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ABSTRACT:

In this paper we present an approach to compute arbitrarily sized meshes of large scale environments. The meshes can be recon-
structed from laser-scanned point clouds or existing high-resolution meshes. The algorithm automatically builds a level of detail
hierarchy in the Cesium 3D Tiles format using an octree partition. The main contribution of this paper is a method that ensures
that the generated meshes for each level-of-detail stage are computed in a consistent manner to minimize visual artifacts between
different detail levels during rendering. Furthermore, both the reconstruction and simplification algorithm are designed to constrain
the memory consumption, which enables to process even very large data sets on consumer-grade hardware. The export into the
Cesium 3D Tiles format allows to render such large meshes efficiently in all web-based viewers that support this format. In our
experiments we evaluate the method on different datasets and assess the visual quality during the rendering process and analyze the
memory footprint as well as the runtime behaviour.

1. INTRODUCTION

3D point clouds of large scale environments are usually too
large to be rendered on consumer hardware. WebGL-based
viewers such as Potree (Schiitz et al., 2016) or Cesium (Cesium
GS Inc., 2022a) enable to interactively stream and visualize
such very large datasets on low-cost hardware. They achieve
this by converting the raw point cloud data into a multi-
resolution spatial hierarchy consisting of many independent
chunks using an octree partition scheme. In Cesium, this
concept in generalized further in the 3D Tiles format to support
arbitrary spatial hierarchies (Cesium GS Inc., 2022b). Gen-
erating such level of detail (LOD) representations from point
clouds is rather easy, as point clouds do not encode any surface

information and thus allow parts covering the same region to Figure 1. A reconstruction of the Jacobs University Campus in
be streamed and displayed in a convenient way using an addit- Bremen, Germany with 1.2 billion triangles. The inlaid image
ive subsampling scheme. In LOD rendering, multiple parts of shows the corresponding area in Google Maps. With our

an object with different resolutions are commonly visible at the approach, it can be displayed on any hardware via the Cesium
same time because the higher resolution data is still pending Viewer. The generated LOD structure allows efficient and fast
or visible chunks are much further away from the camera as rendering of only the visible sections, which are loaded at the
others. Thus, all of these parts have to be displayed alongside required resolution depending on the virtual camera position.

each other in a visually appealing way with consistent borders
to minimize artifacts. This is difficult to realize for meshes.
Hence, they are seldom used in the context of rendering of large
scale hierarchical data, even though more recent versions of the
3D Tiles format also include support for 3D meshes. Instead,
multi-resolution-meshes are mostly restricted to self-containing
objects, such as entire buildings, where an entire low-resolution
mesh is just replaced by a higher resolution version, if the ob-
ject is sufficiently close to the camera. For 3D point clouds cap-
tured by high-resolution 3D laser scanners, the data is usually
not available as multiple segmented objects. So visualization
of meshes based on point clouds, the consistent behaviour at
the chunk borders has to be taken into account during surface
reconstruction.

In this paper, we present an approach to generate large
scale multi-resolution meshes suitable for LOD-rendering us-
ing Cesium 3D Tiles. Our meshes are generated in a way which
allows display multiple LODs side-by-side without any visual
artifacts. The tile data required for rendering in Cesium-based
Viewers can be computed on consumer-grade hardware due to
a constant memory footprint. The resulting representations can
be deployed via a web server and displayed in any supported
web-based viewer. All algorithms discussed in this paper are
fully integrated in our mesh processing library LVR2 (Wiemann
et al.,, 2012) and are freely available under BSD 3-clause li-
cence'.
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2. RELATED WORK

As the amount of points in large 3D scanning projects can grow
arbitrarily large, usually the memory available on the GPUs of
consumer-grade hardware is not sufficiently large to load or let
alone to display the data in full resolution. Over the past years,
several approaches have been proposed to render very large
point clouds. Examples are, for instance, (Schiitz et al., 2016,
Hobu Inc., 2022, Seufert et al., 2020, Schiitz et al., 2020). They
all rely on hierarchical structures like octrees to subdivide the
points into spatial chunks with increasing detail in lower levels.
The point cloud chunks can be displayed consistently by addit-
ively combining all levels from the current one up to the root
of the hierarchy. More details can be loaded as required, e.g.,
using frustum culling and prefetching techniques, keeping the
memory requirements low. This simple but efficient rendering
technique cannot easily be extended to meshes. Among these
formats, the Cesium 3D Tiles (Cesium GS Inc., 2022b) spe-
cification does support mesh data in principle. However, auto-
matic subdivision of meshes into the necessary multi-resolution
structure is not yet available for large meshes. As meshes, in
contrast to point clouds, cannot generally be subsampled due to
geometric and topological constraints, more sophisticated sim-
plification schemes are required.

