of decreasing distance values, we pro-

ceed to cluster geometries into groups of geometries specified

as ”components”. Each distance value corresponds to a stage in

the alignment algorithm generating different sized components

at each level. Figure 5 shows an example of clustering results

at different stages.

In each stage, we try to find the optimal translation vector for

each component, which is a two-dimensional derivative-free

optimization search problem. We do this by measuring the fit-

ness of transformation per geometry. Following this, the geo-

metries are positioned for the next search with a new set of

components. This approach allows us to mimic the pyramidal

or coarse-to-fine process of alignment, ensuring both accuracy

and computational efficiency.

5.2 Geometry fitness function

The alignment process is focused on minimizing the distance

between the geometries of the input and reference maps. With

the aid of the proximity map, an ideal alignment is considered

as a translation that moves a geometry so that the sum of prox-

imity map pixels, which fall under its contour, is zero. A basic

fitness function for a geometry would be the sum or mean of

pixel values underneath the polygon contour ring, let’s consider

PV (dX, dY ) as the ensemble of proximity map pixel values

corresponding to the respective set of segments after transla-

tion using the vector with (dX, dY ) components. We propose

the following weighted energy function which is composed of

three components, each with a different purpose:

• Mean-based Component: This component of the function

measures the average distance to the reference geometries

of pixel values underneath the contour. The sigmoid func-

tion allows us to place higher importance on lower mean

values, as they indicate a better alignment.
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(a) Connected components using distance band with a maximum

distance equal to 5 meters

(b) Connected components using distance band with a maximum

distance equal to 2 meters

Figure 5. Illustration of building geometrical components using

different thresholds. Connectivity edges between geometries in

the same component have the same color. Due to the large

distance threshold, large components appear in subfigure (a) like

the yellow or green components. After decreasing the distance

threshold as shown in subfigure (b), components are smaller and

have a limited span.

• Partial continuity Component: This component computes

the ratio of pixel values that fall under a certain threshold.

It counts the lengths of contiguous subsequences of pixels

with values less than the threshold. A lower ratio is pre-

ferred as it indicates a better partial alignment.

• Variability Component: This component measures the ho-

mogeneity of contour alignment by measuring the standard

deviation on the ensemble of pixel values, as some trans-

lation candidates can result in partially aligned polygons.

The three components are combined with weights ³, ´, and µ

(where ³+ ´ + µ = 1) to give the final fitness function.

Efitt =
³× Em + ´ × Ec + µ × Ev

³+ ´ + µ
(1)

6. OPTFLOWALIGNMENT: VECTOR MAP

ALIGNMENT VIA OPTICAL FLOW

Optical flow estimation methods are based on the assumption

that the pixel intensities of an object do not change between

consecutive frames, which is rarely the case for optical satellite

images due to illumination and shadow effects, therefore we

opt to estimate optical flow between segmentation probability

maps since they do not display intensity variation, as these maps

are generated using a robust deep learning model that is less

prone to illumination effect, thus respecting the major assump-

tion of intensity uniformity between images. Figure 6 shows

an example of intensity variation between optical images for

the same feature. We note that when considering segmentation

maps as reference images to estimate optical flow between dif-

ferent perspectives we gain the uniformity of intensities but we

lose the texture peculiarity of real-world features.

Figure 6. Example of intensity variation between a couple of

optical images (top) cropped over a building rooftop, each

optical image has its’ respective segmentation map (bottom).

We propose a deep-learning approach to estimate and gener-

ate a displacement map between two segmentation images of

buildings’ rooftops (segmentation maps are composed of three

classes 1) rooftop interior, 2) rooftop contours, and 3) back-

ground). We employ the deep flow model FlowNet described in

(Fischer et al., 2015) and PWC-Net (Sun et al., 2018) and train

them in a self-supervised manner, as given vector maps of fea-

tures (buildings rooftop in our case) we can form a large dataset

composed of pairs of reference and fake misaligned maps. In

their study (Shah and Xuezhi, 2021), the authors pointed out

that varying illumination, large displacement, and lack of tex-

ture are significant challenges in the optical flow field. While

the first challenge is handled by using segmentation maps in-

stead of optical images as inputs, the rest of the challenges are

approached by the choice of the model architecture, as both ar-

chitectures are spatial pyramid networks that estimate large mo-

tions in a coarse-to-fine manner by propagating estimated flow

at different levels of scale. The models generate a displacement

field map as shown in Figure 7 that will be used to transform

misaligned geometries in a rigid or non-rigid way.

