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Abstract

Accurate 3D reconstruction of underwater environments from above-water photos remains challenging due to refractive distortion at

air-water interfaces. This contribution presents the first application of NeRFrac (Zhan et al., 2023) to UAV-based imagery captured

in a real-world river area. NeRFrac is a refraction-aware Neural Radiance Field (NeRF) framework that explicitly models the change

in direction of light at water surfaces according to Snell’s Law. To adapt NeRFrac to complex outdoor scenes, we introduce a mask-

based ray selection that selectively applies refractive modeling only to water-covered regions. We systematically evaluate different

indices of refraction and compare global versus local training strategies. The results show that masking improves reconstruction

quality in submerged areas, with a physically plausible index of refraction (IOR) of 1.333 yielding the best performance in terms

of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). While visual differences between masked and

unmasked models remain minor, quantitative metrics confirm the effectiveness of the suggested refraction modeling.

1. Introduction

The original Neural Radiance Field (NeRF) (Mildenhall et al.,

2020) is being adapted to many specific cases, such as repres-

enting scenes beneath refractive surfaces like glass or water. We

apply NeRFrac (Zhan et al., 2023), to UAV data captured at the

Pielach river in Lower Austria (Mandlburger et al., 2025b). So

far, NeRFrac has been applied to synthetic data and real data,

captured in lab environments. To the best of our knowledge,

this is the first application of NeRFrac to UAV-based imagery

of a real-world river environment.

For the first time, we show that:

• Using binary water masks during training improves recon-

struction quality in outdoor UAV datasets,

• A refinement of the refractive index from IORwater =
1.33 to IORwater = 1.333 results in consistent improve-

ments in PSNR, SSIM, and LPIPS metrics,

• NeRFrac is applicable to real-world UAV imagery and can

reconstruct refracted underwater scenes in natural, uncon-

trolled environments.

2. Related Work

In the following, we briefly summarize prior work on NeRFs,

with a particular focus on their ability to handle refraction. This

section is structured into four parts: i) general developments in

NeRF models, ii) specific challenges posed by refractive me-

dia, iii) NeRFrac as an exemplary method for explicit refrac-

tion modeling, and iv) the existing research gap in UAV-based

bathymetric NeRF applications.

Developments in NeRF Models. NeRFs have emerged as

a powerful method for photorealistic 3D scene reconstruc-

tion and novel view synthesis from sparse multi-view imagery

(Mildenhall et al., 2020). Since their introduction, numerous

extensions have addressed limitations in computational effi-

ciency, scalability, and scene complexity. Mip-NeRF proposes

a multiscale representation to handle aliasing and resolution-

dependent sampling issues (Barron et al., 2021), while TensoRF

introduces tensor decomposition to improve rendering speed

and memory efficiency (Chen et al., 2022). Other works such as

Plenoxels eliminate neural networks entirely in favor of sparse

voxel grids (Yu et al., 2021), and IBRNet integrates transformer

architectures for improved generalization across scenes (Wang

et al., 2021).

Recent research also explores scene-specific uncertainties and

occlusion handling in NeRF pipelines, such as density-aware

modeling (Jäger et al., 2025) or occlusion-aware comparisons

across methods (Petrovska and Jutzi, 2025).

Various overviews (Yao et al., 2024; Xiao et al., 2025) further

highlight the evolution of NeRFs towards real-world applicab-

ility, including human modeling, robotics, and general scene

understanding. Yet, refractive environments remain underrep-

resented in NeRF literature.

Challenges in Refractive Environments. A major limita-

tion of classical NeRFs is the assumption of straight-line light

propagation. This assumption is violated in underwater or re-

fractive scenarios, where light rays are bent at the interface

between two media with different refractive indices, such as

air and water, causing them to deviate from a straight line.

The refractive behavior at the air-water interface depends on

both the wavelength of light and the physical properties of the

two media, particularly the temperature and density of water
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(Schiebener et al., 1990; Bashkatov and Genina, 2003). For

accurate 3D reconstruction, these dependencies should be ex-

plicitly modeled.

