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ABSTRACT:

The registration of full-moon remote sensing images constitutes a pivotal stage in the fusion analysis of multiple lunar remote sens-
ing datasets. Addressing prevailing issues in automatic registration, such as the broad width of full-moon data, significant internal
distortion, and texture distortion in high-latitude regions, this paper proposes a method for automatic matching and correction based
on triangulation constraints. The approach employs a matching strategy progressing from coarse to fine and from sparse to dense.
It optimizes and combines multiple existing matching algorithms, enhances the extraction of initial network points, constructs ir-
regular triangulation networks using these points, conducts dense matching with each triangulation network as a basic unit, and
introduces a geometric correction method based on triangulation network + grid (TIN + GRID) for the registration of full-moon
data. For the matching of full-moon remote sensing images in high-latitude regions, a novel approach involving memory projection
forward transformation-matching-projection inverse transformation is adopted. Through registration experiments with full-moon
image data and an analysis of registration accuracy at different latitudes, the average mean square error is found to be less than
2 pixels. These results signify the efficacy of the proposed method in effectively addressing the automatic registration challenges
encountered in full-moon remote sensing images.

1. INTRODUCTION

Full-moon image data serves as the foundational dataset for
scientific investigations into lunar topography, mineral explora-
tion, and geological evolution. Since the inception of lunar ex-
ploration missions in the 1950s, a substantial volume of lunar
image data has been acquired [Tong, 2022, Xu, 2022]. The
Clementine mission produced a 100-meter resolution full-moon
stitched map [Scholten, 2012, Robinson, 2010b]; Barker et al.
produced a DOM product with a resolution of 59 meters cover-
ing latitudes of 65° north and south based on the images of the
Japanese ”Moon Goddess” satellite [Barker, 2016a]; the Indian
”Chandrayaan-1” satellite obtained a large amount of images
with a resolution of 5 meters [Goswami, 2009]; the Lunar Re-
connaissance Orbiter (LRO) launched by NASA obtained im-
ages covering almost the entire moon [Robinson, 2010a, Jha,
2019]. CE-1 and CE-2 also obtained full-moon orthophotomap
images with different resolutions such as 120 meters and 7 meters
[Li, 2013, Li, 2018]. Although different lunar probes have ob-
tained a large amount of remote sensing data on the lunar sur-
face, the control data and reference benchmarks used in the
mapping products produced by different missions are different,
resulting in geometric deviations between lunar DOM products
[Di, 2019,Wu, 2011,Wu, 2014]. This severely restricts the com-
prehensive application of multiple mission data for scientific
research. Therefore, it is necessary to carry out the registration
research of different types of lunar DOM products and unify
various data into the same reference benchmark.

Many scholars have conducted research on lunar image regis-
tration methods [Xin, 2018, Liu, 2023, Yang, 2020, Yang, 2023,

Bo, 2022, Jiang, 2021], but there are few studies on the regis-
tration of full moon images. Barker et al. used a block regis-
tration method to produce a full moon DEM; in this method,
blocks are independent from each other and are not truly glob-
ally corrected [Barker, 2016b]; Bo et al. proposed an automatic
registration method for lunar data based on spherical triangular
grids; in this method, feature point extraction and matching are
cut out for the north and south poles for separate processing,
which is not truly based on a full moon image registration. The
registration of full moon images faces many difficulties. First,
full moon data are spliced from a large number of single-scene
images taken at different times, and the geometric accuracy of
different regions within the data is inconsistent. Second, in
the spherical coordinate system, there is a large amount of re-
dundant storage in images of high-latitude regions, and there is
severe texture distortion visually, making it difficult to accur-
ately extract the corresponding points required for registration.
Third, how to ensure the accuracy and internal accuracy con-
sistency of the corrected full moon image is also a difficulty
faced by registration.