6.1 Mathematical modeling

Given two images of segmentation probabilities (indicating for

each pixel whether it belongs to a specific feature class) of the

same size H x W , with R as the reference image and S as

the subject image of misaligned features. Inputs could also be

vector maps as they could be transformed into probability maps

through rasterization. The alignment problem aims at finding

a deformation, i.e. a 2D vector field g defined on the discrete
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Figure 7. Sample flow field prediction using FlowNet model.

image domain [1, H] × [1, W], such that the warped second

image S ◦(Id+g) is well registered with the first image R or in

other words, the warped geometries extracted from the subject

probability map S are superimposed on geometries extracted

from the reference probability map R. To train a deep learning

model to estimate the deformation ĝ, a ground truth ggt must be

provided for the supervision task.

6.2 Synthethic dataset generation

Given a vector map of polygons, we generate a new vector

map by randomly displacing the geometries at different levels

of clustering. Throughout this process, we track the displace-

ment values associated with each geometry. Then we rasterize

the displacement values to create ground truth maps at vary-

ing levels of resolution. We also introduce randomness in the

displacement of the geometries to ensure diversity in orient-

ation. Additionally, we create probability maps with differ-

ent resolutions and vary the maximum displacement to achieve

magnitude diversity in the synthetic dataset. To ensure fur-

ther diversity and realism, we consider specific parameters and

variations in the generation process. We incorporate cluster-

ing parameters and set maximum displacement values for each

cluster level. By fine-tuning these parameters, we can control

the level of displacement and achieve a wider range of real-

istic scenarios. It is important to note that the rasterized ground

truth optical flow is always superimposed on the second (sub-

ject) image as shown in Figure 8. This ensures that the optical

flow information aligns with the subject image and facilitates

the training process.

6.3 Training loss

Given ¹ the set of all learnable parameters for each network,

which for FlowNet includes (image encoder branches, correl-

ation encoder, and decoder layers), and for PWCNet includes

(feature pyramid extractor and optical flow estimators at each

level). Let W l
θ denote the flow field at the lth pyramid level

predicted by the network and W l
GT the corresponding ground

truth supervision optical flow. We employ the multi-scale loss

function proposed in (Fischer et al., 2015):

L(¹) =

L
∑

l=l0

³l

∑

x

∣

∣

∣
w

l
θ(x)−w

l
GT(x)

∣

∣

∣

2
+ µ|¹|2

Where | · |2 is the L2 norm of a vector, and

³l is the weight of each level error.

(2)

Figure 8. Example of a generated training dataset using

geometry matched dataset. The first two subfigures correspond

to rooftop probability maps created from vector maps through

rasterization. Subfigure (c) corresponds to the probability map

of the first view generated using a deep learning model.

Subfigure (d) is the generated optical flow image after assigning

vertical and horizontal displacement values in pixel units.

6.4 Hyperparameter Choices

The employed architectures present a multitude of configur-

ations that affect training and inference in both quality and

runtime aspects. The following are the major hyperparameter

choices.

• Pyramid levels: Pyramidal deep learning approaches

mimic the traditional coarse-to-fine methods (Black and

Anandan, 1996) (Brox et al., 2004) (Sun et al., 2014),

where images are processed at different scales. We no-

tice that on high levels, lots of shape information is lost.

In our case, we suffice with 4 pyramidal levels as no sig-

nificant improvement was achieved with more levels. This

hyperparameter is coupled with the ”max displacement”

hyperparameter as they both lead to the overall maximum

displacement.

• Maximum displacement per level: Both architectures

present a strategy to compute the cost volume of asso-

ciating a pixel to its correspondent in the second feature

map, however, matching is limited within a specific range

defined by [−k, k]x[−k, k] where k is the maximum dis-

placement. In our case, we set the maximum displacement

to 15 for each level, resulting in Maximum overall dis-

placement = 2L−1 × k = 120 pixels.

• Encoder decoder depth: In contrast to our approach that

utilizes semantic maps to predict optical flow, the au-

thors of FlowNet (Fischer et al., 2015) and PWCNet (Sun

et al., 2018) used RGB images from the KITTI data-

set (Geiger et al., 2013) and the MPI Sintel (Butler et

al., 2012) for optical flow prediction. This disparity in

data sources introduces notable differences in the char-

acteristics of the respective datasets. While RGB im-

ages contain rich texture and color information, enabling

the extraction of high-level visual features, our dataset

primarily focuses on the structural and spatial relation-

ships between objects present in the scene. In this fash-

ion, we reduce the complexity of both architectures as

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-55-2024 | © Author(s) 2024. CC BY 4.0 License.

