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Abstract

In the context of climate change, it is important to monitor the dynamics of the Earth’s surface in order to prevent extreme weather
phenomena such as floods and droughts. To this end, global meteorological forecasting is constantly being improved, with a
recent breakthrough in deep learning methods. In this paper, we propose to adapt a recent weather forecasting architecture, called
GraphCast, to a water resources forecasting task using high-resolution satellite image time series (SITS). Based on an intermediate
mesh, the data geometry used within the network is adapted to match high spatial resolution data acquired in two-dimensional
space. In particular, we introduce a predefined irregular mesh based on a segmentation map to guide the network’s predictions
and bring more detail to specific areas. We conduct experiments to forecast water resources index two months ahead on lakes and
rivers in Italy and Spain. We demonstrate that our adaptation of GraphCast outperforms the existing frameworks designed for SITS
analysis. It also showed stable results for the main hyperparameter, i.e., the number of superpixels. We conclude that adapting
global meteorological forecasting methods to SITS settings can be beneficial for high spatial resolution predictions.

1. Introduction

The increase in the number of sensors onboard satellites has
created a vast amount of data that can help monitor the Earth. In
particular, the high revisit rate offered by certain satellite con-
stellations makes it possible to track the dynamics of the Earth’s
surface. For example, the two Sentinel-2 satellites acquire im-
ages every five days at the equator with a spatial resolution of 10
meters at best. The stack of satellite images covering the same
area at different times is known as satellite image time series
(SITS). These data serve as valuable resources for global mon-
itoring, including land cover land use mapping, deforestation
monitoring, landslide detection, natural resources management
and various other applications.

Over the past decade, significant advances have been achieved
in the automatic processing of SITS, notably through the adop-
tion of deep learning techniques (Miller et al., 2024), demon-
strated for example in the BreizhCrops benchmark (Rußwurm
et al., 2020). SITS form complex data cubes structured by
their spatial and temporal dimensions, requiring the develop-
ment of specific architectures. In the context of SITS semantic
segmentation (i.e., one prediction for each time-series pixel),
recent strategies developed architectures that make the most of
both dimensions through dual-branch architectures (Interdonato
et al., 2019), ConvLSTM (Rußwurm and Körner, 2018), U-
Net with temporal attention encoder (TAE) (Sainte Fare Garnot
and Landrieu, 2021), or variants of Vision Transformers (Tara-
siou et al., 2023, Voelsen et al., 2023). Similar approaches can
be also exploited for extrinsic regression, e.g., yield estimation
(Sun et al., 2020), and forecasting tasks (Moskolaı̈ et al., 2021).

Another investigated approach for SITS analysis relies on
graphs, a well-established mathematical tool for data lying in
non-Euclidean domains, such as social networks, chemical mo-
lecules, or point clouds. Recent advances in graph-based learn-
ing, fostered by graph neural networks (GNNs), also offer a

compelling alternative to grid-based deep learning techniques
for certain image-related tasks (Jiao et al., 2022) such as scene
understanding. GNNs leverage prior knowledge about graph
structures to effectively model complex relationships and in-
teractions between image pixels or regions by processing them
as nodes in a graph. This allows GNNs to capture structural
information in images, making them suitable for tasks where
context understanding and relational reasoning are crucial. In
addition, a graph, used as an input of GNNs, can handle data
of variable sizes, which is a significant advantage for SITS that
have irregular temporal sampling and whose pixels may be sat-
urated or perturbed by clouds and their shadows, leading to a
disruption in the spatial regularity of the images.