Simplification of self-contained meshes is a well understood
topic in computer graphics (Botsch et al., 2010). An exist-
ing fine-grained mesh is usually simplified in-core by removing
vertices and collapsing edges while trying to preserve as much
of the geometric surface information as possible, controlled by
an error metric such as quadrics (Garland and Heckbert, 1997)
or normal deviations (Melax, 1998). These approaches have
also been extended to out-of-core processing, enabling the sim-
plification of very large meshes (Lindstrom, 2003, Cignoni et
al., 2004). Typically, multiple versions of the same mesh are
generated in applications and exchanged dynamically during
rendering depending on their distance to the camera. As our
meshes result from an automatic reconstruction of large laser-
scanned environments, the required segmentation into separate
consistent objects is not available. Instead, the reconstruction
typically results in one large mesh possibly with several (small)
disconnected clusters in regions with low point density. Thus, it
is preferable to reconstruct and simplify such meshes in spatial
chunks - similar to the point clouds above. This simplification
algorithm must be able to generate adequate representations of
the geometry for multiple hierarchy levels with varying detail
from the finest at the bottom all the way up to the coarsest LOD
at the root of the hierarchy. In order to guarantee a geometric-
ally consistent mesh at any point during rendering, the resulting
mesh chunks must fit into all other level of the hierarchy to not
result in visual or geometric artifacts, as neighbouring chunks
of a mesh of the same resolution may not have been available
yet. Examples for such artifacts are shown in Figures 6 and 7.

Due to the excessive amount of memory required to process
large meshes as a whole, the subdivision algorithm has to pro-
cess the chunks out-of-core to not exceed the available main
memory, especially on low-cost hardware. In order to parti-
tion a mesh into a spatial hierarchy suitable for visualization,
many methods have been developed. The simple ones ignore
the explicit topology of a mesh entirely and treat it similar to
a point cloud. In (Rusinkiewicz and Levoy, 2000), a bounding
sphere hierarchy is generated from the initial mesh representa-
tion, where each sphere approximates the geometry and color
of all vertices it contains. In contrast to that (Baert et al., 2013)

use a sparse voxel grid. They build up the hierarchy by re-
cursively combining neighbouring voxel grids in an octree. Us-
ing frustum culling, the required LOD is generated in both ap-
proaches by traversing the hierarchy down to a node appropriate
for the current camera distance during rendering.

Other methods rely on existing high-resolution meshes.
In (Cignoni et al., 2004), the hierarchy is built by recursively
subdividing the space into a combination of tetrahedra accord-
ing to the underlying mesh geometry. Each tetrahedron is then
simplified independently under the constraint of shared border-
ing vertices to ensure a consistent geometry. The work of (Yoon
et al., 2005) uses a hierarchy of spatially close mesh regions
with similar triangle counts. Each leaf-region is then repres-
ented as a progressive mesh (Hoppe, 1996) and simplified us-
ing half-edge collapses. However, both algorithms assume that
the initial mesh is already available. In our use-cases this is
not the case, though. Instead, the raw data is only available in
form of high-resolution point clouds, from which the meshes
are reconstructed. In this process, it is not possible to build an
optimized hierarchy directly for the respective mesh geometry.
In this paper, we address this problem and provide an efficient
reconstruction algorithm.

In this spirit, the work of (Poliarnyi, 2021) is similar to ours,
as it also uses an octree and reconstructs the geometry for each
node using a combination of total generalized variation min-
imization (TGV) and Marching Cubes (Lorensen and Cline,
1987). However, whereas our algorithm is able to handle any
mesh or point cloud, their approach strongly relies on depth
maps from stereo-based methods or generated from 3D ter-
restrial laser scans.

