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Abstract 

 

The emergence of foundation models has driven major advancements in computer vision and natural language processing, primarily 

due to their strong zero-shot and few-shot capabilities powered by large-scale, diverse datasets. While earlier approaches used 
supervised datasets, their limited scene diversity did not perform well in unseen environments. To overcome these limitations, recent 

works have leveraged unlabeled monocular images, which can be automatically labeled using pre-trained models. One model can be 

shown as Depth Anything, which demonstrated robust zero-shot performance across diverse scenarios, with Depth Anything V2 further 

improving accuracy. In this study, the performance of Depth Anything V1 and V2 models was evaluated in satellite-derived bathymetry 
using Sentinel 2 satellite imagery. The accuracy of these predicted depth maps was evaluated by comparing them with bathymetric 

data obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental Information 

(NCEI) as the ground truth. The results show that the correlation between Depth Anything V1 predictions and NOAA NCEI data was 

56.69%, while the correlation for Depth Anything V2 reached 84.54%. The predicted depth maps were also scaled to obtain Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE). The RMSE and MAE values for  Depth Anything V1 are 0.4135 m and 0.34 

m, respectively, while the RMSE and MAE values for V2 are 0.2681 m and 0.2089 m, respectively. This improvement shows the 

capability of Depth Anything V2 in estimating underwater terrain from monocular satellite imagery, which also demonstrates its 

potential for cost-effective bathymetric mapping in remote sensing applications. In addition to deep learning-based approaches applied 
in the test area, a satellite-derived depth map was also generated using the classical band ratio method. Compared with reference 

bathymetric data, the correlation coefficient, RMSE, and MAE were found to be 38.20%, 0.4639m, and 0.3746m, respectively.  

 

 

1. Introduction 

The bathymetry is essential in application areas such as marine 

navigation, harbors, submarine pipelines, and cable laying. 

Bathymetry surveys generally use traditional methods such as the 
acoustic reflection measurement technique for data collection. 

Sensor technology has advanced further with developments such 

as depth profilers, current profilers, bio-optical sensors, and 

increased data collection accuracy (Ashpaq, 2021). However, the 
high cost and time-consuming nature of these traditional methods 

has increased the tendency towards alternative data sources in 

recent years; in this context, satellite-derived bathymetry (SDB) 

methods stand out as a remarkable solution. There are different 
SDB studies conducted in the literature. Kim et al. (2024) applied 

physics-based algorithms to overcome the limitation that only a 

few known values are available from a multispectral sensor. The 

physics-based algorithm is applied to Landsat Operational Land 
Imager (OLI) images in shallow coastal areas of Guam, Key 

West, and Puerto Rico. SDB depths are compared to airborne 

lidar depths, yielding a Root Mean Square Error (RMSE), 

typically less than 2 m at depths down to 30 m.  
 

Uzakara et al. (2024) aimed to extract depth information using 

freely accessible Sentinel-2 multispectral images. Marine 

topography was determined using regression analysis with 
samples taken from reference data. Reference data were adjusted 

with changes in coastlines, because coastal changes were used as 

a parameter for these modifications. Jiang and Rutherfurd (2024) 

emphasized that bathymetry changes in large rivers are useful for 

flood planning, navigation, and channel change prediction. This 

study investigated whether historical bathymetry data of large 

rivers can be recovered with easily collected free satellite images 
and limited cross-sectional surveys usually available in less 

affluent countries. The method was tested on the heavily 

regulated Han River in central China. The depth derived from 

Landsat-8 and Sentinel-2 images could accurately match in situ 

depths in cross-sections to depths of 13.9 m, which is possible in 

areas where suspended sediment density is low due to dam 

regulation. Figliomeni and Parente (2024) investigated more 
classical methods and compared three different methods to 

estimate shallow water depth from Sentinel-2 satellite images in 

the Gulf of Pozzuoli, Italy. The evaluated methods were: Band 

Ratio Method (BRM), Third Degree Polynomial Method 
(3DPM), Principal Component Analysis Method (PCAM). 

