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Abstract 

 

Bathymetric LiDAR data plays a crucial role in mapping underwater topography, enabling applications in coastal monitoring, 

environmental assessment, and seabed classification. However, the inherent complexity and noise in 3D bathymetric point clouds 

pose challenges for accurate classification. To address this, we propose a voxel-based method for efficient classification of 

bathymetric LiDAR data, moving beyond traditional point-wise processing of unstructured point sets. In our approach, 3D points are 

aggregated into structured voxel grids, and their features are embedded within each voxel. To capture spatial dependencies between 

voxels, we employ a window-based attention mechanism that partitions voxel features into local windows where self-attention is 

applied. To enhance contextual learning across regions, we adopt a shifted window strategy inspired by Swin3D, allowing voxels 

near window boundaries to interact with adjacent regions and reducing the locality limitation of fixed windows. To improve 

computational efficiency, we use a voxel selection mechanism. Using HDBSCAN, we cluster voxel features within each window 

based on density and retain representative voxels with distinct characteristics. This reduces redundant attention operations while 

preserving critical structural information. Furthermore, to capture both fine-grained and large-scale spatial patterns in bathymetric 

data, we design transformer heads grouped by scale. Each head group processes voxels from windows of varying sizes, enabling the 

model to learn multi-scale representations. The fused output captures both detailed local variations and broader contextual cues. 

Experimental results demonstrate the effectiveness of our method, achieving an overall classification accuracy of 75.4% on 

bathymetric LiDAR datasets, highlighting its capability in underwater terrain analysis. 

 

 

1. Introduction 

Bathymetric Light Detection and Ranging (LiDAR) technology 

plays a crucial role in mapping underwater environments, 

particularly in shallow waters where accurate classification is 

essential for applications such as coastal monitoring, habitat 

analysis, and hydrographic surveying. However, the complexity 

of shallow water regions, influenced by surface reflections 

(material), depth variations, and submerged vegetation, presents 

significant challenges for automated classification methods 

(Mandlburger et al., 2015; Rhomberg-Kauert et al., 2024). 

 

Traditional classification approaches rely on handcrafted 

features, segmentation techniques, or conventional machine 

learning models, which may struggle to capture complex spatial 

relationships within the data. To address this, deep learning-

based methods have been explored, leveraging feature 

extraction from point cloud data. However, many existing 

approaches have limitations in effectively modeling the 

dependencies between extracted features across different scales. 

 

In this study, we propose a multi-scale transformer-based model 

to learn feature dependencies for bathymetric LiDAR data 

classification. Once features are extracted from raw point 

clouds, our model learns relationships between pre-extracted 

features. Extracted features can be handcrafted based on 

geometric properties and statistical descriptors or they can be 

derived from other feature extraction techniques like KPConv 

(Thomas et al., 2019). By incorporating multi-scale attention 

mechanisms with different window sizes for query and key 

features, the suggested approach effectively captures both local 

and global dependencies within the data. We evaluate our 

approach on a real-world bathymetric LiDAR dataset captured 

by a new developed sensor from Fraunhofer Institute for 

Physical Measurement Techniques (IPM).  

 

The classification method introduced in this study is tailored to 

address the complex variability observed in LiDAR signal 

returns, which can arise due to fluctuating water clarity and 

varying levels of submerged vegetation. By integrating both 

spatial structures and spectral characteristics from the collected 

data, the method ensures accurate identification and separation 

of diverse environmental features. 

 

This refined technique offers significant advancements for 

ecosystem assessment, water resource modeling, and 

environmental planning, positioning it as a practical solution for 

both academic exploration and operational use in marine and 

freshwater analysis. Through application to actual field datasets, 

the study highlights the method’s strength in delivering high 

accuracy while maintaining efficient processing performance. 