In (Wiemann et al., 2018) we proposed a mesh reconstruction
method to handle arbitrary large input data. In this approach,
the data is first partitioned into spatially uniform chunks of fixed
size in an out-of-core fashion. Each chunk is then reconstruc-
ted independently of the others using the Marching Cubes al-
gorithm. To allow later re-integration of the chunks into a con-
sistent global mesh, every chunk has a small amount of overlap
with neighbouring chunks. Using this overlapping information,
the borders between neighbouring chunks can be corrected, res-
ulting in an artifact-free final mesh. However, this algorithm
only supports a single, global reconstruction resolution and thus
cannot generate a multi-resolution hierarchy.

In this work we present an extension of this large-scale mesh
reconstruction algorithm to support multiple LODs. It is able to
automatically generate the required multi-resolution hierarchy
from any existing mesh or point cloud data. Due to out-of-core
processing, the amount of main memory required for conver-
sion can be scaled and limited on demand, enabling such com-
putations even on low-cost hardware.

3. METHODS

In this section, we present the algorithm to compute consistent
meshes with different LODs. The core of the procedure is based
on the large scale reconstruction approach present in (Wiemann
et al., 2018). It is extended by a hierarchical LOD approach to
support the requirements of the targeted 3D Tiles format. The
main goal is to create consistent transitions between the differ-
ent detail levels to minimize visual artifacts. Finally, we ex-
ploit the chunk-based structure of the reconstruction algorithm
to limit the required memory, which enables our approach to
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Figure 2. Alignment of chunks in the meta grid. Indices on the
axes correspond the to global position of the voxel, the indices
encoded in the file names encode the position of the chunks.

run on consumer-grade hardware. The components of our al-
gorithm are detailed in the following sections.

3.1 Large Scale Reconstruction

The basis of our approach is the chunk-based reconstruction
method presented in (Wiemann et al., 2018). The main idea is
to generate a meta voxel grid that manages smaller sub-grids
of fixed size that can be stored in local memory, similar to
the voxel hashing strategy presented in (NieBner et al., 2013).
These sub-grids (chunks) contain all the necessary data to com-
pute a part of the global mesh, including the point cloud data,
surface normals and meta-data, i.e., the position of the chunk
within the global grid. While loading the point cloud, the single
points are sorted into the corresponding chunks on the hard
drive using memory mapped files to maximize performance.
Each file encodes the position of the chunk within the global
grid via meta indices that are encoded in the file name. With
this information it is possible to map local cell indices in the
chunks to global indices in the meta grid by adding the respect-
ive offsets, which is needed to identify neighbouring cells in the
following processing steps.

After parsing the initial point cloud, we get a set of partially
overlapping chunks as sketched in Figure 2. The partial overlap
is necessary to guarantee consistent vertex configurations at the
chunk borders without having to load adjacent cells from the
meta grid to interpolate. With this method it is possible to re-
construct the local triangle mesh directly via Marching Cubes.
The resulting chunks are directly built up to a consistent global
mesh after removing redundant vertices in the overlapping areas
in a post-processing step. This fine-grained initial mesh defines
the lowest hierarchy level of our reconstruction. The aim of
the following processing steps is to generate visually similar
meshes with lower resolution that blend over smoothly when
rendered.

3.2 Cesium 3D Tiles

Cesium 3D Tiles (Cesium GS Inc., 2022b) is an open specific-
ation for a file format that allows efficient rendering and pro-
cessing of arbitrarily large datasets. This is achieved by storing
the data in a multi-resolution hierarchy and loading only the re-
quired parts. The hierarchy itself is encoded as a tileset in a
JSON file alongside the location, bounding volume, geometric
error and potential children of each tile. The location points to
the data of the tile via a path or url. The data may be a mesh,
point cloud, combination thereof, or another tileset and must
be stored in the formats specified by 3D Tiles. The bounding
volume always holds a sub-volume that must contain the data
and all children entirely. It may be larger than required, but
setting the bounding volume too large will negatively impact
rendering performance, since viewers use this information to

determine visibility and required quality. The geometric error
encodes this quality, giving a measurement of how far a tile
deviates from the actual geometry that it tries to represent. In
the case of LOD, as it is used in this paper, this is a metric
of how much the simplification impacts the visual appearance
compared to the original mesh. Finally, there are the children of
the tile, which are in turn other tiles and their children, forming
a tree-like structure to represent the hierarchy. The children are
used to refine the parent tile by either adding detail to it or re-
placing it altogether with a higher quality version. This means
that the deepest children, or leaves of the tree, contain the most
amount of detail, whereas higher levels are coarser.