 
59



no visual features are present in our dataset by decreas-

ing the number of channels in both encoder and decoder

modules, for instance, for the Flownet model, the authors

proposed a channel configuration for the ConvEncoder

to be [64, 128, 256, 256, 512, 512, 512, 512, 1024, 1024] in

our case a configuration of [8, 16, 32, 64, 128] leads to

fairly acceptable optical flow results. Decreasing the CNN

layers’ depths not only lowered training and inference time

but also made the setting of high ”maximum displace-

ment” values possible expanding the search domain and

matching very distant features.

7. EPIPOLAR GEOMETRY-BASED APPROACH

One key motivation for exploring an epipolar geometry-based

approach for geospatial map alignment is the potential to reduce

the computational complexity of the alignment task. Based

on the geometric constraints provided by epipolar geometry,

we can significantly narrow down the search space for fea-

ture matching, thereby improving efficiency. The proposed ap-

proach is not an alternative to previously proposed energy min-

imization and deep learning methods approaches, we can view

it as a complement as each of these methods can be adapted to

gain from its advantage.

Feature matching, disparity estimation, and template matching

are pivotal techniques in computer vision, crucial for tasks like

image registration, 3D reconstruction, and object localization

(2-D and 3-D Image Registration: for Medical, Remote Sens-

ing, and Industrial Applications | Wiley, n.d.). Feature match-

ing involves identifying and aligning key points in images, such

as corners or textures, using algorithms like SIFT (Lowe, 1999),

SURF (Bay et al., 2006), and ORB (Rublee et al., 2011). Dis-

parity estimation, or stereo matching, is essential for depth es-

timation and 3D scene understanding, involving steps like rec-

tification, correspondence matching, and disparity computation

(Scharstein and Szeliski, 2002). Challenges in this area in-

clude handling occlusions and texture-less regions. Template

matching, on the other hand, focuses on detecting and localiz-

ing specific objects or patterns within images by comparing a

predefined template across various image regions. These meth-

ods collectively facilitate accurate map alignments and scene

matching in computer vision, setting the stage for further ana-

lysis and rectification using epipolar geometry.

7.1 Mathematical modeling of epipolar rectification

When working with an overlapping pair of ortho stereo images,

we generally consider that these images represent a planar view

of the scene. In this context, a rotational transformation applied

to both images ensures that features move horizontally in the

image space. The rotation angle is computed using both satel-

lite’s positions in a polar reference system using the angles of

acquisitions as follows:

Ra = atan2(
cos(Az1)

tan(El1)
−

cos(Az2)

tan(El2)
,
sin(Az1)

tan(El1)
−

sin(Az2)

tan(El2)
)

Given Aziis the azimuth angle for image i ,and

Eli is the elevation angle for image i.

(3)

7.2 Alignment with Epipolar Geometry Awareness

Incorporating the acquisition angles from the reference satellite

imagery used in map alignment, we can define the vector that

represents the direction of displacement from the target to the

reference map. This is formalized as:

⃗DISP =

[

dispx
dispy

]

=

[

sin(Az1)
tan(El1)

− sin(Az2)
tan(El2)

cos(Az1)
tan(El1)

− cos(Az2)
tan(El2)

]

(4)

As indicated previously, the derivation of this vector serves to

simplify the alignment challenge, transforming it from a two-

dimensional problem to a more manageable one-dimensional

constraint. With this adjustment, both the ”ProximityAlign”

method (discussed in Section 5) and the ”FlowAlign” method

(detailed in Section 6) can be efficiently adapted to leverage the

benefits offered by epipolar geometry in case these metadata are

available.

7.3 Procedural alignment through image matching tech-

niques

We present an alignment method relying on the result of match-

ing between optical images as guidance of displacement at the

feature level in a procedural manner, where given an ordered

set of techniques to estimate displacement, each geometry is

aligned independently by the most prominent method, if the

alignment fails, it falls back to the following method.