The interest in graph-based learning for spatio-temporal data
exploded over the past five years in environmental applications,
and more specifically for global estimation of meteorological
conditions such as weather (Lin et al., 2022, Keisler, 2022) or
sea surface temperature (Cachay et al., 2021, Ning et al., 2024),
framed as forecasting tasks. Recently, GraphCast (Lam et al.,
2023) created a breakthrough in environmental applications by
releasing a graph-based model that can predict global weather
conditions up to 10 days in advance at a 6-hour resolution and
0.25 degrees. We note that most of these approaches are not
based on SITS but on derived spatio-temporal datasets such as
ERA5, which combines several data sources through data as-
similation. In the context of SITS data of a medium or high
spatial resolution (below 50 meters), the main application is
land cover mapping, for which GNNs have also proven to be
efficient (Kavran et al., 2023, Tulczyjew et al., 2022, Censi et
al., 2021). For example, our prior work (Dufourg et al., 2023)
demonstrated the potential of graph neural networks (GNNs)
for dense land cover predictions from SITS (i.e., predictions
for all the pixels and all timestamps), against Random Forests
and Multi-Layer Perceptron classifiers. The graph was obtained
through a segmentation step, where each node represents a seg-
ment, referred to as an object. The experiments highlighted the
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Figure 1. Overview of our proposed approach based on GraphCast. The input is a sequence of satellite image time series acquired at
date t1, t2, ..., tN . The output is the predicted image at tN+1.

importance of integrating each object’s neighborhood feature
with the inner feature to understand the object’s context and
improve local representation.

Inspired by GraphCast, we propose to further bridge the gap
between graph-based learning and SITS analysis by focusing on
a forecasting task from high spatial resolution SITS. The object-
ive is to estimate water resources across different basins. Spe-
cifically, the experiments are conducted on the SEN2DWATER
dataset (Mauro et al., 2023). GraphCast is adapted to predict
the next image of a sequence of satellite images.

The paper is organized as follows: Section 2 presents the pro-
posed approach together with some background on GraphCast.
Section 3 describes the dataset and experimental settings, while
Section 4 reports the results. Finally, we draw conclusions in
Section 5.

2. Methodology

In this section, we detail our forecasting pipeline, whose object-
ive is to predict the water basin resources at a given date using
a sequence of satellite images. Since our method heavily de-
pends on GraphCast, we briefly introduce it before discussing
our approach in detail.

2.1 Background on GraphCast

In a nutshell, GraphCast (Lam et al., 2023), implemented by
Google DeepMind, is an autoregressive graph-based model that
predicts global weather conditions at a 6-hour resolution. Fol-
lowing the trend of GNN-based learned simulators (Pfaff et al.,
2020, Keisler, 2022), the architecture consists of an encoder, a
processor and a decoder. The model is fed with two consec-
utive weather states, each represented by six climatic variables

from 37 atmospheric levels, five surface variables, and some
forcing states, including time and spatial information. The en-
coder projects the weather state of a local region (i.e., a group
of pixels) into the nodes of a multi-mesh graph that models the
Earth’s geometry at a scale suitable for calculations. In prac-
tice, an icosahedron (i.e., a polyhedron with 20 faces, which are
equilateral triangles), recognized for its ability to approximate
a sphere, is refined iteratively six times. The nodes of the finest
resolution and all the edges across the different resolutions form
the multi-mesh. Then, the processor learns latent representa-
tions of the multi-mesh nodes via message passing. Finally, the
decoder maps the learned features to each pixel using only the
three nearest multi-mesh nodes. It predicts the weather state
forecast as a residual, i.e., it predicts the difference with the
most recent input. All three modules (encoder, processor, and
decoder) depend on GNNs (Battaglia et al., 2018). Additional
technical details, e.g., autoregressive training and the corres-
ponding loss, can be found in the published paper (Lam et al.,
2023).

2.2 Our pipeline

The objective is to forecast the next image of a sequence of
N satellite images. The employed pipeline is presented in Fig-
ure 1. The input is a sequence of N images {Iti}Ni=1 acquired at
date ti of size H×W . The output corresponds to the prediction
for the next image in the series ÎtN+1 . The employed graph-
based model follows the encoder-processor-decoder structure
of GraphCast.

Unlike GraphCast, which aims to provide global predictions,
our study focuses on location-specific images covering small
areas. This has led to two major differences with GraphCast:
(i) use of a single mesh as in (Keisler, 2022), and (ii) substi-
tution of a global mesh by a region-specific mesh. Compared
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to meteorological predictions that require capturing long-range
dependencies, we hypothesize that a single mesh, i.e., a single
resolution, is sufficient to characterize local phenomena occur-
ring in water basins.