A viewer, like the one provided by Cesium (Cesium GS Inc.,
2022a), can use the bounding volume to determine the visibil-
ity of a tile, its size on the screen, and distance to the camera.
Based on these parameters, in combination with the geometric
error, it can select an appropriate LOD to render. This selec-
tion can also take the current resource usage into account. The
selected Tile is then loaded and displayed and later discarded
once it is no longer visible. This process allows the viewer to
always show as much detail as needed, while using as few re-
sources as possible. Details on the format specification can be
found in the official documentation provided by Cesium.

3.3 Hierarchical Level of Detail

To create a multi-resolution hierarchy, it is necessary to par-
tition the mesh into small parts. One possible algorithm to ac-
complish this is sketched in Figure 3. The mesh is first split into
segments based on the connectivity of the vertices and edges,
where a segment is a part of the mesh that is not connected
to any other parts. This division allows using existing bound-
aries instead of cutting the mesh. Cuts are problematic, since
both sides need to visually fit together across all LODs without
any gaps or other artifacts. The segmentation is problematic in
two edge cases, namely if there are too many small segments
or when some segments are too large. The quantity of small
segments is reduced by combining them back together into lar-
ger meshes. This is accomplished with a simple chunk grid,
as depicted on the left of Figure 3. The right part of Figure 3
shows the large segments being cut into chunks. Cutting can-
not be avoided in this context, and chunk-shaped cuts are used
to better align the meshes with the cuboid shape of bounding
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Figure 3. The process for dividing a mesh into parts, visualized
on a 2D example.
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In both cases the spatial extent of the chunks has to be known.
Furthermore, a threshold value for the distinction between small
and large segments has to be found. These values depend
strongly on the size and density of the processed mesh, so they
have to be configured by the user. For simplicity, a single para-
meter is used here, which serves as both the chunk size and
for the distinction of segments: A segment whose longest axis
is smaller than a chunk can not be subdivided and is therefore
called a small segment. All segments larger than a chunk are
called large segments. The generated chunks are then arranged
in an octree to form the hierarchy. This is achieved by suc-
cessively combining 2x2x2 adjacent chunks into a single super-
chunk. An example of consistent chunks at the highest LOD
within the hierarchy, that is used as basis to build-up this super-
structure, is shown in Figure 4.

As mentioned above, the large-scale reconstruction used in this
paper generates the mesh from pre-computed chunks. These
can also be used as the finest LOD in the hierarchy, allowing
for a very efficient integration of the hierarchy-generating al-
gorithm. The merging of the chunks into a single mesh by the
reconstruction and subsequent division into segments is skipped
as the chunks are directly used in the octree.

The different resolutions in the hierarchy are generated by sim-
plifying the super-chunks every time they are combined. This
ensures that they become coarser, the higher they are in the
hierarchy, while the bottommost layer contains the original
mesh. This process uses incremental simplification to achieve
the highest visual quality. The resulting LOD and its application
is shown in Figure 5. It demonstrates the usefulness of LOD,
since the difference in mesh quality is clearly visible when
viewed up close, but unnoticeable at the distance for which they
are intended.

Using incremental simplification automatically ensures that no
new holes appear within the mesh or that the topology is des-
troyed. However, this cannot be checked for connections out-
side the mesh, which is especially relevant for the boundaries
of the chunks. These chunks originally belonged to a single,
connected mesh and have to be recombined for the hierarchy.
However, a normal simplification might perform operations that
result in gaps between the chunks, as can be seen in Fig. 6.
Therefore, it is necessary to signal to the simplification that
no changes may be made to the boundaries. This can be im-
plemented by so-called “features”. Features are areas that are
highlighted by the caller of the simplification as special, like
sharp edges or borders, and therefore are not allowed to be ed-
ited. In the case of the subdivision of large segments, features
are placed along the cuts between the chunks. For the chunks
generated directly by the reconstruction, an overlap is present
to indicate the connection to the surrounding chunks. This in-
formation can be used by marking each vertex that is connected
to other vertices outside the chunk boundary as a feature. The
overlap itself is removed afterwards to avoid rendering artifacts.