 

Key technical specifications of the system include a laser pulse 

duration of approximately 1 ns and a ground footprint 

measuring 5 cm. The dual-wavelength system operates with 

green light at 532 nm and infrared at 1064 nm, classified under 

laser safety category 2M. It supports a pulse emission frequency 

of 35,000 pulses per second, with data sampled at an ultra-high 

rate of 5 giga samples per second. Both laser beams green and 

infrared are emitted simultaneously along a shared axis and 

alignment, and the scanning mechanism follows an elliptical 

trajectory with a beam divergence angle of ±15 degrees. 

 

The key contributions of this paper are: (1) A multi-scale 

transformer-based approach for learning feature dependencies in 

bathymetric LiDAR data classification. (2) Integration of multi-
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scale attention mechanisms to capture spatial relationships at 

different scales. Utilization of handcrafted or pre-extracted 

features instead of direct point cloud processing. Finally, 

evaluation on real-world datasets, showcasing efficiency of the 

proposed method in shallow water environments. 

 

2. Related Works 

2.1 Hand Crafted Features 

LiDAR systems tailored for underwater topography commonly 

known as bathymetric LiDAR have become increasingly 

valuable for mapping shallow marine ecosystems. By delivering 

fine-scale elevation and reflectance data, this technology 

provides crucial insight for identifying seafloor habitats and 

ecological patterns. Numerous investigations have assessed its 

suitability for differentiating underwater substrates and 

biological zones across a variety of aquatic settings. 

 

For instance, Zavalas et al. (2014) showcased how bathymetric 

LiDAR can effectively delineate habitats dominated by 

temperate macroalgae. Utilizing decision tree classifiers and 

leveraging morphological indicators like slope and surface 

complexity, their methodology achieved classification accuracy 

exceeding 70%. Their findings affirm the viability of LiDAR 

for capturing ecological variation in dynamic coastal regions. 

 

In another study, Kumpumäki et al. (2015) introduced a 

technique centered on waveform analysis, where the raw 

LiDAR signals were decomposed to understand interactions 

between the seabed and the water column. By clustering these 

signal features using a Self-Organizing Map (SOM), they were 

able to generate habitat maps that closely corresponded with 

known ecological distributions. This unsupervised approach 

underlined the promise of full-waveform LiDAR for 

autonomous seabed mapping. 

 

Shifting focus to tropical environments, Su et al. (2018) 

conducted research in the South China Sea to distinguish coral 

reef habitats. They fused bathymetric terrain metrics with 

intensity features extracted from airborne laser bathymetry 

(ALB) waveforms. Their machine learning model, based on 

Support Vector Machines (SVM), achieved a classification 

accuracy greater than 93%, demonstrating how the integration 

of shape and reflectivity data can significantly enhance reef 

detection. 

 

Tulldahl et al. (2013) examined the benefits of using multiple 

sensors by combining airborne bathymetric LiDAR data with 

high-resolution imagery from satellites. By applying maximum 

likelihood and random forest algorithms, they were able to 

differentiate six benthic categories with around 80% accuracy. 

The fusion of satellite imagery was particularly effective for 

improving depth calibration and compensating for water 

turbidity, thus enhancing mapping accuracy in complex 

nearshore environments. 

 

Collectively, these studies provide compelling evidence for the 

growing role of bathymetric LiDAR in seabed classification. 

Techniques combining waveform signal interpretation, 

geomorphic analysis, and advanced classification algorithms 

alongside the fusion of different remote sensing platforms have 

significantly boosted the reliability and scalability of habitat 

mapping efforts. 

 

More recently, advancements in LiDAR applications have 

extended to detecting specific seabed structures such as 

submerged boulders. Hansen et al. (2021) proposed a semi-

automated framework that merges topo-bathymetric LiDAR 

data with Random Forest algorithms. By filtering point clouds 

to isolate the sea floor and deriving geometric and intensity-

based features, they successfully identified boulder locations. 

The approach achieved a 57% recall rate and 27% precision, 

underscoring the promise of automated detection in coastal 

habitat assessments. 