Furthermore, GraphCast makes predictions at a global scale,
employing a mesh adapted to approximate a sphere. In our
study, the predictions are performed on a more limited spatial
extent depicted at a higher spatial resolution, making the icosa-
hedron inappropriate. Hence, we propose to rely on a segmenta-
tion map to create a region adjacency graph used as a predefined
mesh. Using an irregular mesh, rather than a regular grid like
the rectangular meshes used in CNN or Vision Transformers, or
GraphCast’s icosahedral mesh, can bring more detail to specific
areas and limit the smoothing effect.

While the pipeline can employ any segmentation algorithm, we
chose the simple linear iterative clustering (SLIC) algorithm
(Achanta et al., 2012), which is fast and efficient. SLIC parti-
tions images into regions of similar intensities using a k-means
clustering algorithm specially designed for images. It has two
hyperparameters: (i) the (approximate) number of superpixels
that will be generated by the algorithm, and (ii) the compactness
that controls the balance between spatial proximity and intens-
ity similarity when forming superpixels, a high value leads to
superpixels with a square shape. As the number of superpixels
influences the typology of the mesh, we will study its impact in
Section 4.2. A high value of the number of superpixels leads
to many small superpixels, while a small value results in fewer
and larger superpixels.

As a reminder, our objective is to derive a single mesh from the
sequence of satellite images. While SLIC was originally de-
veloped for single natural RGB images, most implementations
can process images with any arbitrary number of channels. In
this study, two strategies to obtain a single mesh from multiple
images are compared in Section 4.2: (i) apply SLIC to the last
image of the sequence ItN assuming that the segmentation at
the next time tN+1 is similar, and (ii) apply SLIC to the stack
of images to consider dynamics.

A last modification concerns embedding of the node’s features
for the encoder. In GraphCast, the node’s features are derived
by feeding weather states concatenated together with spatial
and temporal embeddings into a small multi-layer perceptron
(MLP). The spatial embedding involves the computation of the
sine of the latitude, and the sine and cosine of the longitude,
while the temporal embedding is a normalization of the sine
and cosine of the local time of day and the sine and cosine of
the day of year. We adopt a similar strategy but encoded inde-
pendently the variable (i.e., estimation of the water resources
content) to provide the model with a richer context. The spatial
and temporal embeddings are also processed using a second in-
dependent MLP. Subsequently, the variable and spatio-temporal
features are concatenated before being passed through a third
MLP to obtain the node’s features. In practice, we use the same
spatial embedding but opt to use a sinusoidal positional encod-
ing solely for the day of the year in the temporal embedding, as
done in recent research on foundation models for SITS (Guo et
al., 2023, Tseng et al., 2023).

3. Experimental Settings

3.1 Dataset

To carry out the experiments, we used the SEN2DWATER data-
set (Mauro et al., 2023)1. The original dataset consists of
5 264 sequences of Sentinel-2 top-of-atmosphere image patches
gathered in 17 different basins in Italia and Spain between July
2016 and December 2022. The areas cover the surroundings
around lakes and rivers, mainly in agricultural regions where
basin water resources might be used for irrigation. Each SITS
patch has a size of 64 pixels × 64 pixels and a temporal resol-
ution of around two months (only the less cloudy images were
processed). We filtered out SITS that contained missing data
in the original dataset, leading to a total of 3 682 sequences of
Sentinel-2 image patches for the experiments.

The objective is to exploit past satellite images to forecast
water resources, approximated by the Normalized Difference
Water Index (NDWI). In practice, we computed the NDWI
(McFeeters, 1996) using the green (B03) and near-infrared
(B08) 10-meter resolution bands from Sentinel-2. This for-
mulation makes it possible to detect water bodies and precise
variations in water content, providing information regarding the
overall turbidity (suspended sediments and chlorophyll αt). Its
sensitivity to the level of water makes it also a reasonable choice
to forecast water resources in basins. However, NDWI might
also be responsive to built-up content (e.g., buildings, roads, and
bridges) and atmospheric conditions, in particular clouds, lead-
ing to over-estimation of water bodies when applying a simple
thresholding approach to identify water content (Xu, 2006).

