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Abstract

Due to the frequent road network changes, keeping them updated is fundamental for several purposes. Currently, models based on
Deep Learning (DL), specifically, Convolutional Neural Networks (CNNs), such as encoder-decoder type, are state-of-the-art for
this purpose. In this context, the high performance in CNNs has two aspects involved: the model needs a large labeled dataset,
and the dataset belongs to the same probability distribution. In practical applications, however, this may not hold, since there is
a domain shift effect, and it is not customary for the availability of labeled data. To approach these challenges, we propose to
adapt the U-Net architecture (encoder-decoder) to the Unsupervised Domain Adaptation (UDA) that does not need labeling data to
minimize the domain shift effect. Our results demonstrate that the proposed method contributes to road segmentation, whose model
reaches 74.31% (IoU) and 85.04% (F1), against the same model without UDA that reaches 67.36% (IoU) and 80.02% (F1). This
implies that the information that comes from the target domain, even unsupervised, contributes to adversarial learning, improving
the generalization capacity of the model, enhancing aspects such as better discrimination surrounding classes, and in the geometric
delineation of the road network.

1. INTRODUCTION

Due to the frequent road network changes, keeping them up-
dated is fundamental for several purposes. The road network is
one of the main modes of transport in the world, which provides
many types of support, such as expansion or limitation among
sites, urban planning, economy (e.g., logistics), autonomous
navigation systems, smart cities’ development, etc. (Wang et
al., 2016). As the large availability of remotely sensed data, a
variety of road network detection methods have been proposed
since the 70s. Essentially, these methods are based on inform-
ation about geometrical, radiometrical, topological, functional,
scale, and contextual characteristics. Since the methods based
on handcrafted features are a time-consuming and costly pro-
cess to handle with all these characteristics, algorithms based
on Deep Learning (DL) exploit them automatically in a unique
process.

In this context, Convolutional Neural Networks (CNNs) have
been making fundamental advances in Computer Vision over
the last decade for the classification, detection, and segment-
ation of objects in images. In regards to the specific topic of
road detection, CNNs, especially, the deeper ones, are the most
utilized algorithms for this end (Filho et al., 2023). Algorithms
like this are flexible to approach different data types, which in-
creases the detection accuracy based on feature automatic ex-
traction and in different levels of abstraction. Since the pion-
eering work in 2010 (Mnih and Hinton, 2010), different meth-
ods have emerged, such as patch CNNs, deep CNNs, and those
based on adversarial training.

With the revolution in the semantic segmentation field by the
Fully Convolutional Networks (FCNs) (Long et al., 2015), road
detection based on patch CNNs (Li et al., 2016), which have
suffered with computational resources with a larger patch, was

gradually replaced for the networks with all convolutional lay-
ers (Zhong et al., 2016, Henry et al., 2018). Later, the encoder-
decoder architectures gained attention, such as the U-Net (Ron-
neberger et al., 2015). This is due to the skipping connections
between the low and high levels of the layers, in contrast to
FCNs, which are not effective in preserving with accuracy the
spatial details in the reconstruction of the masks.

Approaches based on different characteristics with encoder-
decoder nets have been proposed. For example, in the case of
multitasking, involving the surface, centerline, and the edges of
the roads (Cheng et al., 2017, Lu et al., 2022); residual learn-
ing as the increases of the depth of layers (Zhang et al., 2018,
Bandara et al., 2022); local and global attention blocks (Xu et
al., 2018); multimodal fusion (Filho et al., 2023), adversarial
networks (Abdollahi et al., 2021), etc. On the other hand, al-
though DL-based methods are the mainstream approach (i.e.,
encoder-decoder architectures), the high performance of the ex-
isting works has two aspects involved: the model needs a large
labeled dataset, and the dataset belongs to the same probability
distribution.

The different benchmark sets available in the literature are an
example of this assumption, whose approaches use labeled
datasets such as the Massachusetts Dataset (Mnih, 2013), Deep-
Globe (Demir et al., 2018), CasNet dataset (Cheng et al., 2017),
for rural areas (Yang and Wang, 2020), and others. Therefore,
once these datasets are split into train and test subsets, the high
accuracy of the inference is strongly related because they come
from the same probability distribution. In other words, even
though they have the same distribution, DL-based models as-
sume that the training data must have enough variability for the
generalization at the inference (testing).