Common image matching methods mainly include region-based
methods, feature-based methods, and deep learning-based meth-
ods. The region-based automatic matching method is a method
that matches images based on a certain template size, using the
center of the template window as the point of correspondence,
and implementing image matching based on a certain feature
similarity measure. Common methods include correlation coef-
ficient and mutual information [Suri, 2010, Gutiérrez-Becker,
2016]. For images with inconsistent internal accuracy, a single
size template may not match points. The feature-based method
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is to extract features between images and use the similarity
between features for matching [Ye, 2014, Li, 2016, Li, 2015,
Yang, 2021]; common feature-based methods include methods
based on point, line, and surface features [Yu, 2008, Sui, 2015,
Zhang, 2007]. The full-moon image is composed of many im-
ages from different periods, and there are nonlinear radiometric
differences within it. Conventional feature matching methods
may have a high mismatch rate, and even the number of cor-
rectly matched points is far less than the number of mismatched
points. The deep learning-based matching method is to auto-
matically select image features and determine the correspond-
ence between features through learning [Hao, 2023, Ma, 2021,
Bürgmann, 2019]. This method requires extensive training of
matching samples to be applied, and currently lacks samples
for lunar image registration.

To address these challenges, this paper proposes an automatic
registration method for full-moon remote sensing images based
on triangular network constraints. The method employs a match-
ing strategy progressing from coarse to fine and from sparse to
dense, optimizing and amalgamating multiple existing match-
ing algorithms, refining the extraction of initial network points,
and constructing irregular triangular networks using these points.
Subsequently, dense matching is conducted with each triangu-
lar network as a fundamental unit. Finally, geometric correc-
tion is implemented using the triangular network + grid method.
Throughout the matching process, techniques such as dynamic
memory projection transformation in high-latitude regions are
utilized to resolve registration issues associated with internal
accuracy inconsistencies and texture distortions in such regions
for full-moon data. The primary contributions of this paper are
outlined as follows:

1)To address texture distortion and matching challenges in high-
latitude regions of full-moon remote sensing images, the method
adopts the concept of memory projection forward transformation-
matching-projection inverse transformation. This ensures that
the entire matching process remains unaffected by latitude-based
texture variations.

2)The paper introduces an automatic image matching and cor-
rection method based on triangulation constraints. Employing a
coarse-to-fine, sparse-to-dense matching strategy and optimiz-
ing a combination of existing matching algorithms, it resolves
the registration challenges associated with full-moon data, en-
suring high registration accuracy.

3)The proposed method includes a technique for constructing a
corrected grid (GRID) on top of the Triangulated Irregular Net-
work (TIN) established at control points. This enhances ortho-
projection output efficiency, mitigates the impact of a single er-
roneous control point causing significant local misalignment,
and addresses internal consistency issues in the corrected full-
moon image.

2. RESEARCH AND DEVELOPMENT
METHODOLOGY

2.1 Technical route

In order to solve the problem of high-precision registration of
data throughout the month, this article proposes a registration
method based on triangular network constraints. The specific

Figure 1. Overall technical scheme for registration

idea is as follows: first, match a certain number of correspond-
ing point on the images to be matched and the reference im-
age, which are called the initial matching points; then con-
struct irregular Delaunay triangular networks based on the ini-
tial matching points; then perform dense matching under the
constraints of each triangular network; finally, based on the fi-
nal obtained corresponding points, use the method of triangular
network + grid (TIN + GRID) for geometric correction. The
registration process is shown in Figure 1 below:

2.2 Related theories

2.2.1 Generate initial matching points The initial match-
ing point refers to automatically matching a certain number of
corresponding points on two full-month remote sensing images;
it is used to participate in the construction of a triangulation net-
work. The generation of preliminary points includes two pro-
cesses: feature point extraction and feature matching.