To guarantee the independence of the train and test sets, we
ensure that image patches from the same basin cannot be in
different sets. The SITS patches are split using an 85:15 ratio.
The training set is further split into train and validation sets,
used to monitor the performance and decrease the learning rate
during the model’s optimization.

3.2 Implementation Details

The implementation of GraphCast is adapted from the original
Python/JAX code2 to a Pytorch implementation with the help
of PyTorch Geometric (PyG) (Fey and Lenssen, 2019). We use
the same GNN architectures for the encoder, processor, and de-
coders, but reduce the number of layers and units due to the
smaller size of our dataset. In particular, our modified encoder
consists of three MLPs used to embed the NDWI and the spa-
tial and temporal information (see Section 2.2), followed by 1
graph convolutional layer with 64 units. The processor consists
of 4 graph convolution layers, each of 64 units. The decoder is
composed of 1 graph convolution layer of 64 units. All MLPs,
including those used in graph convolutions, are composed of a
fully connected layer, followed by a Hardswish activation func-
tion, a second fully connected layer, and finally a layer normal-
ization. The final layer of our model has neither layer normal-
ization nor activation function. As a recall, the model should
predict residuals in the range [−2, 2] as the NDWI is in the
range [−1, 1]. Besides, the segmentation map used as the graph
structure is generated with the SLIC algorithm implemented in

1 Accessed on October 16, 2023. The dataset has been updated several
times, notably to enrich it with Sentinel-1 radar images and additional
water-bodies labels used to solve a semantic segmentation task (Russo
et al., 2024).

2 https://github.com/google-deepmind/graphcast/
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# Params RMSE ↓ PSNR ↑ SSIM ↑ Runtime (min)
Input average - 0.1550 23.32 0.7465 -

Persistence - 0.1332 25.03 0.7897 -
LSTM 17,345 0.1162±0.0005 25.53±0.05 0.8282±0.0005 22

ConvLSTM 150,721 0.1197±0.0029 25.28±0.19 0.8113±0.0030 26
TDCNN-ConvLSTM 407,681 0.1111±0.0008 25.68±0.08 0.8083±0.0008 46

Ours 228,673 0.1097±0.0035 26.42±0.27 0.8170±0.0070 41

Table 1. Number of parameters, RMSE, PSNR, SSIM and runtime for baseline models and our GraphCast adaptation. The mean and
standard deviation are reported for three initializations of the model’s parameters. Bold values display the best performance for each

metric.

Scikit-Image (van der Walt et al., 2014). By default, SLIC is
applied to the last image of the input sequence with a number
of superpixels of 256 and a compactness value of 0.1 The influ-
ence of this segmentation step will be studied in Section 4.2.

The proposed model is compared with three competitors proven
to be efficient for SITS analysis (Rußwurm and Körner, 2017,
Rußwurm and Körner, 2018, Mauro et al., 2023): (i) Long
Short Term Memory (LSTM), (ii) ConvLSTM, and (iii) Time
Distributed CNN ConvLSTM (TDCNN-ConvLSTM), the best-
performing strategy (originally called TD-CNN) tested on the
SEN2DWATER dataset (Mauro et al., 2023). The TDCNN-
ConvLSTM architecture is similar to ConvLSTM but first per-
forms an embedding of each image individually with 2D spa-
tial convolutions, enriching the image’s context. While SITS
patches are inputted in ConvLSTM and TDCNN-ConvLSTM,
LSTM is applied pixel-wise and thus is agnostic to the spatial
dimension. These three models predict directly the next image
in the sequence, not the residuals as in GraphCast. We imple-
mented and evaluated these three models on the curated dataset
presented in Section 3.1. In short, the LSTM model consists
of 1 LSTM cell of 64 units. Similarly, the ConvLSTM has 1
ConvLSTM layer of 64 units, with a convolutional kernel size
of 3 × 3. The TDCNN-ConvLSTM has a similar structure but
first embeds individually the images with a CNN composed of 4
layers, each of 64 units. For the three models, the last activation
function is a hyperbolic tangent to yield prediction in the range
[−1, 1] adapted to NDWI. The implementation mirrors the work
of Mauro et al. (2023). Implementation details are available at
https://github.com/corentin-dfg/graph4sen2dwater.