Several approaches, e.g. WaterNeRF (Sethuraman et al., 2023),

SeaThru-NeRF (Levy et al., 2023), U2NeRF (Gupta et al.,

2024), and AquaNeRF (Gough et al., 2025), focus on scenes

that are fully underwater. As a result, they do not account for

the refraction that occurs at the air-water interface, which is es-

sential when the camera remains above the waterline.

However, a number of NeRF-based extensions have been pro-

posed to explicitly address the challenges of refraction at me-

dia boundaries. Ray deformation approaches like LB-NeRF

(Fujitomi et al., 2022) and Ray Deformation Networks (Deng

et al., 2024) empirically learn offsets to simulate refraction, but

often lack physical grounding.

In contrast, Eikonal Fields (Bemana et al., 2022) optimize a spa-

tially varying index of refraction (IOR) field using the eikonal

equation. NeRRF (Chen et al., 2023) combines refraction and

reflection modeling using Fresnel equations and a progressive

surface extraction scheme. A method to dynamically learn the

IOR during training has been proposed to further improve flex-

ibility and accuracy (Wei et al., 2025). A related approach,

REF2-NeRF (Kim et al., 2024), jointly models reflection and

refraction, particularly in glass-dominated scenes, but is not de-

signed for water-air interfaces.

Explicit Refraction Modeling with NeRFrac. NeRFrac (Zhan

et al., 2023), represents one of the first physically grounded

NeRF frameworks that explicitly models the interaction of light

with a refractive surface. It introduces a dedicated Refract-

ive Field to estimate the surface intersection based on Snell’s

Law, enabling simultaneous recovery of the water surface and

the scene below. Unlike prior deformation-based methods,

NeRFrac provides a disentangled representation of the refract-

ive interface and underlying Radiance Field.

Quantitative comparisons on synthetic topographic data

(Schulte et al., 2025) and real data show that NeRFrac signific-

antly outperforms other baselines in terms of PSNR, SSIM, and

LPIPS metrics. Additionally, the extraction of 3D point clouds

from trained NeRFrac models is being explored (Brezovsky et

al., 2025).

Research Gap: UAV-based Bathymetric NeRF Applica-

tions. Despite recent progress, no prior work has applied

NeRFrac or comparable refractive NeRF frameworks to UAV-

based data captured in outdoor, fluvial environments. All meth-

ods for bathymetry such as photogrammetric depth estimation

or airborne laser scanning are sensitive to water clarity and sur-

face conditions. Our work represents the first real-world ad-

aptation of NeRFrac on high-resolution UAV imagery from the

Pielach River (Mandlburger et al., 2025b,a). Compared to con-

trolled laboratory setups, the primary challenge in real-world

applications is that refraction does not occur uniformly across

the entire image. This selective refraction requires the use of

per-ray masking to distinguish between submerged and non-

refractive regions. Additional complexities include a dynamic

water surface, potential turbidity, specular reflections, and pose

uncertainties.

3. Methods

To investigate the effect of refractive ray modeling in NeRFs,

we use the NeRFrac framework and train it on the UAV data-

set described in Section 4. We compare multiple variants of

NeRFrac that differ only in their assumed IOR for water. The

IOR values 1.32, 1.33, 1.333 and 1.34 are chosen to reflect real-

istic conditions for water, where the IOR is typically close to

1.333 for temperatures between 10 and 20 degrees Celsius. This

range allows us to analyze the sensitivity of the model to small

variations in refractive behavior under realistic environmental

conditions.

3.1 Network Architecture

The NeRFrac framework builds upon the standard ”Vanilla”

NeRF architecture (Mildenhall et al., 2020) and extends it to

explicitly model light refraction at transparent surfaces such as

water. While Vanilla NeRF assumes that light travels along

straight rays in free space, NeRFrac removes this limitation by

introducing refractive ray tracing based on Snell’s Law. This

enables the generation of accurate novel views of scenes seen

through a water surface.

NeRFrac introduces a Refractive Field ΨR(o,v) = d that es-

timates the distance d from the ray origin o in direction v to

the intersection point Xs on the refractive surface. It is imple-

mented as a fully connected multilayer perceptron (MLP) with

eight layers and 256 units per layer.