 

In a novel direction, Rhomberg-Kauert et al. (2024) applied 

unsupervised clustering techniques to classify aquatic 

vegetation using 3D LiDAR point clouds. Their method uses 

UMAP for dimensionality reduction, allowing for more nuanced 

grouping of points with similar characteristics. Employing the 

surface-volume-bottom separation method (Schwarz et al., 

2019) to extract underwater data, they applied density-based 

clustering to distinguish vegetative from non-vegetative areas. 

 

2.2 Deep Learning-based Methods 

Prior to transformers, point cloud classification predominantly 

relied on deep learning models such as PointNet (Qi et al., 

2017a) used shared multilayer perceptrons (MLPs) and max 

pooling to extract global features. PointNet++ (Qi et al., 2017b), 

introduces hierarchical feature extraction through local 

neighborhoods. DGCNN (Wang et al., 2019), utilizes edge 

convolution to capture local geometric relationships. Voxel-

based networks (Graham et al., 2018) that convert point clouds 

into voxel grids and apply 3D convolutions. While these 

methods excel at feature extraction, they struggle with capturing 

long-range dependencies efficiently. Transformers, originally 

introduced for natural language processing, have been adapted 

to point cloud data due to their capability to model non-

euclidean spatial relationships. 

 

Point transformer (Zhao et al., 2021), introduces self-attention 

mechanisms that directly operate on points, leveraging local 

feature aggregation and attention-based feature learning. PCT 

(Guo et al., 2021) employs offset-attention to enhance feature 

extraction while maintaining permutation invariance. 

 

In order to enhance the ability of transformers to better 

determine class differences and to find out a strong dependency 

between different features, hybrid transformer models are 

introduced. Swin3D (Liu et al., 2021), extends Swin 

transformer to 3D point clouds, employing hierarchical feature 

learning with shifted windows. SparseFormer (Wang et al., 

2023) exploits a sparse MLP component to effectively capture 

features while accounting for the distinct nature of 3D point 

clouds. Furthermore, a multi-scale feature aggregation module 

is integrated to enrich contextual understanding. 

 

Although transformer-based models have advanced point cloud 

classification, several challenges still remain regarding 

computational complexity, since transformers often have high 

memory and computational requirements. On the other hand, 

handling irregular and sparse point distributions is an open 

problem. Finally, sensitivity to noise and occlusions requires 

further exploration. Therefore, optimizing attention mechanisms 

for 3D data, and exploring self-supervised learning for point 

cloud representations plays an important role for improving 

results based on transformers. 

 

3. Methodology 

In this study rather than working directly on unstructured point 

sets voxel-based representation is used to process 3D point 
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clouds. Therefore, points are grouped in discrete voxel 

structures. Once the raw point clouds are embedded by voxels, 

feature extraction step will be applied on these voxels. 

3.1 Feature Extraction 

Accurate data classification fundamentally relies on the 

extraction of discriminative features. In this study, both 

geometric and colour information are utilized to derive 

meaningful features for model training. Nevertheless, the 

proposed architecture is not limited to a specific type of feature 

representation. It is designed to be flexible and compatible with 

a wide range of feature extraction techniques, including but not 

limited to deep learning-based methods such as PointNet++, 

KPConv, and similar architectures. Therefore, the proposed 

technique can improve the performance of existing deep 

learning-based methods by explicitly modeling the 

dependencies between neighboring voxels. By more effectively 

analysing the relationships among adjacent voxel features, the 

method enhances the ability to distinguish between classes with 

overlapping characteristics and ambiguous boundaries. 

 

The primary objective of the proposed method is to enhance 

classification performance in scenarios involving classes with 

closely overlapping boundaries and high inter-class ambiguity, 

which are common in bathymetric datasets. Such challenges are 

particularly pronounced in regions where aquatic vegetation 

intersects with the water surface or seabed. The presence of 

additional classes, such as coral reefs, further increases the 

complexity by introducing more class intersections, thereby 

elevating the risk of misclassification near class boundaries. The 

proposed framework is specifically designed to address these 

issues and mitigate boundary-related classification errors. 