In practical applications in the road detection context, however,
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the accuracy can decrease and even achieve overfitting when in
the presence of a domain shift effect. For instance, a model is
trained with a dataset, but it is applied to another one, e.g., Deep
Globe and Massachusetts; this characterizes that there are two
domains, a source, and a target domain, respectively. Then, the
domain gap is due to the different probability distributions that
generate the datasets, caused by different spatial resolutions,
different locations, acquisition methods, data types, or other
factors. Furthermore, once the algorithms work like in fully su-
pervised training, another limitation is the pixel-level labeling
in the target domain; in the real world, not always labeled data
is available and to do this is a time-consuming process.

Challenges like those contextualize the usage of Domain Ad-
aptation (DA) for road detection. Essentially, DA can minimize
the difference in the distribution between the domains, using
labeled data just in one domain, to complete the task in the tar-
get domain without labeling. As for the specific case of labeled
data available just in the source domain, this appeal is called
Unsupervised Domain Adaptation (UDA) (Wang and Deng,
2018), a particularity of transfer learning, and the hardest case
of DA. UDA methods can be categorized into two categories:
representation matching and appearance adaptation networks.
While representation matching aims to build a latent space of
invariant domain (Wittich and Rottensteiner, 2019), appearance
adaptation networks concentrate on transforming images from
the target domain similar to the source domain, like generative
methods (Wittich and Rottensteiner, 2021). Besides, for both
approaches, adversarial training is the most used (Goodfellow
et al., 2014).

Despite the recent advances in Remote Sensing and Photogram-
metry (RS&P) area, i.e., on the land use and land cover classi-
fication by UDA (Xu et al., 2022), for road network detection,
which belongs to the semantic segmentation task, several chal-
lenges are still suggested, with few works proposed (Iqbal et
al., 2023). Specifically, since the UDA’s pioneer work (Ganin
et al., 2015) in the Computer Vision field, which brought ad-
vantages for frameworks of DL and training steps, neither for
the RS&P area nor for the road detection topic, this approach
has been investigated for deeper CNNs (Elshamli et al., 2017,
Soto et al., 2022). Therefore, in this paper, we propose a new
approach, in order to contribute to road network detection: we
adapt the U-Net architecture to UDA, especially by the strategy
of a Domain Adversarial Neural Network (DANN) (Ganin et
al., 2015). Thus, the contributions of our study can be summar-
ized in the following: 1) building an encoder-decoder archi-
tecture proposed for UDA, whose method and datasets utilized
are state-of-the-art; 2) discussing the challenges involved in ad-
versarial training, concerning the optimization problem; and 3)
a viable solution to minimize the domain shift problem, without
the necessity of labeled data for the inference, which lead to the
segmentation of the road network automatically.

2. METHODOLOGY

2.1 Study area and preprocessing stages

A benchmark dataset (Cheng et al., 2017) is used, i.e., the
CasNet dataset. The set was originally proposed for road and
centerline detection, through CasNet architecture. It contains
aerial images collected from Google Earth, whose road seg-
mentation reference maps were manually labeled. The road
width is about 12-15 pixels, and the set has some occlusions of
cars and trees as well as a highly residential area whose roofs

have similar radiometric characteristics to roads. The images
have a Ground Sample Distance (GSD) of 1.2 m, radiometric
resolution of 8 bits, and a total number of 224 samples, with
dimensions of at least 600x600 pixels.

The CasNet dataset is chosen for some reasons: the delineation
of the road network is uniform and homogeneous with little
occlusions, the data have a lower GSD and require less stor-
age (little amount), and it also supports comparatives (metrics)
among diverse works. For the unsupervised adaptation strategy,
the proposed approach considers as source domain RGB images
converted into grayscale, and RGB images as the target domain,
as shown in Figure 1.

Figure 1. Adapted CasNet dataset used for UDA.

The total amount of 224 samples of the benchmark set is already
split into training (160), validation (20), and testing (44). How-
ever, as the images are at least in 600x600 px dimensions, train
and test images are cropped in 512x512 px patches and, for
training, the samples are padded with mirror mode. This in-
creased the number of samples of the set to 252, 20, and 81,
for training, validation (the same), and testing, respectively.
Moreover, various operations of data augmentation based on
geometric operations are applied; for instance, the images are
randomly flipped from left to right and then, from up to down;
operations like image rotation and image transposing are also
made.

2.2 Proposed architecture

The proposed method adapts the U-Net for UDA as the DANN.
The U-Net is a network for semantic segmentation. It consists
of a contracting path to capture context and a symmetric ex-
panding path that enables precise location (reconstruction of
the masks). These paths are named as encoder and decoder,
respectively, which yields the u-shaped architecture, and the
net does not have fully connected layers. The DANN, a UDA
approach, focuses on learning discriminativeness and domain-
invariance features. Particularly, DANN can minimize the di-
vergence between two probability distributions (source and tar-
get domain) parametrized by an encoder of a deep neural net-
work, which is implemented with other two modules: a decoder
(or classifier), and a domain discriminator. The structure of the
architecture is presented in detail in Figure 2.