Kalkan et al. (2021) aimed to investigate the effectiveness of k-

Nearest Neighbor regression to derive bathymetry from Landsat 

8 Operational Land Imager (OLI) data. 
On the other hand, deep learning (DL)-based techniques have 

started to be widely used in SDB applications.  Recently, the 

main reason for the widespread use of deep learning methods in 

the fields of earth observation and remote sensing is the capacity 
of Convolutional Neural Networks (CNNs) technology to 

successfully perform satellite image processing and feature 

analysis (Al Najar et al., 2021). DL is a field of machine learning 

algorithms that has seen great development in the last decade and 
has attracted attention by exhibiting strong capabilities in 

different domains (Goodfellow et al. 2016). One of the most 

successful applications of DL so far has been in computer vision 

applications in areas such as image classification, processing, and 
generation (Simonyan and Zisserman 2014). A natural extension 

of this application includes the use of DL in remote sensing 

through automatic processing of satellite images. Many recent 
studies have used DL methods in the field of satellite image 

classification or segmentation for different applications (Liu et 

al. 2017; Iglovikov et al. 2017). These approaches usually use 

deep learning to identify features in satellite images (Al Najar et 
al., 2021). Sonogashira et al. (2020) proposed a deep learning-

based super-resolution method to accelerate the detailed mapping 

of the ocean floor. Obtaining high-resolution bathymetric maps 

is time-consuming and costly, as it normally requires depth 
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measurements at many points on the sea surface. To overcome 

this problem, gridded bathymetric data is treated as digital 

images, and an image processing-based superresolution 
technique is applied to produce high-resolution maps from low-

resolution data. The model is trained with deep learning 

architecture to automatically learn the geometric properties of the 

ocean floor. Al Najar et al. (2021) developed and compared two 
innovative deep learning based methods for bathymetry 

estimation which is critical for coastal development and risk 

management. Due to the cost and complexity of traditional echo-

sounding methods, bathymetry estimation was performed using 
wave signatures from satellite images and physical inversion 

models. It was shown that the deep learning approaches presented 

in the study can estimate ocean depths with high accuracy in 

different simulation scenarios, which stands out as a new, 
effective and applicable method for bathymetry estimation. 

 

In recent years, transformer-based deep learning models have 

also been used in SDB studies. Lv et al. (2025) introduces a new 
deep learning model called BathyFormer, which was developed 

to make bathymetric mapping in shallow waters near the shore 

faster and more cost-effective. This model, which is based on 

visual transformers and encoders, estimates water depths from 
high-resolution multispectral satellite images. Bathymetric data 

from CUDEM (Continuously Updated Digital Elevation Model) 

was used as training data. The model produced highly successful 

estimates with RMSEs of 0.55–0.73 m at depths of 2–5 m by 
analyzing spectral signatures and spatial patterns in satellite 

images. The system, which was tested in non-training areas in the 

Chesapeake Bay, offers a scalable and economical solution for 

areas such as coastal management, environmental monitoring 
and maritime. In addition, the advent of foundation models is 

highly impactful on the fields of natural language processing and 

computer vision, which leads to a significant transformation in 

these areas (Bommasani et al., 2021). Remarkable zero-shot and 
few-shot capabilities across a wide range of tasks were achieved 

(Touvron et al., 2023; Radford et al., 2021). However, in the 

domain of Monocular Depth Estimation (MDE), a critical task 

for applications such as autonomous driving, robotics (Wofk et 
al., 2019), and virtual or augmented reality, such foundation 

models have not yet been fully realized. This is primarily due to 

the immense challenge of collecting and annotating datasets with 

millions of depth-labeled images. On the other hand, the depth 
prediction using a single image was tried in earlier methods, such 

as MiDaS, using various labeled datasets. However, those models 

did not perform well in new or unfamiliar situations. The main 

reason for this situation is the scarcity of labeled datasets in 
different scenes. Therefore, the models could not generalize well 

to images very different from the training examples (Yang et. al., 

2024). Yang et al. (2024) demonstrated that leveraging unlabeled 

data and semantic priors enhances monocular depth estimation, 
which is Depth Anything V1. Subsequently, the improved 

version, Depth Anything V2, built through architectural 

enhancements and large-scale data utilization, was officially 

released on June 14, 2024. It demonstrates substantial 
improvements over Depth Anything V1 in terms of fine-detail 

preservation and robustness. Compared to Stable Diffusion-

based approaches, it benefits from faster inference speed, a 
smaller parameter footprint, and greater depth accuracy (Yang et 

al., 2024).  