1.feature point extraction

Feature points are mainly characterized by corners with clear
ground object contours on the image, such as the corners of
meteor craters. The purpose of extracting feature points is to se-
lect the points with the largest local features, thereby improving
the success rate of automatic matching and reducing the error
matching rate. There are many methods for extracting feature
points. In this paper, Harris feature point extraction algorithm
is mainly used. Harris feature point extraction algorithm is a
hybrid corner and edge detection method proposed by C. Har-
ris and M. J. Stephens in 1988, also known as Plessey corner
detection method [Harris, 1988]. This algorithm mainly detects
corners by calculating the curvature and gradient of the point.
Harris feature point extraction algorithm is not only computa-
tionally simple, but also has high stability and robustness, and
can accurately detect feature points under image rotation, gray-
scale changes, and noise interference.

In order to extract evenly distributed feature points on the full-
month data, the Harris operator is used. The Harris operator ex-
tracts feature points by setting a specific threshold. If a threshold
is set on the entire image to extract feature points, it will result
in uneven distribution of feature points. The block Harris op-
erator divides the image into regular image blocks by latitude
and longitude; each block uses the Harris operator to calculate
the feature value, and selects the point with the largest feature
value in the current block as the feature point;this avoids the
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uneven distribution of feature points, as shown in Figure 2 be-
low.According to Equation 1, It can be calculated based on the
aspect ratio, so that the starting position and step size of each
image block can be determined.

Mx =
√

N
W/H

My =
√

N
W/H

× W
H

(1)

where W = the image width

H = the image height

N = the number of feature points

Mx = the number of blocks in the row direction

My = the number of blocks in the column direction

non-blocking Harris operator block Harris operator

Figure 2. Comparison of the effect of Harris operator blocking
and non-blocking

2.Pyramid feature matching

The image pyramid describes and records the grayscale inform-
ation of images at different levels. High-resolution images are
placed at the lower levels, and low-resolution images are placed
at the upper levels, forming a pyramid shape. This article uses
the coarse-to-fine features of the pyramid to accelerate the effi-
ciency of matching. First, automatic matching is performed at
the top level of the pyramid, and the matched points are used
to optimize the initial matching position of the next level of the
pyramid. Matching is performed level by level until the original
layer of image data is reached.

If the two-scene full-month remote sensing images are directly
matched point by point with a large search radius R, it will be
very time-consuming. Therefore, in this paper, a certain num-
ber of corresponding points are automatically matched in the
pre- and post-processing remote sensing images, which we call
the initial matching points. The matching of the initial match-
ing points can use a larger search radius to deal with situations
where the initial accuracy deviation is large. The accuracy of
the initial matching points has a crucial impact on subsequent
processing, so it should be improved as much as possible to
ensure that the initial matching points are correct.

There are many methods for automatic matching of image cor-
responding points, including the commonly used correlation
coefficient matching method [Zitová, 2003] and the channel
features of orientated (CFOG) that supports automatic matching

of heterogeneous images [Ye, 2019]. The correlation coefficient
matching method is suitable for automatic matching of homo-
logous remote sensing images and has high efficiency, while
the CFOG can be used for automatic matching of homologous
and heterogeneous remote sensing images, with high matching
success rate and low efficiency and many error points.

The generation of initial matching points in this article adopts
a matching method based on correlation coefficient and CFOG.
Each feature point must satisfy both matching methods simul-
taneously to be finally identified as a successful match, thus im-
proving the accuracy of initial matching points. The search ra-
dius R of matching parameters can be set to 200, and the feature
points are evenly distributed in the overlapping area of the pre-
and post-remote sensing images. The number of feature points
N can be determined based on the image size. The more fea-
ture points, the slower the efficiency, and the less feature points,
the less dense the constructed triangular network. Through ex-
periments, it is found that usually 10,000 feature points can be
extracted per 100 million pixels to set up an equal proportion.

The correlation coefficient and CFOG matching algorithm are
described as follows:

The correlation coefficient matching method uses the correla-
tion coefficient (standardized covariance) as a similarity meas-
ure. In statistics, the correlation coefficient is used to repres-
ent the correlation between two random variables, and in image
matching, it can be used to represent the similarity between two
images of the same size.