The nature of the cuts and the design of the overlap ensure that
every feature vertex in one chunk has a corresponding feature
vertex with the same coordinates in an adjacent chunk. These
vertices need to be combined when fusing chunks in the higher
levels of the hierarchy. Finding such duplicates is implemen-
ted by a radius search around the vertices. Since the positions
should be exactly identical in theory, the search could also be
restricted by testing for equality. However, due to the limited
accuracy of floats, especially when considering separately gen-
erated chunks, there may be deviations that prevent the detec-

tion exact equality due to numerical issues. Therefore, such a
radius search is also performed with a very small bound to ac-
count for such inaccuracies. However, this may result in very
close but not identical vertices being grouped together, poten-
tially breaking neighboring faces. This is less of a problem here,
as the face has to be very small for this to happen. For the actual
merging, one of the vertices must be deleted and its neighbor-
hood information transferred to the other vertex. This is a very
complex operation, since the adjacent half-edges of a vertex al-
ways form a closed ring. A join would thus have to break and
join two or more half-edges of these rings, for which there are
no ready-made methods on classical half-edge meshes due to
the complexity and number of edge cases. Instead, this is usu-
ally handled by also deleting all faces adjacent to the vertex to
be deleted and then re-inserting them with new vertices. The
necessary steps for repairing the rings when deleting and in-
serting faces are well researched and pre-implemented by most
half-edge mesh libraries. For our purposes, we use the Polygon
Mesh Processing Library (PMP)?, as it has a simple interface
and is therefore easy to integrate into existing software.

Since the chunks generated by the large scale reconstruction are
used individually without being merged into a mesh, we dis-
covered that a simple overlap may still result in minor incon-
sistencies between chunks, as demonstrated in the left image
in Figure 7. These were previously handled during a merging
step, which is skipped in this context. Replicating the neces-
sary behavior without merging the chunks may not always be
correct, so we decided to unify the truncated signed distances
(TSDF) that are used for reconstruction instead. For that, the
TSDFs of overlapping regions are averaged to ensure that they
are identical in both chunks. This fusion relies on a weighted
average where the weight is determined by the distance to the
center of the corresponding chunk, so that central values receiv-
ing a higher weight than those near the edges. The result of this
can be seen in the right image of Figure 7. It is worth noting that
the removal of such gaps is necessary not just to avoid visual ar-
tifacts, but also to ensure that merge algorithm of chunk borders
for higher LOD finds correct corresponding vertices.

3.4 Memory Bounding

When using large-scale meshes, the limits of available memory
are quickly reached. In particular, when generating the hier-
archy, copies of the mesh must be made in order to simplify
them. For this simplification, the mesh is also required in half-
edge mesh format, which requires a lot of memory. So the
meshes are stored on disk and reloaded on demand. Despite
this, memory overflow can occur if too many partial meshes
are loaded at the same time. Our implementation allows to
create and simplify super-chunks in parallel. Hence, memory
usage scales with the number of CPU-cores. To restrict this,
simple heuristics are used to limit the global memory consump-
tion. The minimal setting only uses a single thread to keep the
memory usage as low as possible at the cost of a slower runtime.
The moderate mode only uses a limited, user-defined number
of parallel processes (default: 25% of the available CPU cores).
Moderate is the preferred option since minimal is too restrictive
in most cases. In unbounded mode it is assumed that memory
usage is not an issue. It allows to use all CPU-cores while also
keeping the chunks loaded in memory to speed up the process
as much as possible. These options can only be used when pro-
cessing pre-computed chunks as produced by our large-scale

2 https://www.pmp-library.org
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Figure 4. Visualization of chunks in the mesh data.
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Figure 6. A chunked mesh with three LOD, from finest (left) to coarsest (right). The LOD-generation in this example did not handle
chunk boundaries correctly, which results in easily visible gaps forming in the floor of the right image.
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Figure 7. An example of the gaps that can arise between chunks
with insufficient overlap during the reconstruction (left). In the
image in the right the same overlap was used, but with unified

TSDF-values.

reconstruction. If an existing mesh is used, it is always neces-
sary to load it completely.