 

While these models have typically been applied to close-range 
imagery, the primary objective of this study is to explore their 

effectiveness in SDB from optical satellite images, thereby 

extending their applicability to large-scale remote sensing 

scenarios. In this respect, Depth Anything V1 and V2 models 
were evaluated in terms of SDB. In this context, depth maps were 

created using these two versions of the model from the Sentinel-

2 satellite imagery. Subsequently, the Bathymetric Attributed 

Grid (BAG) Mosaic dataset by the National Oceanic and 
Atmospheric Administration’s (NOAA) National Centers for 

Environmental Information (NCEI) was used for the validation 

of the predicted depths.  

 

2. Materials & Methods 

2.1 Depth Anything Models 

 

Depth Anything is a transformer-based monocular depth 
estimation model trained on a large-scale dataset comprising 1.5 

million labeled and 62 million unlabeled images. To support 

cross-dataset learning where scale and shift may vary, the model 

employs an affine-invariant loss function, defined as: 
 

𝐿𝑙 =
1

𝐻𝑊
∑  𝐻𝑊

𝑖=1 𝜌(𝑑𝑖
∗, 𝑑𝑖)                            (1) 

 

Here is 𝑑𝑖
∗and 𝑑𝑖 refer to ground truth and predicted depths, 

respectively. Additionally, 𝜌(𝑑𝑖
∗, 𝑑𝑖) represents the affine-

invariant mean absolute error loss, which measures the absolute 

difference between the scaled and shifted versions of the 

prediction and the ground truth (Yang et al., 2024). The training 
pipeline of Depth Anything V2 consists of three main stages. 

First, a teacher model based on DINOv2-G is trained exclusively 

on high-quality synthetic images. Second, this model is used to 
generate accurate pseudo-depth labels for large-scale, unlabeled 

real-world images. Finally, student models with various DINOv2 

backbones (small, base, large, and giant) are trained on these 

pseudo-labeled real images to achieve robust generalization. 
Compared to V1, it produces more detailed and robust 

predictions, supported by large-scale pseudo-labeled real images. 

Offered in various parameter scales, the models outperform 

Stable Diffusion-based approaches in both accuracy and 
inference speed when fine-tuned for metric depth estimation 

(Yang et al., 2024). 

 

2.2 Band Ratio Method 

 

The Band Ratio Method (BRM) allows depth estimation by 

comparing the reflectance ratios between specific spectral bands 

with in-situ measurements. This method focuses on the blue and 
green bands, especially by taking advantage of the intrinsic 

optical properties of water. In clear waters, the reflectance 

intensity of the blue band tends to be higher than the green band. 

In coastal or turbid waters, the green band exhibits higher 
reflectance values due to the density of organic and inorganic 

substances in the water. These spectral differences provide 

important clues in terms of revealing bathymetric changes in the 

study area (Figliomeni and Parente, 2023). In this context, the Z 
(depth) value can be calculated using a regression formula based 

on band ratios (Stumpf et al., 2003): 

 

𝑍 = 𝑚1
ln (𝑛∗𝜌𝑤(𝜆𝑖))

ln (𝑛∗𝜌𝑤(𝜆𝑗))
− 𝑚0                       (2) 

 

Here,  

 

- The coefficient 𝑚1 is the constant used to scale the 

depth ratio. 

- n is a value that is kept constant throughout the study 

area to ensure that the logarithm remains positive. 

- m₀ is the depth offset representing the point Z = 0. 
- ρw represents the magnitude of the radiation 

(reflectance value) reflected from the water surface. 