7.3.1 Stereo matching using semi-global matching From

the input stereo pair of orthoimages, we apply epipolar recti-

fication as described in 7.1, then, we use a modified version

of SGM algorithm (Tripodi et al., 2020) to enable solving cer-

tain conditions such as large displacements and textureless re-

gions. The used method is a buildup of the original algorithm

as it is a 1) Pyramidal approach: since SGM is executed at dif-

ferent scales ([8,4,2,1]) thus removing noise by incorporating

disparities at all levels, 2) Usage of the census as a cost func-

tion being more robust to radiometric difference, 3) Runtime

enhancement as the algorithm is implemented in GPU. Fig-

Figure 9. Example of disparity map estimation on a stereo pair

(over Brazil Vila Velha) each subfigure corresponds to disparity

map overlayed on its respective optical image used as reference.

Maps are inversely rotated since epipolars are generated in a

way that displacement is always from left to right.

ure 9 shows a dense disparity map to match pixels in the stereo

pair, as the majority of the required pixels (rooftop pixels) are

estimated, we still notice cases of inaccuracy, incomplete estim-

ation for each rooftop, and total absence of disparity estimation

for some rooftops. These inconveniences are due to different

factors such as radiometric differences, shadow effects, and oc-

clusion of high features. Thus, the a need for an alternative

method to align remaining features with erroneous or missing

disparities.
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7.3.2 Template matching Template matching finds the po-

sition of the most similar region to a small image patch known

as template image T in a larger image patch known as search

image S. We benefit from the vector map to extract the respect-

ive image patch T from the target optical image alongside the

respective binary mask that denotes the pixels corresponding to

the rooftop in the rectangular image patch. Similarly, for the

search image retrieval, we use the polygon geometry extents to

extract the respective search image S with a spatial buffer on

the sides as the displacement is horizontal.

7.3.3 Procedural alignment pipeline Procedural align-

ment consists of successive application of disparity estimation

techniques at the feature level. We define ”view data” as the

ensemble of data elements corresponding to a scene that is

composed of the source optical image, acquisition metadata,

and the corresponding vector map. The pipeline takes as input

two ”view data” of a stereo pair, designating the vector map of

”view data 1” as misaligned regarding the vector map of ”view

data 2” that is considered as a reference.

An overview of the pipeline is available in appendix A. The first

step consists of applying epipolar rectification of the optical im-

ages that will be used by the next alignment methods. As the

first disparity estimation method, we employ the modified SGM

algorithm from (Tripodi et al., 2020) to compute the pixel-wise

disparity map. As shown in Figure 9, disparity values are as-

signed to feature pixels of the reference image, i.e., disparity

values are assigned to pixels of buildings’ rooftops. The ”SGM

disparity assignment” transformation unit, aggregates disparity

values corresponding to each rooftop polygon and assigns to

it two attributes: 1) disparity 90th percentile and 2) disparity

completeness percentage, these attributes will contribute to the

computation of alignment certainty as follows:

Pcertainty = Pdisp comp × (1− fitness(P, Pdisp)) (5)

For every polygon feature P: Pdisp comp is the disparity com-

pleteness percentage, and Pdisp is the disparity value assigned.

fitness(P, v) is a function to measure the fitness of the trans-

lated geometry using the disparity value v w.r.t the reference

vector map, as mentioned in sec. 5.2. The codomain of the

certainty function is [0,1] certainty values close to zero corres-

pond to bad alignment while values close to 1 correspond to

good alignment. Thus we define a threshold to separate fea-

tures into successfully aligned or non-aligned features, in our

case we define TH = 0.5 as a threshold. For features with

low certainty scores, we move to the next disparity assignment

based on template matching, similar to the previous technique,

this transformation unit assigns for each polygon feature two

attributes: 1) best match disparity and 2) best match correla-

tion value. These attributes will be used to compute the current

method’s certainty as follows:

Pcertainty = Pdisp corr × (1− fitness(P, Pdisp)) (6)

For every polygon feature P: Pdisp corr is the T patch’s best

correlation in the search image S. Since we use normalized

Pearson coefficient correlation metric, correlation values range

from 0 to 1. The minimum value of 0 indicates no match or

a very weak correlation conversely, the maximum value of 1

indicates a perfect match or a strong correlation. We end up

with a similar codomain of the certainty function, thus, we set

TH = 0.5 as a threshold for the current method. In the end, the

”certainty filter” transformation unit separates features into two

different output layers based on the certainty score as shown in

appendix A. We intend to highlight that the pipeline structure

is extensible, as we can add as many blocks as intended (delim-

ited with a dotted purple line in the pipeline diagram) to solve

uncertain alignment results successively.