Using the estimated surface point Xs and the local surface nor-

mal N, computed via least-squares fitting of neighboring sur-

face points, NeRFrac computes the refracted ray direction v
′

according to Snell’s Law in vector form:

v
′ = η(I+ c1N)− c2N, (1)

where I ∈ R
3 is the incident ray direction and N ∈ R

3

is the unit surface normal, both assumed to be normalized.

η is the ratio of refractive indices n1

n2

, c1 = N · I, and

c2 =
√

1− η2(1− c2
1
).

Along the computed refracted ray, 3D sample points are gener-

ated and processed by a second MLP, the Radiance Field, which

outputs volume density σ and RGB color values conditioned on

both the view direction and the spatial location. Volume ren-

dering is then performed by integrating these values along the

refracted ray path.

Both the Refractive Field and the Radiance Field are trained

jointly by minimizing the reconstruction loss between rendered

and ground-truth images. This implicit supervision allows the

Refractive Field to learn physically consistent surface geometry

without requiring explicit ground-truth depth maps.

To maintain a consistent and compact representation of rays

across different views, NeRFrac operates in normalized device

coordinates (NDC). In this representation, all rays originate

from a common near plane and point along the same axis dir-

ection, which simplifies the parameterization of viewing rays.

This normalization facilitates stable learning of the Refractive

Field, as ray origins and directions are expressed in a view-

consistent frame. It also allows the surface normals, computed

from neighboring refracted points, to be estimated more ro-

bustly across varying camera poses. This design choice con-

tributes to improved generalization and stable training behavior

in both synthetic and real-world datasets.
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3.2 Mask-Based Ray Selection

Building on this architecture, we further extend NeRFrac to

support heterogeneous scenes with both refractive and non-

refractive regions. While the original NeRFrac framework ap-

plies refraction uniformly to all rays, our extension introduces

mask-based ray selection to enable per-ray control over refract-

ive modeling. These masks are created for each input image

and indicate, at pixel level, whether the corresponding ray in-

tersects a water surface. Figure 1 shows the water mask for the

test image. During training and rendering, this information is

used to conditionally apply refraction only to rays that traverse

water, while all other rays follow the standard perspective pro-

jection without changing direction. This enables a hybrid ray

tracing strategy within a single scene.

Our approach is conceptually related to previous work that uses

masks to distinguish between refractive and non-refractive re-

gions in transparent object rendering (Wei et al., 2025). How-

ever, that method is based on ray tracing with Fresnel modeling

and does not target outdoor hydrographic environments. In con-

trast, our implementation, based on the NeRFrac architecture,

integrates binary masks directly into the forward pass. Unlike

prior work, our setup specifically targets shallow-water UAV

imagery and enables refractive ray modeling within complex

real-world river systems.

Figure 1. Overlay of the manually defined water mask on the test

image. The masked region (dark polygonal area) corresponds

to the river surface and defines where refractive ray modeling is

applied during NeRFrac training and rendering.

3.3 Experimental Setup

To systematically assess the behavior of the proposed model

variants, we conduct several controlled experiments using the

same UAV dataset. All network variants are trained on the same

subset of UAV imagery described in Section 4. The training

configuration remains consistent across experiments, includ-

ing learning rate, number of iterations, ray sampling paramet-

ers, and network architecture. We evaluate both the original

NeRFrac setup and our mask-based extension, using identical

input data to ensure comparability. Variants differ only in their

refractive index settings and the presence or absence of per-ray

masking.

3.4 2D Evaluation

Following training, we evaluate the rendering quality of each

configuration using a fixed test view. Specifically, we select

the central image of the 9 captured views, corresponding to the

central viewpoint in the 3 × 3 camera grid. This image is ex-

cluded from training and serves solely for 2D evaluation.

We report the peak signal-to-noise ratio (PSNR), structural sim-

ilarity index (SSIM), and learned perceptual image patch sim-

ilarity (LPIPS) between the rendered and the reference image.

Additionally, we compute a composite average score to facil-

itate global comparison across metrics. This score is defined

as the geometric mean of MSE = 10−PSNR/10,
√
1− SSIM,

and LPIPS (Barron et al., 2021). This formulation jointly cap-

tures pixel-wise accuracy, structural similarity, and perceptual

distance in a directionally consistent manner.