 

To effectively describe the spatial organization of point clouds 

within individual voxels, we analyze their geometric 

configuration through a variety of shape descriptors. These 

include indicators such as sphericity, linearity, planarity, surface 

variation, omnivariance, and anisotropy. Such metrics, derived 

from the eigenvalues of the covariance matrix of the local point 

distribution, provide insight into whether the underlying 

structure resembles a linear, flat, or spherical formation, 

following the methodologies outlined by Brodu and Lague 

(2012) and Weinmann et al. (2013). These geometrically-

derived attributes enable robust shape recognition within 

localized point sets. 

 

In addition to geometric descriptors, we compute a range of 

statistical metrics from the intensity and elevation values 

associated with points in each voxel. This includes basic 

statistical moments such as the mean, median, mode, standard 

deviation, and skewness. Both green and near-infrared (NIR) 

returns are incorporated to ensure a comprehensive 

representation of the point cloud data. 

 

Further enhancing the feature set, height-based parameters are 

calculated to capture vertical structure. Treating the center of a 

voxel as a reference point along the Z axis, the maximum and 

minimum elevation values of the contained points (denoted as 

Zmax and Zmin, respectively) are used to describe vertical extent.  

3.2 Multi-scale Attention 

Each voxel comprises a collection of 3D points and their 

associated feature representations. Let the set of voxels be 

defined as υ= {vi | vi = (Pi, Fi)}, i=1, …, | υ |, where vi denotes 

the ith voxel. Each voxel vi contains a set of 3D points Pi ∈ ℤ3, 

representing the spatial coordinates of the points, and a 

corresponding set of feature vectors Fi ∈ ℝC, where each vector 

describes C dimensional features for the associated point. 

In order to find out dependencies between features of voxels, 

window-based attention mechanism is considered. Window-

based attention partitions voxelized features into local windows. 

For each window cantered at position Cj (Cj ∈ ℤ3, j = 1, …, w), 

a set of voxels can be selected with determined points and 

corresponding features.  

To train a transformer-based model for classification tasks, the 

input must be structured to include a set of components: query, 

key, and value representations. Given the adoption of a multi-

scale approach for model training, it is essential to utilize 

windows of varying sizes. A fixed window size is employed for 

the query. In contrast, two distinct window sizes are utilized for 

the keys, referred to as key1 and key2. While additional key 

window sizes could be introduced, doing so would result in 

increased and potentially redundant computational complexity. 

The set of query voxels is defined as those enclosed within the 

query window. Similarly, the voxels associated with key1 and 

key2 are determined by their respective window embeddings.  

Additionally, the idea of Swin3D to shift the window on the 

data is also employed which helps exchange information across 

windows, reducing the problem of local window limitations. In 

non-overlapping window attention, voxel features are divided 

into windows, and self-attention is applied inside each window. 

In shifted window attention, the windows shift by a certain 

stride (typically half the window size in each spatial dimension) 

which allows voxels near window boundaries to interact with 

voxels in adjacent windows. This shifting helps merge 

information between neighboring voxel regions across different 

parts of the model. 

3.3 Voxel Sampling by HDBSCAN Clustering 

To reduce the computational cost associated with attention 

computation at each window stage, which involves considering 

features from embedded voxels within a window, we propose a 

strategy of selecting features from voxels that exhibit distinct 

characteristics. Specifically, we utilize HDBSCAN 

(Hierarchical Density-Based Spatial Clustering of Applications 

with Noise) (Campello et al., 2023) to automatically determine 

the number of clusters based on the feature density within each 

window. Voxels belonging to the same cluster are expected to 

share almost similar feature representations, thus we prioritize 

retaining voxels with differing feature information to minimize 

redundant attention computation within each window.  

 

HDBSCAN is a hierarchical clustering algorithm module 

designed to discover clusters of varying densities in high-

dimensional or spatial data. It generalizes the DBSCAN 

algorithm by replacing the fixed-density threshold with a 

hierarchical approach based on mutual reachability distances. 