8. RESULTS AND EVALUATION

8.1 Dataset overview

In our efforts to thoroughly evaluate the alignment pipeline, we

made use of a diverse array of testing locations. Each area

chosen was unique, presenting its own set of urban character-

istics and feature density factors that may significantly impact

alignment results. The chosen areas varied from highly urban-

ized, densely populated regions to those featuring less dense,

more varied architectural forms. This enabled us to examine

how our alignment pipeline handled these distinct environments

and allowed us to assess its robustness across varying urban

landscapes. Turning to the specifics of the dataset used in the

pipeline, we obtained our data from several different sources.

The satellite imagery was primarily obtained from VHR im-

agery providers, which provided images with a resolution down

to 30cm. We have curated a diverse urban dataset consisting of

sub-datasets from seven distinct cities spread across different

parts of the world. Each sub-dataset within the urban dataset is

derived from at least two different acquisition perspectives, of-

fering multiple vantage points of the same urban landscape. For

each acquisition, a manual vectorization of building rooftops

is performed, creating an accurate and detailed representation

of the urban environment. In addition, an automatic extraction

method described in (Bauchet et al., 2022) is applied to gener-

ate an alternative set of rooftop vectors. Table 1 encapsulates

numerical statistics mirroring the extent and size of each city

sub-dataset, such as the total area of each city’s zone extents,

the count of individual building footprints, and the overall built-

up area coverage expressed as a percentage of the zone area.

Sub-datasets Area
(kmˆ2)

Number of
polygons

Built-
up area
(%)

Ethiopia Addis Ababa 0.8 1441 24.1
India Mumbai 4.4 8039 17.4
Brazil Vila Velha 1.1 3768 39.4
Qatar Doha 1.0 708 36.6
Pakistan Rawalpindi 1.8 1197 19.4
Kuwait Kuwait 3.2 960 11.1
Sweden Stockholm 1.5 443 13.2

Table 1. Urban buildings sub-datasets statistics

8.2 Numerical evaluation

In the case of map alignment evaluation, we can make use of

”Displacement Error Measurement” where the error is quanti-

fied using Root Mean Square Error (RMSE), which serves as

a direct and intuitive metric for the accuracy of the alignment.

But in order to compare the current methods with previous stud-

ies that do not necessarily produce vector maps, we employ

”Map Similarity Measurement” involving the rasterization of

the reference and the aligned map to compute the mean Inter-

section over Union (IOU) of the binarized maps. By applying

this similarity metric between two layers, we can derive an av-

erage, normalized similarity score. This score ranges from 0 to

1, where values close to 0 indicate high dissimilarity and a score

of 1 signifies exact similarity. Table 2 in Appendix B provides

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-55-2024 | © Author(s) 2024. CC BY 4.0 License.

 
61



a numerical evaluation of the proposed methods and most two

related studies methods.

9. CONCLUSION

Proposing three innovative methodologies devised for the align-

ment of vector maps, each exhibiting distinct advantages, draw-

backs, and suitability across various use cases. Herein, we delve

into an in-depth examination of ProximityAlign, Optical Flow

Deep Learning-Based Alignment, and Epipolar Geometry-

Based Alignment, shedding light on their individual merits and

demerits, and potential avenues for future enhancements.

A comparative exposition reveals a spectrum of strengths and

weaknesses across the methods. While ProximityAlign excels

in precision albeit with a higher runtime, the Deep Learning ap-

proach offers a runtime-effective solution with easier training

regimes. Conversely, the Epipolar Geometry-Based method,

while efficient, is data-greedy and susceptible to orthorectifica-

tion and metadata-induced errors.

The differentiated yet complementary nature of these methods

hints at a future where an amalgamated framework could poten-

tially leverage the collective strengths of these methodologies.

Such an integrated framework could navigate the intricate do-

main of geospatial map alignment with enhanced accuracy, ef-

ficiency, and broader applicability, thereby propelling the realm

of geospatial data processing and analysis forward.
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A. PROCEDURAL ALIGNMENT PIPELINE

Figure 10. Overview of the procedural alignment pipeline. Blue rectangles correspond to input and intermediate transformed data,

Yellow diamonds represent transformation units, and Green rectangles correspond to output data.
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