Note that LPIPS is computed over the entire image rather than

only on water-covered regions defined by the mask. This is

because LPIPS relies on perceptual features extracted by con-

volutional neural networks, which require spatially coherent in-

put regions. Since the water mask defines an irregular, non-

rectangular subset of the image, applying LPIPS selectively

to only those pixels would break the structural assumptions of

the metric and yield unreliable results. In contrast, PSNR and

SSIM can be computed on masked areas without violating their

formulation, and are therefore used in the water-specific evalu-

ations reported in subsection 5.2.

4. Data

The dataset utilized in this research originates from an inter-

institutional research collaboration led by TU Wien (Mandlbur-

ger et al., 2025b). It is publicly available via TU Wien’s re-

search data repository and serves as a benchmark for optical

hydrography based on images and laser scans (Mandlburger et

al., 2025a). The set includes nadir and oblique UAV imagery

and airborne laser bathymetry captured during a field campaign

at the Pielach River in Lower Austria. Data acquisition took

place in October 2024 following a major flood event, resulting

in clear-water conditions suitable for optical hydrographic ana-

lysis.

For this contribution, we use a subset of nine nadir-oriented

UAV images taken at an altitude of 80 m above ground level.

The imagery is captured using a DJI M350 RTK multicopter.

A Zenmuse P1 45 MPix RGB camera is mounted on the UAV,

achieving a ground sampling distance of approximately 1 cm.

These images are selected based on coverage and image quality

for training the NeRFrac network on shallow-water scenes.

To support targeted modeling of light refraction in submerged

areas, we create binary masks that distinguish water surfaces

from land. These masks are aligned to the images and indic-

ate for each pixel whether it depicts water or land. In the cur-

rent version, we generate the masks manually, but we aim to

automate this process in the future using semantic segmenta-

tion techniques.

5. Results

This section presents the experimental results obtained with dif-

ferent refractive settings and masking strategies. The evaluation

is structured in three main parts: First, we report quantitative

results, starting with a global evaluation over the entire test im-

age (Section 5.1), followed by a more focused regional analysis

that considers only the water-covered parts of the scene (Sec-

tion 5.2). Subsequently, we include qualitative renderings to
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visualize differences (Section 5.3). Since the image differences

are often subtle, the quantitative metrics provide essential evid-

ence for assessing the impact of refractive modeling. Minor de-

viations are mainly visible in vegetated areas. Together, these

analyses offer a comprehensive view on the impact of refraction

modeling and per-ray masking within the NeRFrac framework.

5.1 Global Evaluation (Entire Image)

Table 1 presents quantitative evaluation results based on the en-

tire test image, which includes both submerged and terrestrial

areas. In contrast to the regional evaluation in Table 2, where

only pixels of submerged areas were considered, this evaluation

captures the overall image quality across the full scene and al-

lows comparison using additional perceptual metrics such as

LPIPS. To synthesize the results into a single score, we also

report a composite average metric as described in Section 3.4.

Figures 2 and 3 visualize key image quality metrics across train-

ing iterations, computed on the entire test image. While Fig-

ure 2 focuses on PSNR, Figure 3 presents SSIM, LPIPS, and

the composite average metric.

In both figures, training with and without water masks is dir-

ectly compared, both implementations using an IOR of 1.333.

Despite the relatively small differences in global metrics which

were expected due to the dominance of terrestrial areas in the

scene, a consistent improvement can be observed when water

masks are used. This indicates that even globally, the select-

ive application of refractive modeling guided by masking has a

beneficial effect on reconstruction quality.