Our revised version of GraphCast and the competitor models
are also compared with two weak baselines: (i) input average
that corresponds to predict the average image, i.e., ÎtN+1 =
1
N

∑N

k=1
Itk , and (ii) persistence that corresponds to predict

the same image than the one observed at the latest timestamp,
i.e., ÎtN+1 = ItN .

All the networks are trained using the Huber loss for 50 epochs
and Adam optimizer with an initial learning rate of 0.0001, de-
creased when the validation loss does not reduce over the past
five epochs. We set the number of images N used for the pre-
dictions to six, which corresponds to a period of approximately
one year, following the setting proposed in (Mauro et al., 2023).
The experiments run on a CPU 12th Gen Intel® Core™ i7-
12800H × 20 and an NVIDIA RTX A1000.

3.3 Evaluation Metrics

To assess the performance of the forecasting models, we com-
pute widely used quality measures averaged over all the test im-
ages. In particular, we use reconstruction and perception-based
metrics, including root mean square error (RMSE), peak signal-
to-noise ratio (PSNR), and structural similarity index measure

Figure 2. Distribution of the targeted NDWI residuals and the
predicted ones by TDCNN-ConvLSTM and GraphCast for each

pixel of the test set.

Figure 3. Scatter plot of the RMSE as a function of the targeted
NDWI residuals for each pixel of the test set. A brighter color

indicates a higher concentration of points.

(SSIM) (Wang et al., 2004). To assess the model’s stability, we
repeat the experiments three times with different initializations
of the network’s parameters and report the mean and standard
deviation. Additionally, we will evaluate and compare visually
the predicted NDWI images.

4. Experimental Results

4.1 Forecasting results in the SEN2DWATER dataset

First, our revised version of GraphCast (ours) is compared
against the three competitors detailed in Section 3.2. Table 1
reports the RMSE, SSIM, and PSNR evaluation measures. The
total runtime in minutes, summing training and inference times,
is also provided. All competitor models outperform the two
weak baselines, with GraphCast yielding the best performance
on two evaluation metrics, demonstrating its potential beyond
its initial global meteorological application. The LSTM ob-
tains the lowest RMSE and PSNR results among the compet-
itors, but it yields the best performance on SSIM, a perceptual
metric, despite the independent processing of each pixel. To de-
rive water content, we assume that a low reconstruction error is
more critical than visually pleasant results. Besides, embedding
individually the image patches in a higher dimensional space
(TDCNN-ConvLSTM) helps decrease the reconstruction error
of ConvLSTM. Finally, the runtime, about 40 minutes, is com-
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Figure 4. Prediction of the next SITS image by TDCNN-ConvLSTM and GraphCast. The model’s input images range from July 2016
to May 2017, to predict an acquisition in July 2017. (top) Lake Garda shores; despite data pre-processing, the November 2016

acquisition is cloudy. (bottom) Agricultural area on the banks of the Po River.

parable between TDCNN-ConvLSTM and our revised version
of GraphCast.

In order to analyze the difference between our revised version
of GraphCast and the best-performing competitor, TDCNN-
ConvLSTM, Figure 2 displays the distribution of the residuals
for the set of test images (i.e.,, the pixel-wise difference in
NDWI per pixel between dates tN and tN+1) of these two meth-
ods compared with the expected distribution (ground truth). It
is interesting to note that GraphCast tends to produce mainly
small changes, surely linked to its residual approach. This re-
mark is also in line with its original application, where the time
steps between acquisitions are only a few hours. To further
analyze the performance of the models on major changes, Fig-
ure 3 displays the RMSE of each pixel predicted with TDCNN-
ConvLSTM and GraphCast as a function of the NDWI residue
expected with the last image. A perfect prediction would give a
horizontal line corresponding to zero error regardless of the ex-
pected change. However, Figure 3 shows a natural tendency of
both models towards greater error when changes since the last
acquisition are larger. In conclusion, GraphCast and TDCNN-
ConvLSTM handle abrupt changes in the same way.