R(X,Y ) =
E(XY )− E(X)E(Y )√

D(X)
√
D(Y )

(2)

where R(x, y) = the correlation coefficient of the
two pieces of image data

E(X), E(Y ) = the mean gray value of the two pieces of image data

D(X), D(Y ) = the variance of the two pieces of image data

E(XY ) = the mean value of the corresponding points of the
two pieces of image data after multiplication

|R(x, y)| = The closer the correlation coefficient

E(XY ) is the mean value of the corresponding points of the
two pieces of image data after multiplication, and their defini-
tions are the same as those defined in general statistical theory.
The correlation coefficient indicates the degree of similarity of
the linear relationship between images X and Y. The closer the
correlation coefficient |R(x, y)| is to 1 or -1, the more obvious
the degree of linear similarity between the images. When the
correlation coefficient is greater than the set threshold, the fea-
ture point matching is considered successful.

The full moon data produced by different sensors often have
nonlinear radiometric differences, which can cause the correla-
tion coefficient algorithm to fail in multi-source image feature
matching. The CFOG (Chanel Feature of Orientated Gradient)
matching algorithm is a pixel-by-pixel feature representation of
the image by calculating the histogram of gradient direction for
each pixel. The CFOG matching algorithm mainly consists of
two processes: establishing CFOG descriptors and frequency
domain spatial matching.
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1) Constructing the CFOG descriptor

(1) Directional gradient channel calculation: Calculate the gradi-
ent channel values in multiple directions for a given image,
and arrange all the gradient channel values in the Z direction
to form a three-dimensional multi-directional gradient feature
map. Define the directional gradient channel g o for each layer
as:

g0 = b∂I/∂0c (3)

where I = the image

o = the direction of division

b c = the result when the value is positive,
otherwise it is 0

In practice, it is not necessary to compute the directional gradi-
ent channel go separately for each layer; the directional gradient
channel eigenvalues for each layer can be computed by using
the gradient magnitudes (gx, gy) in the horizontal and vertical
directions:

go = | cos θ × gx + sin θ × gy| (4)

where θ = the gradient direction of the division

the purpose of the absolute value is to limit the gradient direc-
tion to [0, π], which can better deal with the case of gradient
reversal among multimodal remote sensing images.

(2) y constructing a three-dimensional Gaussian convolution
kernel, the three-dimensional multi-directional gradient feature
maps constructed in the previous step are convolved to finally
form CFOG descriptors. Among them, the 3D Gaussian con-
volution kernel is not a strictly 3D Gaussian function, but a 2D
Gaussian kernel in the X and Y directions and a kernel in the
gradient direction.

gσo = gσ ∗ b∂I/∂oc (5)

where ∗ = the the convolution

σ = the standard deviation of the
Gaussian convolution kernel

σ is the standard deviation of the Gaussian convolution ker-
nel, which is not strictly a three-dimensional Gaussian func-
tion in three-dimensional space, but a two-dimensional Gaus-
sian kernel in the X and Y directions and a kernel [121]T in the
gradient direction (hereinafter referred to as the Z direction).
The gradient in the Z-direction is smoothed by convolution in
the Z-direction, which reduces the effect of directional distor-
tion between the two images due to local geometrical deforma-
tions and changes in gray intensity; the final directional gradient
channel feature is formed by normalization operation on goo .

2) Frequency domain spatial matching: Fourier transform is
used to transform the feature template from the spatial domain
to the frequency domain, and phase correlation is used as the
similarity measure for template matching.

2.2.2 Constructing a spherical Delaunay triangulation An
irregular triangular mesh is a series of discrete data points con-
nected into a series of continuous triangular meshes, the size
and shape of which depend on the location and density of the
discrete data points. Using the discrete data obtained from all
sampling points, according to the principle of optimal combina-
tion, these discrete points (the vertices of the triangles) are con-
nected into a continuous triangular surface (in the connection,
as far as possible, to ensure that each triangle is an acute triangle
or the length of the three sides of the triangle is approximately
equal), the shape and size of the triangular surface depends on
the location and density of the irregularly distributed measure-
ment points or nodes.