4. EXPERIMENTAL RESULTS

4.1 Qualitative Results and Visual Inspection

We evaluated our implementation on several freely available
3D data sets from the Robotic 3D Scanning Repository® and
the RIEGL Pointcloud Samples*. The datasets were chosen to
cover different practical aspects such as varying point density,
reconstruction volume and noise level. To benchmark our ap-
proach, we reconstructed them with LVR2 at a voxel resolu-
tion of 5cm, generated the chunking structure and tracked the
memory consumption using KDE Heaptrack®. The resulting
meshes were exported into the 3D Tiles format and deployed
on a web server for visual inspection and benchmarking. The
reconstructed meshes are shown in Figure 8. They consist of up
to 1.2 billion triangles and cover areas of up to 851 760 square
meters, cf. Table 1.

To assess the visual quality of the meshes during data download
in the Cesium viewer, we used the CIE76 method according to
EN ISO 3668. Although this measure is deprecated, we think
it is a fast and good measure to assess the similarity of ren-
derings, as we are mainly interested in the number of differing
pixels. For that, we computed the number of differing pixels
over time and compared it to the highest achievable resolution.
The results of this experiment are shown in Figure 9. It can be
seen that all data sets except Campus are loaded within a few
seconds with good quality. For Campus, the loading time is sig-
nificantly longer, as the dataset itself is more than ten times as
large as the other ones. At that stage, an acceptable visual qual-
ity is achieved with a lower level of detail. In most cases this
is preferable over missing data or lags in the virtual navigation
within the scenes. The steps in the graphs can be explained with
the way the data is loaded. Once a new chunk with higher detail
is loaded, a complete area of the rendered scene is replaced with
a more detailed model. Hence, the visual quality improves and
stays constant until the next detail level is loaded. This beha-
viour properly reflects the way the data is organized and loaded
in our approach.

4.2 Influence of Reduction Parameters
The main parameters that influence the appearance of the gen-

erated meshes are the reduction factor, which determines how
many triangles are removed, the number of detail levels that are

3 http://kos.informatik.uni-osnabrueck.de/3Dscans/

4 http://data.riegl.international/
riegl-pointclouds-samples-in-potree.html

5 https://github.com/KDE/heaptrack

Table 1. Statistics for the evaluated datasets for a voxel size of
5 cm. Numbers in millions, lengths in meters.

Points Faces  Vert. Dimensions
Campus 2200 1200 610 819 x 1040 x 195
Roundhouse 1900 97 52 280 x 255 x 32
Castle 415 82 46 152 x 180 x 25

computed (combine depth) and the threshold for normal devi-
ation. Fig. 9 shows development of the visual quality of the
rendered data sets while loading the data. The left image shows
the time for increasing number of detail levels while keeping
the reduction factor constant. The central one shows the quality
for two detail levels but different reduction settings.

When varying the number of levels with fixed reduction factor,
more levels increase the quality of the initial visual results.
Here, more LODs help to load to relevant areas at high quality
faster. This only holds for the first few seconds. Later on, the
higher number of detail levels requires more data to be trans-
ferred, which significantly increases the loading time. Here,
fewer levels with more detailed models help to reduce the load
time. However, fewer levels reduce the possibilities to simplify
the meshes, hence especially for large scenes, more levels with
coarser geometry are required to quickly provide visually com-
pelling results. In our implementation we therefore set the de-
fault number of detail levels to three.

The other experiment shows that — as expected — with a fixed
detail level, more reduced models lead to shorter loading times.
High reduction however leads to problems with the incremental
simplification, since it can only simplify meshes by a certain
amount given its quality constraints. A higher reduction on
each level means that this point is reached sooner, preventing
the higher levels from further simplifying the mesh. This, in
turn, results in identical LODs in the higher levels and there-
fore duplicate loads and slower loading times the more levels
there are. Hence, we chose to start with a medium compression
level of 0.2 to complement the previously set number of three
levels.

The influence of the accepted normal deviation is shown in the
graph on the right in Figure 9. A smaller angle means that
the normals may deviate less from their original direction, so
that the simplification is finished earlier. This results in a LOD
where the operations with the greatest visual impact are not
performed, so that the meshes are more accurate but less re-
duced. For the graph in the figure, the strictest configuration
with an allowed deviation of 10 degrees was used as reference.
It can be seen that 10° to 30° deliver the best meshes, while
the other configurations do not exceed 80% similarity. In return
such configurations have much shorter loading times, since the
meshes could be reduced more. Incremental simplification usu-
ally ensures that the operations with the least visual impact are
executed first. The deviation of normals does not influence this
prioritization, but only prevents operations that have too much
deviation.