- λᵢ and λⱼ represent two different spectral bands. 
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3. Case Study 

In this study, Sentinel-2 bands 4, 3, and 2 were specifically 

utilized from an image of a selected test area in Tampa Bay.  
These bands correspond to red, green, and blue wavelengths and 

were chosen to generate true-color images. The spatial resolution 

of Sentinel-2 images is 10 m, which provides sufficient detail to 

generate depth maps of the study area. The satellite image 
selection was carried out between January 2025 and March 2025 

with a cloud coverage below approximately 10%. The images 

were mosaiced, and a monocular image of the study area was 

obtained. Sentinel-2 images from the 
"COPERNICUS/S2_SR_HARMONIZED" collection in Google 

Earth Engine were utilized, where Level-2A surface reflectance 

data had been atmospherically corrected using the Sen2Cor 

algorithm. The Depth Anything V1 and V2 models were utilized 
to derive a depth map from this image. The generated depth maps 

range between 0-1 normalized values.   Indeed, the high-

resolution BAG Mosaic dataset provided by NOAA NCEI (NCEI 

Bathymetric Data Viewer, 2025), with an approximate cell size 
of 10 meters, was used as the reference bathymetry data for 

validation purposes. The depth maps obtained from Sentinel-2 

satellite images were compared with this reference bathymetry 

data, and their accuracy was tested. NOAA BAG Mosaic dataset 
is a known source with its high resolution and accurate data, and 

therefore was selected as a suitable "ground truth" data to 

evaluate the reliability of the depth maps used in the study. The 

accuracy of the bathymetry data was used to show how close the 
depth maps derived from satellite images are to the ground truth, 

and the performance of each model was presented.  

 

The cell size was selected as 1/3 arc-second (approximately 10 
meters) in the BAG Mosaic dataset provided by NOAA. The aim 

was to be compatible with the spatial resolution of Sentinel-2 

satellite images. Selecting the same resolution (10 meters) for 

NOAA data is important to increase the accuracy of depth maps 
and ensure comparability of both datasets, since the spatial 

resolution of Sentinel-2 images is 10 meters. This similar spatial 

resolution enables the verification and integration processes 

between satellite data and bathymetry data.  
 

The selected study area lies off the coast of Tampa Bay, Florida 

(27.60°N, 82.66°W), where high-resolution NOAA BAG Mosaic 

data were available for bathymetric validation. Figure 1 (a) 
represents the study area, 1 (b) represents the bathymetric data, 

and 1 (c) shows the Sentinel 2 imagery used in the study.  

 

Figure 1. (a) Study area, (b) Bathymetric data, (c) Sentinel-2 

imagery 

 

The workflow of the study is shown in Figure 2. 

 

Figure 2. The workflow of the study  

 

4. Results 

The Pearson correlation coefficient (R) was calculated according 

to ground truth bathymetric data for Depth Anything V1 and V2.  
Regression analysis was used to examine the relationship 

between bathymetry data (ground truth) and model output and to 

evaluate the accuracy of the model's predictions. In this analysis, 

bathymetry data is taken as the independent variable, while the 
depth values predicted by the model are considered as the 

dependent variable. Regression analysis is used to determine the 

linear (or non-linear) relationship between the data sets. In this 
way, it is revealed how the values predicted by the model relate 

to the actual depths. The regression coefficients obtained by 

regression analysis show whether the model made the correct 

prediction and to what extent it is on the correct scale. 

 

The relationship between Depth Anything V1 and bathymetry is 

modeled by the following linear regression function: 

 

                              1.953 * Model Output - 8.932                      (3) 

 
While the relationship between Depth Anything V1 and 

bathymetry data is defined by: 

 

                            3.509 * Model Output - 10.179                          (4) 
 

The results are presented in Figure 3 (a) and (b) for Depth 

Anything V1 and V2, respectively.  
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Figure 3.  Scatter plots of bathymetric data and (a) Depth 

Anything V1 prediction, (b) Depth Anything V2 prediction  

 

The accuracy analysis was conducted at depths ranging from 

approximately 7-8 meters, in a region located in the central part 

of the study area, which covers approximately 0.7 km². The 

correlation between Depth Anything V1 and bathymetric data 
was found to be 56.69%, while the correlation between V2 and 

bathymetric data was found to be 84.54%. The predicted depth 

maps were also scaled to obtain RMSE and Mean Absolute Error 

(MAE). The RMSE and MAE values for Depth Anything V1 are 
0.4135 m and 0.3400 m, respectively, while the RMSE and MAE 

values for V2 are 0.2681 m and 0.2089 m, respectively. This 

improvement shows the capability of Depth Anything V2 in 
estimating underwater terrain from monocular satellite imagery, 

which also demonstrates its potential for cost-effective 

bathymetric mapping in remote sensing applications. The depth 

maps generated with Depth Anything V1 and V2 are shown in 
Figure 4, respectively.  