IORwater PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Training without masks

1.32 23.692 0.486 0.571 0.120

1.33 23.711 0.487 0.565 0.120

1.333 23.802 0.496 0.561 0.118

1.34 23.782 0.493 0.564 0.119

Training with masks

1.32 23.814 0.501 0.556 0.118

1.325 23.839 0.500 0.561 0.118

1.33 23.870 0.504 0.554 0.117

1.333 23.899 0.503 0.554 0.117

1.335 23.836 0.502 0.557 0.118

1.34 23.835 0.501 0.555 0.117

Table 1. Quantitative evaluation results for the full test im-

age, including both water and terrestrial areas, at training iter-

ation 200 000. Reported metrics are PSNR, SSIM, and LPIPS,

as well as the average score combining all three. The average

is computed as the geometric mean of MSE = 10−PSNR/10,√
1− SSIM, and LPIPS (Barron et al., 2021). The 200 raw met-

ric values, obtained during rendering of test images every 1000

iterations, were smoothed using a moving average filter (size 15

points). The best-performing refractive index configuration and

the corresponding metrics are highlighted in bold.

5.2 Regional Evaluation (Water-Only Pixels)

To better assess the impact of refraction modeling in water-

covered areas, we compute PSNR and SSIM only for pixels

marked as water in the binary mask. Table 2 summarizes the

results. Across all IOR values, masking consistently improves

Figure 2. PSNR across iterations for two training variants. The

blue curve shows the PSNR computed on the entire image when

training was performed using water masks and an IOR of 1.333

was applied only in the masked (i.e., water-covered) regions. The

orange curve represents the PSNR when no masks were used and

an IOR of 1.333 was applied globally across the entire image.

Training was performed for 200 000 iterations. The 200 raw met-

ric values, obtained during rendering of test images every 1000

iterations, were smoothed using a moving average filter (size 15

points).

Figure 3. SSIM, LPIPS and average across iterations for two

training variants. The green, red, and orange curves show the

SSIM (↑), LPIPS (↓) and average (↓) respectively for training

with masks, where an IOR of 1.333 was applied only in the

water-covered (masked) regions. The corresponding cyan, pink,

and olive curves represent the same metrics for training without

masks, where an IOR of 1.333 was applied globally across the

entire image. Training was performed for 200 000 iterations. The

200 raw metric values, obtained during rendering of test images

every 1000 iterations, were smoothed using a moving average fil-

ter (size 15 points).

results. This evaluation is based on the previously described

binary masks that indicate the presence of water at the pixel

level, allowing a targeted assessment of the network’s capacity

to model light behavior below the water surface.
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IORwater PSNR ↑ SSIM ↑
Training without masks

1.32 36.009 0.841

1.33 36.063 0.843

1.333 36.243 0.843

1.34 36.134 0.842

Training with masks

1.32 36.288 0.843

1.325 36.264 0.843

1.33 36.435 0.844

1.333 36.447 0.844

1.335 36.262 0.844

1.34 36.235 0.843

Table 2. Quantitative evaluation of different refractive index val-

ues (IORwater) in NeRFrac with and without per-ray masking.

Metrics are computed exclusively for pixels corresponding to

water-covered regions in the test image, as defined by the binary

water masks. The reported values represent the mean PSNR and

SSIM at training iteration 200 000. The 200 raw metric values,

obtained during rendering of test images every 1000 iterations,

were smoothed using a moving average filter (size 15 points).

Note that LPIPS and the composite average metric are not repor-

ted, as they require full-image context and cannot be meaning-

fully computed for masked regions only. The best-performing

refractive index configuration and the corresponding metrics are

highlighted in bold.

The upper part of Table 2 shows the results for models trained

without water masks, treating all rays equally, regardless of

whether they they intersect water or not. The lower section

presents the same evaluation for models trained with masking,

allowing selective application of refractive modeling.

Across all configurations, the differences in PSNR and SSIM

values are generally small, indicating that NeRFrac per-

forms robustly under slight variations in the refractive in-

dex. Nonetheless, the results consistently show that combin-

ing masking with a physically plausible refractive index of

IORwater = 1.333 yields the best reconstruction quality for

submerged areas. This confirms the effectiveness of mask-

based hybrid ray modeling and highlights the relevance of ac-

curate IOR selection for shallow-water environments.

Since water covers only about 20 % of the image, its influence

on the global score is diluted, and the observed differences are

smaller than in the regional evaluation. Still, the use of masks

consistently leads to the best performance across all reported

metrics.