Finally, we visually assess the performance of the models. Fig-
ure 4 displays two examples NDWI time series and the pre-
dictions yielded by GraphCast (ours) and TDCNN-ConvLSTM,
with corresponding error maps. It focuses on two types of areas
representative of the SEN2DWATER dataset: lakeshores and
farmland.

Concerning lakeshores, the area with a high NDWI indicates an
open water surface, and the subtle variations at different dates
are related to overall turbidity. On this SITS, we notice that the
lake turbidity does not have a seasonal behavior as the NDWI
in July 2017 is much closer to the last acquisition date in May
2017 than in July of the previous year. The forecasting of these
non-seasonal dynamics was best captured by GraphCast. A

portion of the image also depicts terrestrial vegetation, which
seems to have a different dynamic to that of the lake. Water
basins provide important irrigation resources, encouraging the
development of surrounding crops. Although these often follow
a seasonal pattern linked to plant growth, there is also a correl-
ation with nearby water resources. It is therefore interesting
to analyze an application of the proposed predictions to nearby
crops.

As for the second SITS representing farmland, NDWI takes
negative values for vegetation and zero values for bare soil.
Although less suitable than the Normalized Difference Veget-
ation Index for analyzing vegetation, the NDWI can still be
used to differentiate between bare and cultivated plots, and thus
monitor seasonal harvesting dynamics. Focusing on the bottom
SITS, the evolution of the fields follows a seasonal logic; the
July 2017 acquisition is similar to that of July 2016 but shows a
clear change compared to May 2017. This dynamic was learned
by both TDCNN-ConvLSTM and GraphCast, as shown by the
field prediction at the bottom left, and demonstrates the capabil-
ity of both models to capture temporal dependencies. However,
GraphCast seems to have better grasped these dependencies,
given the predictions for the top-right fields, which nevertheless
follow the same temporal pattern. Significant reconstruction er-
rors occurred in two fields for both forecast models. They are
due to a sudden change that cannot be predicted from the input
data alone. This shows the importance of the length of the input
time series for handling seasonal changes, which is studied in
Section 4.3. It also demonstrates the inability of these models to
extrapolate patterns they have never seen. Their application as
they stand, for example, to predict non-seasonal extreme events
such as floods or droughts, is therefore limited.

4.2 Influence of the segmentation step

In this section, we explore the influence of the segmentation
step, in particular the number of superpixels. Figure 5 reports
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the performance for an increasing number of segments ranging
from 1 (each patch represents only one segment) to 4,096 seg-
ments (each pixel corresponds to one segment). The perform-
ance measured by the reconstruction error remains stable across
a varying number of superpixels, as long as a minimal geometry
is present, i.e., with at least a dozen of superpixels. It shows that
the dynamics observed in SITS can be processed at a higher
level than the pixel (i.e., the region) using a coarse intermediate
geometric representation. The use of encoders and decoders to
switch from fine geometry to mesh, and vice versa, also enables
pixel-level precision to be maintained without compromising
visual quality.

Figure 5. Influence of the number of superpixels used to create
the mesh in our revised version of GraphCast. The mean and
standard deviation are reported for three initializations of the

model’s parameters.

Further, Table 2 displays the performance for two segmentation
strategies—SLIC applied to the stack of input images or SLIC
applied to the last image of the sequence (default setting). For
this experiment, the number of superpixels is set to 256. Al-
though results show a slight performance gain when applying
SLIC to the last image, the performance measures are within
the same range. We argue that applying SLIC to the stack of in-
put images might be beneficial if cloudy images are not curated
as is the case in SEN2DWATER.

RMSE ↓ PSNR ↑ SSIM ↑
Last-date SLIC 0.1097±0.0035 26.42±0.27 0.8170±0.0070

Multi-date SLIC 0.1101±0.0034 26.12±0.45 0.8151±0.0076

Table 2. Influence of the segmentation strategy. The mean and
standard deviation are reported for three initializations of the

model’s parameters. Bold values display the best performance
for each metric.