The encoder layers follow the standard U-Net (ImageNet’s pre-
trained weights), and also for the decoder, but with batch nor-
malization layers (Ioffe and Szegedy, 2015) as regularizers. In
regards to the domain discriminator, in order to determine from
which domain the sample belongs, domain labels are defined as
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Figure 2. U-Net adapted according to the DANN. Source: Adapted from Ganin et al. (2015).

0 and 1 (for the source and the target domain, respectively), in
addition to a Gradient Reversal Layer (GRL), which involves a
domain regularizer hyperparameter.

The adapted net has two batches as input: source domain and
target domain. They are convoluted separately by the encoder,
but concatenated for the domain discriminator, while only the
source pass goes to the decoder classification. In regards to
the GRL layer, which acts as an identity transformation during
the forward pass, and during the backward propagation like a
negative scalar (λ), the proposed method implements it in the
backward step, according to the gradients.

In the backward pass, gradients of the decoder and the domain
discriminator are separately calculated with respect to the same
module: the encoder (θf weights), as written in Equation 1.
The gradients of the decoder loss with respect to its module
are calculated and updated with the encoder module (1st step).
Subsequently, the batch with source and target domain samples
passes to the encoder and the domain discriminator and thus, the
discriminator module is updated with another optimizer (2nd
step).

E(θf , θy, θd) = Ly(θf , θy)− λLd(θf , θd) (1)

where Ly is the loss for the decoder (θy weights); and Ld is the
loss for the domain discriminator (θd weights).

The whole network was implemented with TensorFlow frame-
work (2.15 version) in the Python programming language (3.10
version). The network was trained on the Google Colab Pro en-
vironment, which utilizes the NVIDIA Tesla T4 16GB graphic
card.

2.3 Evaluation of the proposed approach

The three modules of the architecture are used in training, but
only the encoder and the decoder are used for the testing step.
Based on this, the results can be evaluated. For both source and
target domains, the data are split into training, validation, and
testing. However, for a fair comparison, and in order to check
the contribution of UDA for road detection, the results of the
proposed method are compared from a baseline, which adopts
the same segmentation model (U-Net) and settings but without
UDA, and also, with a fully supervised training (on the target
domain).

The evaluation consists of qualitative and quantitative analysis.
The metrics Recall (Equation 2), Precision (Equation 3), F1-

Score (Equation 4), and Intersection over Union (IoU) (Equa-
tion 5) are used for this end, as the Equations are written below:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
TP

TP + FP+FN
2

= 2× Precision × Recall
Precision + Recall

(4)

IoU =
TP

TP + FP + FN
(5)

Where False Negatives (FN) are the number of pixels of ”road
class” but classified as ”non-road class”; False Positives (FP)
are the number of pixels of ”non-road class” but classified as
”road class”; True Negatives (TN) are the number of pixels cor-
rectly classified in ”non-road class”; and True Positives (TP)
are the number of pixels correctly classified in ”road class”.

Due to the classes’ unbalancing of the roads, the Focal Tversky
Loss (Abraham and Khan, 2018), written in Equation 6, is used
for the decoder (prediction of the roads), and for the domain
discriminator, two loss functions are analyzed: Binary Cross-
Entropy (BCE), and the sigmoid with cross-entropy (S-CE).

LFTL(α, β) = 1−
(

TP

TP + α ∗ FP + β ∗ FN

) 1
γ

(6)

where γ can range from [1,3].

3. RESULTS

For the selected domains from the CasNet dataset, it is con-
sidered that the adaptation setting includes different data types
(i.e., grayscale and RGB images), different backgrounds, and
types of road surfaces. For this, the batch size of training was
fixed into 4 and data augmentation operations were made, such
as images randomly flipped from left to right and up to down,
image transpose, and rotation of 90° and 270°. An extensive
inspection of hyperparameters was also made, which involved,
mainly, finding an adequate learning rate, which optimizer to
use, the total number of iterations (according to the batch size,
epochs, and number of samples), and the λ value (domain reg-
ularizer hyperparameter).
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Grayscale → RGB
Model name Lre/Opt. Lrd/Opt. Lossd It. F1 (%) IoU (%)
1a SGD (lr=1e-4)* SGD (lr=1e-4) BCE 3780 77.27 63.48
1b SGD (lr=1e-2 up to 1e-3) SGD (lr=1e-3 up to 1e-4) BCE 6300 81.73 69.65
1c SGD (lr=1e-2)* SGD (lr=1e-4) S-CE 5040 82.01 69.95
1d SGD (lr=1e-2 up to 1e-3) SGD (lr=1e-4 up to 1e-5) BCE 4410 81.06 68.72
2a SGD (lr=1e-2 up to 1e-3) Adam (lr=1e-4) S-CE 4410 81.56 69.36
2b SGD (lr=1e-2)* Adam (lr=1e-4) BCE 4410 80.99 68.67
Lr: learning rate; Opt.: optimizer; It.: iterations. *Exponential decay fixed in 1000 steps and decay rate of 0.96;