Generally, the usage of this approach would be favourable as a
good compromise between quality and compression, if it could
be limited to higher LODs. However, in our mesh simplifica-
tion library no such weighting is implemented. Hence, we will
include this in future work.
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Figure 8. Bremen Campus, Castle and Roundhouse rendered in the Cesium viewer (top) and similarity scores during loading (bottom).
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Figure 9. Similarity scores over time with fixed reduction factor of 0.4 and up to four LODs (left), three LODs and varying reduction
factors (middle) and fixed LOD and reduction factor (same values as left and middle).

Table 2. Runtimes in minutes for 3D Tiles generation.

Mesh  Chunk Cloud
Campus 265 215 1169
Roundhouse 28 17 83
Castle 15 12 95

4.3 Runtime and Memory Consumption

The runtime experiments were performed on an Intel Xeon
Workstation with 52 Cores and 192 GiB RAM. This setup was
primarily chosen due to the large amount of main memory re-
quired to compare our chunk-based approach with direct recon-
struction without chunking. To make the results comparable,
we performed all experiments in this paper on this computer.
Due to the overall low memory requirements, the results should
be reproducible on standard desktop hardware as well. The
runtimes to convert our data into the 3D Tiles format is sum-
marized in Table 2.

The Mesh and Chunk columns report the time to build a tileset
from pre-computed meshes or chunks. In these cases no surface
reconstruction is necessary, hence the times are significantly
lower compared to last column, where the complete reconstruc-
tion time is included. Overall, the times reported here indicate,
that the generation of such data is feasible on consumer grade
hardware.

An important feature of our implementation is the limitation of
the memory consumption. In contrast to previous approaches,
the amount of required memory does not increase with the size
of the reconstructed area. The memory usage of the creation
process of this mesh can be seen in the diagrams in Fig. 10.

minimal
moderate
unbounded

Memory (GiB)
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Figure 10. Memory consumption of our approach over time.
The bottom graph is a zoomed-in view of the bottom area in the

upper graph.

Here, the memory consumption is reported on different scales.
The upper part shows the total consumption of the unbounded
reconstruction on the Campus dataset, where no memory optim-
izations are used. Here, the peak is around 200 GiB, which is an
order of magnitude more than capacities on consumer hardware
(8 to 32 GiB). However, the process finishes early and requires
only about 25% of the time required with the minimal and mod-
erate bounded approaches. The lower part details the memory
allocation for the latter. The moderate heuristic uses only a
little more RAM than the minimal approach but needs only half
the time. For the presented datasets in both cases the required
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Figure 11. Memory consumption of an entire reconstruction and
LOD generation of the Campus dataset from a point cloud.

memory is well below 2 GB. This indicates that the moderate
heuristic is suitable for consumer hardware and delivers the res-
ults nearly 50% faster than the minimal setting. Hence, this
method should be preferred in most application scenarios.

A full measurement of the reconstruction from a point cloud us-
ing Large Scale Reconstruction with the newly added extension
to generate 3D Tiles can be seen in Fig. 11. The overall process
does not exceed 4 GiB when set to minimal, which is still well
within the constraints of consumer hardware.

5. DISCUSSION AND OUTLOOK

In this paper we presented an approach to generate Cesium 3D
Tiles datasets for fast rendering from point clouds on consumer
hardware. The presented approach is able to generate visually
consistent meshes of arbitrarily large areas on standard PCs.
The main benefit of our method is, that it is able to limit the
memory consumption while maintaining reasonable perform-
ance in terms of computation time. In contrast to other methods
that requires manual pre-segmentation, our algorithm computes
consistent meshes for different levels-of-detail that are auto-
matically converted into the 3D Tiles format. In future work,
we plan to integrate texture information from camera data into
the reconstruction process to generate visually more compel-
ling 3D models. Also, automatic segmentation methods could
be included, to replace instances of reoccurring objects with
pre-defined models in order to further enhance the visual qual-
ity and reduce the amount of data transferred.
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