4.3 Influence of the length of the time series

The impact of the length of the input time series (N ) is evalu-
ated for our revised version of GraphCast. In particular, we as-
sess the performance for variable input time series lengths ran-
ging from 1 to 6. As there is no causal mechanism in the model
contrary to recurrent architectures, the model has to learn by
itself the temporal dependencies between the features. Having
more acquisition dates as input should enable it to find these
dependencies more easily. Indeed, according to Table 3, the
longer the series, the less error the model makes. As expec-
ted, the model fed with the highest number of dates (N = 6)
yields the best performance. It is important to note that when
N is equal to 6, the model views a time series over one year.
Hence, the image to be predicted, around July-September, was

acquired for a season on which the model had been trained. In-
terestingly, the models that exploit a single image (N = 1) or
two images (N = 2) as in GraphCast underperform and exhibit
performance below the weak persistence baseline. It underlines
the need to feed the model with long time series representing
variations across the year for this forecasting task.

# input dates RMSE ↓ PSNR ↑ SSIM ↑
1 0.1409±0.0085 24.28±0.65 0.7593±0.0218
2 0.1455±0.0013 23.72±0.18 0.7294±0.0098
3 0.1330±0.0157 24.75±1.28 0.7538±0.0421
4 0.1319±0.0020 24.77±0.09 0.7662±0.0092
5 0.1200±0.0034 25.42±0.40 0.7957±0.0082
6 0.1097±0.0035 26.42±0.27 0.8170±0.0070

Table 3. Forecasting results of our revised version of GraphCast
for varying time series length N . The mean and standard

deviation are reported for three initializations of the model’s
parameters. Bold values display the best performance for each

metric.

4.4 Impact of the temporal and spatial encodings

In this section, we perform an ablation of the temporal and spa-
tial encodings. Table 4 reports the results for four settings:
no encoding, spatial encoding only, temporal encoding only,
and both spatial and temporal encoding (our model). Temporal
encoding slightly improves performance over no encoding, by
providing additional information on acquisition dates, allowing
the model to be guided towards seasonal dependencies. We also
note that the simultaneous use of spatial and temporal encod-
ing gives the best results. Surprisingly, adding spatial encoding
alone performs lower than without any encoding. We were un-
able to explain this behaviour, which calls for further investiga-
tion and potentially better encoding of spatial information.

Spatial Temporal RMSE ↓ PSNR ↑ SSIM ↑
✗ ✗ 0.1150±0.0052 25.38±0.35 0.8123±0.0024
✓ ✗ 0.1228±0.0025 24.99±0.21 0.7948±0.0016
✗ ✓ 0.1141±0.0071 25.61±0.66 0.8173±0.0038
✓ ✓ 0.1097±0.0035 26.42±0.27 0.8170±0.0070

Table 4. Ablation study of the spatial and temporal positional
encodings. The mean and standard deviation are reported for
three initializations of the model’s parameters. Bold values

display the best performance for each metric.

5. Conclusions and Perspectives

In this work, we propose a revised version of GraphCast for
forecasting water resources in basins. We use sequences of
satellite images with an irregular temporal sampling of approx-
imately two months to predict the next image in the series. A
key element is the segmentation map used as a single mesh to
train the GNN. In addition to outperforming LSTM, ConvL-
STM and TDCNN-ConvLSTM, the model gives good visual
results. It also showed stable results for the main hyperpara-
meter, i.e., the number of superpixels.

Although the results are promising, the generalization ability
of our revised GraphCast model needs to be assessed on lar-
ger datasets. In particular, we would like to further develop
the model to large patches, for which multi-scale segmentation,
used as a multi-mesh, can help capture long-range dependen-
cies. A further idea is to test the model in the roll-out setting of
GraphCast to predict images over an increasing period of time.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-81-2024 | © Author(s) 2024. CC BY 4.0 License.

 
86



For this setting, we believe that longer and denser input time
series could help to improve the model’s stability.
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