In order to be able to evenly distribute the encrypted points
on top of the initial distribution points, Delaunay triangulation
was used to construct the full moon triangulation control net-
work. Due to the problems such as the difficulty of processing
the boundary of planar Delaunay triangulation network and the
unevenness of triangulation network on the boundary [Zhou,
2007], spherical Delaunay triangulation network is used to con-
struct the network in this paper.

The main algorithms applicable to the spherical surface to gen-
erate Delaunay triangular mesh are Recursive Subdivision Al-
gorithm, Spherical Centroid Method, Insertion Algorithm, Centroid
Projection Method and so on. Centroid Projection Method) and
so on [Fang, 1995, Shi, 2006, Yang, 2018]; among them, the
mesh generated by the Centroid Projection Method has a better
shape uniformity, and this method is chosen for the spherical
Delaunay triangular mesh construction in this paper.

2.2.3 Triangulation constrained dense matching Based on
the irregular Delaunay triangulation constructed at the initial
matching point, dense matching is performed under the con-
straints of each triangulation. The matching method still uses
the pyramid-level image matching strategy, and the matching
operator uses the CFOG matching algorithm. Each triangular
network consists of three initial matching points, and the three
points can be used to solve the parameters of the affine trans-
formation. The affine transformation model formula is as fol-
lows:

f(x) = a0x+ a1y + a2

f(y) = b0x+ b1y + b2
(6)

The above formula describes the affine transformation relation-
ship between two-dimensional points x and y and f(x) and
f(y). The six parameters a0, a1, a2, b0, b1, b2 of the affine trans-
formation are the objects of the equation system solution.

Due to the established coordinate affine transformation rela-
tionship between the images to be matched and the reference
images at the initial matching point, there are several points to
note when using the dense matching method within the triangu-
lation network:

(1)Due to the high accuracy of the three initial matching points
in the triangulation network, it can provide more accurate loca-
tion prediction. Search radius can be set very small to speed up
matching efficiency;

(2) The higher the degree of intensive matching, the longer the
matching time; a comprehensive value can be calculated based
on the matching requirements and matching time;
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(3) After the triangulation network is densely matched, the er-
ror values of each densely matched point should be calculated
according to the affine parameters formed by the initial match-
ing points, and the erroneous matching points should be deleted
according to the error threshold.

2.2.4 Special treatment in high latitude regions The full-
month data used in this article is in the Moon2000 lunar geo-
graphical coordinate system, which is a spherical coordinate
system. In the spherical coordinate system, images in high-
latitude regions have a large amount of redundant storage, res-
ulting in severe visual distortions that are not conducive to fea-
ture point extraction and matching.

To solve this problem, before matching the initial matching
points, it is first determined whether the latitude of the match-
ing point is higher than 60°. If it is higher than 60°, the im-
age within a certain radius around the matching point is dy-
namically converted to the polar location projection, and the
homonym matching is performed under the polar location pro-
jection. Considering the large amount of computation required
for point-by-point dynamic projection, in the dense matching
step constrained by the triangular network, it is first calculated
whether there are any points with latitudes exceeding 60° among
the three initial matching points that form the triangular net-
work. If one point exceeds 60°, the triangular network is taken
as a unit, and the center of the triangular network is taken as the
center. The triangular network and the image within a certain
buffer range around it are dynamically converted to the polar
location projection, and the triangulation network’s encrypted
point extraction and matching are performed under the polar
location projection

High-latitude geographic coordinate image

High-latitude plane coordinate image

Figure 3. Comparison of high-latitude geographical images and
planar images

2.2.5 TIN+GRID geometric correction After constructing
the TIN triangulation using control points, the traditional al-
gorithm constructs an affine model based on the three vertices
of each triangle, which is equivalent to having a set of affine
transformation parameters for each triangle. Then, each triangle
is recycled for image correction. This algorithm requires de-
termining whether each pixel is within a certain triangle, which
is time-consuming. Moreover, an erroneous control point can
significantly affect the local correction accuracy of the image.
This method proposes a method of constructing a corrected grid
(GRID) based on the construction of a TIN using control points,

aiming to improve the efficiency of the algorithm while redu-
cing the impact of an erroneous control point that leads to sig-
nificant local misalignment.