The algorithm begins by estimating the core distance for each 

point defined as the distance to its kth nearest neighbor, where k 

determines the minimum number of samples. Using these core 

distances, HDBSCAN constructs a mutual reachability graph, 

which is then transformed into a minimum spanning tree (MST) 

that captures density-connected structures in the data. The MST 

is progressively condensed to form a cluster hierarchy, and the 

most stable clusters are selected using the excess of mass 

(EOM) or leaf selection methods. Points not belonging to any 

stable cluster are labeled as noise. HDBSCAN is particularly 
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well-suited for clustering noisy data, non-globular clusters, and 

data with varying local densities. It supports arbitrary feature 

spaces by allowing the use of custom distance metrics. In this 

study, HDBSCAN was employed to cluster a matrix of high-

dimensional features extracted from 3D point clouds inside of 

each attention window.  

 

3.4 Transformer-based Classification 

In order to have a multi-scale attention to capture fine-grained 

details and long-range dependencies, we prefer to have different 

transformer heads which learn distinct levels of self-attention. 

Therefore, transformer heads should be explicitly partitioned 

into multiple groups (Dong et al., 2022). Note that, each group 

processes voxels sampled from windows of varying sizes. We 

want to ensure that each head group specializes in capturing 

information at a specific scale. By integrating outputs from all 

head groups, this approach effectively captures mixed-scale 

features, encompassing both broad contextual information and 

intricate local details. 

 

To capture contextual relationships across different spatial 

scales, we employ a transformer encoder that applies 

independent multi-head attention operations over two voxel 

groupings. Given the query voxel group Vq = (Xq, Fq), where  

Xq ∈ ℤNq×3 and Fq ∈ ℝNq×C, the encoder also receives two key-

value groups (Xk1, Fk1) and (Xk2, Fk2) at different scales or 

receptive fields. 

 

Each scale's attention is computed independently using multi-

head attention with relative positional encoding (RPE): 

 

Ỹ1 = MHA (Fq, Fk1; RPE (Xq, Xk1)), 

Ỹ2 = MHA (Fq, Fk2; RPE (Xq, Xk2))                                          (1) 

where RPE (Xq, Xki) denotes a relative positional encoding 

module (Shaw et al., 2018; Wu et al., 2021) that encodes spatial 

offsets between the query and key voxel coordinates. These 

encodings are added to the attention logits prior to softmax, 

enabling the network to incorporate geometric structure into the 

attention mechanism. 

 

The outputs from both attention branches are concatenated and 

then passed through a layer normalization, as expressed by the 

following formula: 

 

Z = LayerNorm (Concat (Ỹ1, Ỹ2))                                           (2) 

Subsequently, a feed-forward network (FFN) enhances the 

representation: 

 

Y = Z + FFN (Z)                                                                      (3) 

where the FFN is composed of multi-layer perceptron. This 

architecture effectively fuses information from multiple spatial 

scales while leveraging geometric cues through positional 

encoding, improving the network's ability to model complex 3D 

structures. 

4. Results 

The developed method was evaluated using a point cloud 

dataset collected from a shallow lake. This section presents both 

numerical analyses and visual assessments of the classification 

performance. The classification framework targets five distinct 

categories: water surface, aquatic plants, lakebed, trees, and 

terrestrial land. 

 

4.1 Dataset 

A shallow lake environment was chosen as the study area for 

data acquisition. The compiled dataset contains approximately 

35 million 3D points. Each point is characterized by spatial 

coordinates (X, Y, Z), return intensity, and four amplitude 

measurements obtained from green and near-infrared (NIR) 

laser returns. Specifically, both high-resolution and low-

resolution amplitude values were recorded for each laser 

wavelength. 

 

Expert annotators manually labelled the point cloud to establish 

a reliable reference (ground truth). The dataset was split into 

subsets for training, validation, and testing. Roughly 70% of the 

points were allocated for training, with the remaining 30% 

designated for testing. A portion of the training data 10% was 

set aside to serve as the validation set. Figure 1 displays the 

distribution of train and test sets, with top-down views shown in 

subfigures (a) and (b), respectively, and a lateral (side) view of 

the lake provided in subfigure (c). 