Table 1. Preliminary results of hyperparameters in the subtest set.

Grayscale → RGB
Model name Lre*/Opt. Lrd/Opt. Lossd λ** Iterations F1 (%) IoU (%)
3a SGD (lr=1e-2) Adam (lr=1e-4) BCE [0.0001; 0.01] 5670 81.56 69.34
3b SGD (lr=1e-2) - - - 5670 81.15 68.63
3c SGD (lr=1e-2) SGD (lr=1e-4) BCE [0.0005; 0.01] 5670 79.84 67.13
3d SGD (lr=1e-2) SGD (lr=1e-4) BCE [0.0005; 0.1] 5670 82.68 71.02
3e SGD (lr=1e-2) SGD (lr=1e-4) BCE [0.0005; 0.0005] 6930 85.04 74.31
3f SGD (lr=1e-2) SGD (lr=1e-4) BCE [0.005; 0.005] 6930 84.92 74.14
3g SGD (lr=1e-2) SGD (lr=1e-4) BCE [0.001; 0.001] 6930 84.86 74.05
*Learning rate schedule: exponential decay from 1e-2 up to 1e-3; **The scalar concerns the encoder and the discriminator module, respectively.

Table 2. Preliminary results based on and domain regularization hyperparameter.

Figure 3. Results for the preliminary analysis. Columns 1a-2c: models from Table 1; Columns 3e-3f: models from Table 2.

Firstly, two optimizers are tested: Adam and Stochastic Gradi-
ent Descent (SGD) with exponential decay. For the domain dis-
criminator, two loss functions are analyzed: the Binary Cross-
Entropy, and the sigmoid with cross entropy (S-CE). Table 1
shows the results in terms of metrics for this preliminary ana-
lysis, where the subscript ”e” and ”d” refer to encoder-decoder,
and discriminator modules, respectively.

Different settings for the model are presented in Table 1. The
SGD optimizer with momentum (0.9) and exponential decay,
which was chosen to update the encoder-decoder weights, em-
phasizes with a lower learning rate, the model reaches a plateau
and does not converge (model 1a in Table 1). Then, a higher
learning rate should be used, such as 10−2 with decay. Regard-
ing the discriminator influence, Table 1 shows that an adaptive
optimizer (Adam) or the SGD with or without scheduling for
both loss functions, the prediction in the subset test in F1 and
IoU values are around 82%, and 69%, respectively; but in visual
analysis, more iterations can reduce the FPs in the prediction
(model 1c and 2a). Figure 3 presents a comparison between
them.

As presented in Figure 3, it is evident that more iterations are
necessary for the experiment. For instance, the predictions have
some shortcomings, like noises on the tiles, buildings are pre-
dicted as roads (similar in radiometric terms), and the roads are
disconnected due to occlusion by the trees or cars. On the other
hand, the failures might be related to the optimization prob-
lem; in adversarial training, it is essential to balance the weight
between the label predictor and discriminator losses. In prac-
tice, it means that the label predictor should not be too good
to make it difficult to predict the domains (”weaker” discrim-
inator), and vice versa. In that regard, UDA architecture has a
domain regularization hyperparameter, i.e., λ, which correctly
needs to propagate the gradients to the network. Thus, differ-
ent values were analyzed, for both the label predictor and the
discriminator. Table 2 shows these analyses.

The results presented in the first preliminary analysis (Table
1) use a fixed λ = 1. However, according to Table 2, the
regularizer with small values can better match distributions
between source and target domains. Empirically, different val-
ues were tested, since there is a regularizer for the encoder-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

 
68



Grayscale → RGB
Model name Precision (%) Recall (%) F1 (%) IoU (%)
On Target (Cheng et al., 2017)* 83.26 97.01 89.56 81.86
On Target 88.89 86.68 86.98 77.52
Baseline 83.92 78.18 80.02 67.36
Proposed approach 88.83 82.83 85.04 74.31
*U-Net modified.