First, calculate the six affine transformation parameters for each
triangle using formula (6); then, define the size G of the correc-
ted grid, which can be adjusted adaptively based on the output
size of the image. Usually, G is set to 10. Divide the correc-
ted image coordinate range into G*G squares. Assuming that
the output image width is W and height is H, there are W/G
* H/G squares. Determine which triangle the center point (x1,
y1) of each corrected grid falls within, and then use the affine
transformation parameters of the triangle to calculate the pixel
coordinate value (x2, y2) of the grid center point in the image
before correction. Finally, we obtain the corrected image co-
ordinates of the G*G grid center points and the image coordin-
ates before correction, which are stored in two memory two-
dimensional arrays Grid x[W/G, H/G] and Grid y[W/G, H/G].

According to the corrected grid established in the previous step,
the coordinate mapping relationship between the corrected im-
age and the image to be corrected can be quickly located. Cycle
each pixel P (x1, y1) of the corrected image, then obtain the grid
coordinate P grid (x grid, y grid) of the floating point number
by the coordinate of each pixel is divided the grid size G. Take
the Grid x[W/G, H/G] and Grid y[W/G, H/G] coordinate val-
ues of the four nearest grid points to point P grid, and calculate
the value obtained by bilinear interpolation algorithm, which
should be taken from the coordinate value P src(x2, y2) of the
rectified image before. The four pixel values around the P src
point are bilinearly interpolated to obtain the final coordinate
value of P (x1, y1). This step uses bilinear interpolation twice.
The first bilinear interpolation is for coordinates, and the second
bilinear interpolation is for grayscale values.

Figure 4. Schematic diagram of bilinear interpolation algorithm

Point P is between pixel points 11, 12, 21, and 22, and the gray-
scale resampled value I(P) is

I(P ) = (1−∆x)(1−∆y)I11+(1−∆x)∆yI12+∆x(1−∆y)I21+∆x∆yI22
(7)

∆x = x− INT (x)

∆y = y − INT (y)
(8)

where I11, I12, I21, I22 = the gray values of the four adjacent pixels of P

x, y = the coordinates of P,
usually in decimal
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∆x and ∆y are as follows, which are the differences from their
integer values.

3. EXPERIMENT AND RESULTS

3.1 Experiment data

The full-moon registration method designed in this article was
verified using WAC data [WAC., 2013] and CE-1 data [CE1.,
2020]; WAC data was used as the reference image. WAC data
was downloaded from the USGS website, and CE-1 data was
downloaded from the Lunar and Planetary Data Release Sys-
tem website. WAC data is a full-moon DOM data with a resol-
ution of 100m/pixel, which was created by stitching more than
15,000 images obtained by the Wide Angle Camera (WAC) of
the Lunar Reconnaissance Orbiter (LRO) from November 2009
to February 2011. CE-1 data is a full-moon DOM data with a
resolution of 120m/pixel, which was created by stitching 628-
orbit three-line array CCD images obtained by the Chang’e-1
(CE-1) detector from November 2007 to July 2008.

WAC data

CE-1 data

Figure 5. Full-month registration data

3.2 Analysis of matching results and matching accuracy

Matching parameters: refer to the method of million standard
sub-frames for blocking, where the latitudes between 0 degrees
and 60 degrees are blocked according to the longitude differ-
ence of 6 degrees and the latitude difference of 4 degrees, the
latitudes between 60 degrees and 76 degrees are blocked ac-
cording to the longitude difference of 12 degrees and the latit-
ude difference of 4 degrees, the latitudes between 76 degrees
and 80 degrees are blocked according to the longitude differ-
ence of 24 degrees and the latitude difference of 4 degrees, and
the latitudes above 80 degrees are blocked as one block. The
whole moon is divided into 2072 blocks; the number of seed
points per block is 10; the initial search radius for matching is
set to 30 pixels.