 

 
Figure 4. The depth maps generated with (a) Depth Anything 

V1 and (b) Depth Anything V2 

 

The first depth map (Depth Anything V1) shows the depth 

changes in large areas with smooth and continuous transitions. 
This map is very useful for understanding general trends and 

large-scale topographic structure. This indicates that the model 

estimates a surface with less detail but more stable and 

continuous. The second depth map (Depth Anything V2) 
contains much higher frequency details and reveals small 

changes in the surface more clearly. This map provides a more 

detailed view by emphasizing fine structural differences and local 

depth variations.  
 

In addition to deep learning-based approaches applied in the test 

area, a satellite-derived depth map was also generated using the 

classical band ratio method. Compared with reference 
bathymetric data, the correlation coefficient, RMSE, and MAE 

were found to be 38.20%, 0.4639 m, and 0.3746 m, respectively. 

Table 1 presents the statistical evaluation results for three 

different methods. 
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Method R RMSE (m) MAE (m) 

Band Ratio 38.20% 0.4639 0.3746 

Depth 

Anything 

V1 

56.69% 0.4135 0.3400 

Depth 

Anything 

V2 

84.54% 0.2681 0.2089 

Table 1. R, RMSE, and MAE values of three different methods 
 

5. Conclusion 

In this study, the performance of Depth Anything V1 and V2 

models in the prediction of depths is evaluated using the Sentinel-
2 satellite image. Known for their advanced zero-shot and few-

shot capabilities, these models provide an effective method for 

extracting depth maps, especially from unlabeled monocular 

images. The results show that Depth Anything V1 provides 

56.69% correlation with NOAA NCEI data, while Depth 

Anything V2 increases this value to 84.54%, demonstrating that 

the model provides a significant improvement in terms of 

correlation. In addition, the depth maps created by these models 
are measured with RMSE and MAE values, and are determined 

as 0.4135 m and 0.3400 m for V1, and 0.2681 m and 0.2089 m 

for V2, respectively. This improvement shows that Depth 

Anything V2 has further improved its ability to predict depth 
from monocular satellite images and offers great potential for 

cost-effective bathymetry mapping in remote sensing 

applications. The results were compared with classical BRM, and 

it was inferred that DL-based approaches show superior accuracy 
compared with classical methods.  

 

In conclusion, this study highlights the effectiveness of deep 

learning-based approaches in the process of making bathymetry 
predictions from satellite images. The increased accuracy 

provided by Depth Anything V2 offers a potentially cost-

effective method in areas such as underwater mapping and 

environmental monitoring. Especially in developing countries, it 
becomes possible to extract bathymetry with such open-source, 

low-cost satellite data as an alternative to high-cost field studies 

and commercial satellite images. Furthermore, this approach has 

great potential for shallow water and coastal regions, where 
continuous and accurate bathymetric data is essential for erosion 

monitoring, navigation, and coastal ecosystem management. 

Environmental management and disaster prevention strategies 

can be substantially improved by being able to monitor depth 
variations in these vulnerable locations. For future studies, it is 

recommended to further develop these models for larger 

geographic areas, diverse environmental conditions, and greater 

depth ranges in satellite-based bathymetry applications. 
Furthermore, this approach could potentially be used to 

freshwater environments like lakes and reservoirs, where 

bathymetric mapping is equally necessary for pollution 

prevention, ecosystem evaluation, and water resource 
management.  

 

Data Availability 

Sentinel-2 imagery used in this study was obtained from the 

Google Earth Engine data catalog 

(https://code.earthengine.google.com/). 
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