Table 3. Analysis of the proposed method and comparisons to baseline and training on target..

Figure 4. Visual comparisons of road detection results: on target, baseline, and UDA. The 6th column: close-ups images of the yellow
boxes. The last column: FP - red color; FN - blue color; TP - green color.

decoder model and another for the discriminator module. Us-
ing different values for each one, in this case, may decrease the
metric of the model. In contrast, as in model 3b, if the discrim-
inator is not updated, F1 and IoU are affected. When using a
small and the same value, the metrics increase, and more itera-
tions are necessary, achieving approximately, 85% and 74% for
F1 and IoU, respectively (e.g., model 3e). For qualitative ana-
lyses, Figure 3 (models 3e and 3f) shows the predictions for this
second preliminary analysis.

The last two results presented in Figure 3 emphasize that a lar-
ger λ may be more sensitive to the gradients and even propag-
ate them incorrectly. This means that a small and equal value is
more suitable for the road detection problem (grayscale to RGB
case). For example, when compared to the first analysis, now
the model distinguishes the classes from the roads with more
accuracy, without the noises presented previously, reducing the
FPs on the segmentation, and better geometric delineation of
the road network.

After these analyses, it is possible to compare the results to a
baseline, in this case, the same model: U-Net. Also, the training
and prediction in a fully supervised way is presented, i.e., with
the RGB images, intending to check the contribution of UDA
to this end. Table 3 shows the comparison.

As shown in Table 3, the proposed method performs favor-
ably against the baseline, achieving 85.04% and 74.31% for F1-
Score and IOU, respectively; the difference is around 6% and
10%, respectively. In terms of training (optimization), it em-
phasizes the importance of the hyperparameters calibration, and
also, regularizers (e.g., λ), with a focus on adversarial training.
Regarding the fully supervised training on the target domain,
the UDA strategy still needs to be improved, whose perform-
ance achieves 89.56% and 81.86% (Cheng et al., 2017), and
86.98.56% and 77.52% (the same settings), for F1-Score and
IoU, respectively. Figure 4 presents the comparing results in
visual performance.

In visual performance (Figure 4), it is noted that the UDA
strategy can significantly contribute to road segmentation. For
instance, in the source domain with only information about
grayscale (spectral information), the roads are easily confused
with roofs of houses, while with the information from the tar-
get domain (RGB), the network can discriminate between these
classes and improve their connectivity (topology). However, in
the presence of trees or cars over the roads, where the network
misses information, the probability of FN increases. Further-
more, the model is still sensitive to detecting roads and intersec-
tions, which means that does not have enough variability from
grayscale and RGB domains. Different objects but radiometric-
ally similar, like crosswalks, central trees, and different pave-
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ments of roads are some examples of the main shortcomings of
the proposed method.

Other tests are necessary for road segmentation, including more
iterations for training. Despite the model still having some lim-
itations in detecting the road network, it should be emphasized
that the method improves the segmentation since training like
transfer learning is not necessary, and some problems remain
even in the fully supervised training (on target). In this sense,
investigating other loss functions, another backbone, and other
hyperparameter settings is some suggestion to overcome the
current models’ limitations and enhance the road segmentation
of the proposed method.

4. CONCLUSION AND FUTURE WORK

This work approached an experiment in order to check the con-
tribution of UDA in the road segmentation task, based on the
strategy that available labeled road data can achieve a prom-
ising road network detection on unlabeled target images.

For this purpose, the achieved metrics have shown adequate res-
ults. The contribution of UDA is emphasized since the pro-
posed method performs well against a baseline (the approach
without UDA). The information that comes from the target do-
main, even unsupervised, contributes to adversarial learning,
improving the generalization capacity of the model. Aspects
such as better discrimination surrounding classes (contextual
aspect) refine the geometric delineation of the road network and
avoid the probability of false positives and false negatives. Des-
pite some improvements that need to be made, such as in cases
in which the roads are obstructed, or due to the different pave-
ments, it is worth noticing that the proposed approach leads to
an automatic road segmentation without labeled data in the tar-
get domain, once no further training or fine-tuning is required.

To state these perspectives, other approaches are proposed to
check the contribution of UDA in a visual analysis, based
on techniques for representation of data in the DL context,
such as the t-SNE. Besides, since road detection comprehends
multiscale information, another backbone, different hyperpara-
meter settings, and even methods for multiscale and multilevel
features extraction (attention) are some strategies to be invest-
igated.
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