After using correlation coefficient and CFOG algorithm match-
ing, as well as RANSAC to remove erroneous points, a total of

4,120 initial matching points were obtained. Figure 6 shows the
distribution of matching results in some low- and mid-latitude
regions and high-latitude regions.

Figure 6. Distribution of initial mating points (Moller projection)

700 checkpoints were evenly distributed to check the matching
accuracy. The maximum error was 1.2 pixels, the minimum er-
ror was 0.5 pixels, the average error was 0.96 pixels, and the
median error was 0.99 pixels. This indicates that the initial
matching points have achieved pixel-level accuracy, providing
a reliable accuracy guarantee for subsequent dense matching.

X direction
(pixels)

Y direction
(pixels)

XY direction
(pixels)

Maximum error 0.9 0.8 1.2

Minimum error 0.3 0.4 0.5

Average error 0.7 0.65 0.96

Mean square error 0.71 0.69 0.99

Table 1. Matching accuracy at the initial matching point

Based on the initial point, a total of 4118 Delaunay triangulation
networks were generated using spherical generation. Figure 7
shows the distribution of some triangulation networks in low-
and mid-latitude regions and high-latitude regions.

Based on the irregular Delaunay triangulation constructed at the
initial matching point, dense matching is performed under the
constraints of each triangulation. Matching parameters: using
the block Harris algorithm, the initial search radius is 10 pixels,
and 100,000 matching points are arranged overall. The triangu-
lation of each matching point is calculated, and the error value
of each dense matching point is calculated using the affine para-
meters calculated from the three initial matching points of the
triangulation. The error threshold is used to delete erroneous
matching points, resulting in a total of 68,213 encrypted points.
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20 degrees latitude
(northern latitude)

60 degrees latitude
(northern latitude)

80 degrees latitude
(northern latitude)

Figure 7. The effect of spherical Delaunay triangulation at
different latitudes

Uniformly extract 100 triangulation network checkpoints to check
the matching accuracy of the encrypted points. The maximum
value is 2.2 pixels, the minimum value is 0.36 pixels, the av-
erage value is 1.58 pixels, and the mean square error is 1.60
pixels. This indicates that the accuracy of the encrypted points
meets the matching requirements.

X direction
(pixels)

Y direction
(pixels)

XY direction
(pixels)

Maximum error 1.4 1.7 2.20

Minimum error 0.2 0.3 0.36

Average error 1.06 1.17 1.58

Mean square error 1.12 1.14 1.60

Table 2. Matching accuracy of encryption pointst

3.3 Analysis of the whole-month registration results

3.3.1 Qualitative analysis This section mainly focuses on
visual inspection, extracting 110 regions evenly at certain in-
tervals from the monthly data, and manually inspecting the re-
gistration effect. Figure 8 shows the distribution of inspection

regions and the inspection results for some low-latitude, mid-
latitude, and high-latitude regions.

As can be seen from the image rolling curtain diagram, there
are deviations in different latitudes before registration, and the
deviations are not consistent in different regions. However,
after registration, the deviations are smaller, indicating that this
method is suitable for large-scale, internally distorted image re-
gistration. From low-latitude to high-latitude regions, the su-
perimposition between the registered image and the reference
image is very good, reaching a precision of 1.5 pixels, indic-
ating that this method solves the registration problem at high
latitudes and improves the internal consistency of the corrected
full-moon image.

Visual inspection area distribution

Registering the front roller blind
(near the latitude of 22 degrees,

point 66)

Registered roller shutter
(near latitude 22 degrees,

point 66)

Registering the front roller blind
(near the latitude of 45 degrees,

point 83)

Registered roller shutter
(near the latitude of 45

degrees, point 83)

Registering the front roller blind
(near the latitude of 76 degrees,

point 103)

Registered roller shutter
(near the latitude of 76

degrees, point 103)

Figure 8. Visual inspection area distribution and comparison of
partial areas before and after registration (left is the reference

image)

3.3.2 Quantitative analysis In quantitative inspection, the
main approach is to evenly distribute inspection points across
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the entire month’s data, and evaluate the registration accuracy
by comparing the positional deviation between the registered
image and the reference image at each inspection point. Based
on the standard of one million images per frame, one inspection
point is extracted from each million images. The distribution of
inspection points is shown in Figure 9.