 

4.2 Evaluation Metrics 

To maintain consistency with contemporary studies, our 

performance evaluation aligns with the methodology outlined 

by Sokolova et al. (2006). The analysis incorporates several key 

performance indicators: overall classification accuracy, recall 

(Rc), precision (Pr), and the F1 metric. 

 

Total accuracy represents the fraction of correctly predicted 

samples out of the entire test dataset. Recall evaluates the 

model’s success in retrieving all relevant examples for each 

category. Precision focuses on the accuracy of positive 

predictions made by the classifier. The F1 score serves as a 

harmonic mean of recall and precision, offering a 

comprehensive performance measure. 

                         (4) 

 

In this context, TP refers to instances where the model 

accurately identified the correct category (True Positive), FP 

denotes cases where the prediction was incorrect (False 

Positive), and FN represents instances where the model failed to 

detect the correct category (False Negative). 

 

The experimental findings reveal that the proposed approach is 

effective in distinguishing and assigning test samples to five 

separate categories, achieving an overall classification rate of 

75.4%. A visual depiction of classification errors is provided in 

Figure 1 (d), where correctly identified points are shown in 

gray, while misclassified points are highlighted in red. 

 

Furthermore, a visual representation of the classification output 

is provided in Figure 1. A detailed breakdown of classification 

performance across categories is presented in the confusion 

matrix, found in Table 1. 

 

5. Conclusion 

In this study, we presented a multi-scale transformer-based 

approach for classification of bathymetric point clouds. The 

method leverages attention mechanisms at different spatial 

scales by employing varying attention window sizes during 

training. This multi-scale attention design improves the model's 

ability to effectively capture complex dependencies among 
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features, leading to more accurate classification across diverse 

seabed classes. 

 

Each attention window encompasses a distinct number of 

voxels, with varying point distributions and feature 

characteristics. To address the computational challenges 

associated with attention over large voxel sets, we integrate 

HDBSCAN clustering within each attention window. This 

unsupervised clustering groups voxels in feature space, allowing 

for representative sampling of voxels from distinct clusters, 

thereby reducing the number of voxels involved in the attention 

computation without sacrificing performance. 

 

The proposed framework is versatile and can be applied to 

models utilizing handcrafted features, deep learning-derived 

representations, or a hybrid of both. Its adaptability to different 

feature extraction paradigms, along with its computational 

efficiency and classification accuracy, makes it a promising 

solution for large-scale bathymetric point cloud analysis and 

related 3D data classification tasks. 

 

The proposed algorithm is not limited to bathymetric datasets 

and can be extended to non-bathymetric datasets, including 

terrestrial dry point clouds with severe class overlap.  

 

Notably, the issue of overlapping classes is a common challenge 

across deep learning-based approaches applied to bathymetric 

data and is not inherent to our architecture. Rather, the proposed 

method is designed to mitigate this limitation. Furthermore, the 

algorithm is not dependent to the type of sensor footprint used 

for data acquisition. 

 

 

Figure 1. Train and Test sets. (a) Top-view of the area, annotated point clouds as train set, water surface (blue), aquatic vegetation 

(dark green), seabed (light green), tree (red), ground (light brown); (b) Labelled ground truth of the test set; (c) Side view of the test 

data to better illustrate under water region; (d) Error map of the predicted classes, correct predictions are colorized by gray and wrong 

predictions are colorized by red.  

 

Table 1. Confusion matrix of the proposed method. Precision, recall and F1 score are reported for each class. 

 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Categories Water surface Aquatic Vegetation Seabed Ground Tree 

Water surface 80 12 2 5 1 
Aquatic Vegetation 10 65 8 10 4 

Seabed 2 10 75 10 3 

Ground 1 4 2 80 13 
Tree 0.5 5 0.5 12 81 

Precision 85.6 67.7  85.7 68.4 79.4 
Recall 80 67 75 80 81.8 

F1 82.7 67.3 79.9 73.7 80.6 
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