Figure 9. Distribution of quantitative inspection checkpoints

The error calculation formula for each checkpoint is:

∆xy =
√

∆x2 + ∆y2 (9)

The final calculation formula for the mean square error is:

∆XY =

√∑
∆xy

n
(10)

where ∆x = the difference of checkpoints in longitude direction
between the matching image and the reference image

∆y = the difference of checkpoints in the latitude direction
between the matching image and the reference image

∆xy = the comprehensive error for a single checkpoint

∆XY = the comprehensive mean square error of
single scene image

n = the number of checkpoints

This study separately calculated the deviations between the re-
gistration image and the reference image before registration,
and the deviations between the registered image and the ref-
erence image after registration. From the value of the mean
square error before and after registration, it can be seen that the
geometric position accuracy has been greatly improved after re-
gistration.

Error type X error
(pixel)

Y error
(pixel)

XY error
(pixel)

Pre-registration
error

17.50 11.35 20.86

Pre-registration
error

1.07 1.13 1.56

Table 3. Error before and after registration

To further analyze the deviation of different latitudes before and
after registration, a distribution diagram of errors with latitude

was created. The specific method is to take ten degrees as an
interval from 0-90 degrees, and calculate the average value of
errors within each interval.

From the distribution map of different latitude errors, it can be
seen that before registration, the deviation between different
latitudes is quite large, with the largest deviation occurring in
the polar regions. After registration using the method proposed
in this paper, the deviation between different latitudes tends to
be consistent, indicating that the internal distortion of the re-
gistered images is relatively small.As shown in Figure 10:

Figure 10. Distribution of different latitude errors before and
after registration

In addition, in order to verify whether the method proposed in
this article is applicable to high-latitude regions, the area above
75° latitude in the northern hemisphere before and after regis-
tration was cropped and converted to the polar stereographic
projection. 80 checkpoints were evenly distributed at certain
intervals, and the error values before and after registration were
calculated. From the comparison of errors, the geometric po-
sition accuracy of high-latitude regions has been greatly im-
proved after registration, which reflects the effectiveness of the
high-latitude processing method adopted in this article.As shown
in Figure 11, Table 4:

Figure 11. Distribution of checkpoints in the northern
hemisphere (above 75 degrees)
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Error type X error
(pixel)

Y error
(pixel)

XY error
(pixel)

pre-registration
error

17.5 14.3 22.6

post-registration
error

1.3 1.2 1.77

Table 4. Error before and after registration in high latitude areas

4. CONCLUSION

In view of the challenges of fully automatic registration such as
large texture differences and internal distortions in full-month
data, this paper proposes an automatic image registration method
based on triangular network constraints. The method first per-
forms fine-grained automatic matching to obtain initial match-
ing points. Using the initial matching points, an irregular tri-
angular network is established. Taking each triangle as a unit,
the location constraints of the three vertices are used to quickly
perform dense matching on the feature points inside the tri-
angle and calculate gross errors. For the initial matching points
and encrypted points in high-latitude regions, a single matching
point and a single triangular network are used as units, respect-
ively. The idea of memory projection forward transformation-
matching-projection inverse transformation is adopted to solve
the problem of texture distortion matching in high-latitude re-
gions. This matching method not only improves efficiency, but
also ensures the distribution uniformity of matching points in
full-month image data. By using the TIN+GRID geometric cor-
rection method, high-precision registration results are ensured,
especially solving the problem of local error points affecting the
overall registration result. Finally, by qualitatively and quantit-
atively analyzing the results of full-month registration, the ef-
fectiveness of this method is proven.
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