Figure 4 shows the PSNR across training iterations, but in con-

trast to Figure 2, the evaluation here is restricted to submerged

areas only. A clear difference between masked and unmasked

training is visible: when using masks, the PSNR converges

faster and exhibits less noise throughout the training process.

This stability makes it more suitable for loss computation based

on PSNR and indicates that the masking strategy effectively

guides the network in learning refractive behavior in submerged

areas.

5.3 Qualitative Results

Beyond quantitative evaluation, visual inspection remains an

essential complement for identifying subtle structural devi-

ations. In the following, we present qualitative renderings to il-

lustrate the differences between masked and unmasked training

Figure 4. PSNR across iterations for two training variants, eval-

uated only on the water-covered regions of the image. The blue

curve shows the PSNR when training was performed using water

masks and an index of refraction (IOR) of 1.333 was applied only

in the masked (i.e., water-covered) regions. The orange curve

represents the PSNR when no masks were used and an IOR of

1.333 was applied globally across the entire image. Training was

performed for 200 000 iterations. The 200 raw metric values, ob-

tained during rendering of test images every 1000 iterations, were

smoothed using a moving average filter (size 15 points).

configurations. These visualizations help contextualize the nu-

merical results by showing where and how the observed differ-

ences manifest in the image domain. However, the synthesized

images appear almost identical, regardless of whether masking

was used during training, which further emphasizes the import-

ance of the preceding quantitative evaluations.

Figures 5 and 6 show visual comparisons of the reference image

and the corresponding reconstructions obtained from masked

and unmasked training, respectively. In both figures, the top

row includes the full reference image (a), the synthesized im-

age from the corresponding camera pose (b), and a pixel-wise

difference map (c) visualized as a false-color composite. The

bottom row shows cropped regions (d–f) that correspond to the

areas marked in the full images above, allowing a more focused

inspection of localized errors.

In Figure 5, which shows results for training with per-ray masks

and IOR = 1.333, only minor differences are visible between the

synthesized image and the reference. These small deviations

become more evident in the difference map (Figure 5 c), partic-

ularly in the vegetated regions.

Figure 6 presents the same comparison setup, but for a model

trained without any masking. The differences between the syn-

thesized image and the reference image remain small.

When directly comparing the two synthesized images, with and

without masking, only minor visual differences can be dis-

cerned. Figure 7 illustrates this comparison explicitly: Fig-

ure 7a shows the pixel-wise difference between the two ren-

derings, while Figure 7b shows a zoomed-in crop of the same

region previously highlighted in Figures 5 and 6. Despite the

near-identical appearance of the outputs, the difference map

still reveals small localized deviations. This underlines the im-

portance of quantitative metrics for systematic evaluation.
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Figure 5. Results trained with masks: a) reference image, b) synthesized image trained with masks and IOR = 1.333 for the water

covered part of the scene, c) difference map, d) crop of reference image, e) crop of synthesized image and f) crop of difference map.

The difference maps are shown as false color composites representing the Euclidean distance in 3×8-bit RGB space (dimensionless).

Figure 6. Results trained without masks: a) reference image, b) synthesized image trained without masks and IOR = 1.333 for the entire

scene, c) difference map, d) crop of reference image, e) crop of synthesized image and f) crop of difference map. Again, the difference

maps are shown as false color composites representing the Euclidean distance in 3×8-bit RGB space (dimensionless).

Figure 7. Difference between synthesized images trained with and without masks: a) difference for the entire image (i.e. difference

between Figure 5b and Figure 6b), b) difference for the crop in the water covered area (i.e. difference between Figure 5e and Figure 6e).

Shown as false color composites representing the Euclidean distance in 3×8-bit RGB space (dimensionless).
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6. Discussion

Our results demonstrate that training with binary water masks

outperforms training with a global approach to refraction mod-

eling (Figure 2). This advantage is especially evident in the

PSNR and SSIM metrics computed exclusively for submerged

areas (Table 2). Here, per-ray refractive modeling enables a

more physically consistent rendering process, selectively apply-

ing Snell’s Law only where image rays are expected to change

direction due to the air–water interface. In contrast, models

without masks apply the same refractive assumptions to all rays,

which can lead to reduced fidelity in terrestrial areas.

In global evaluations that include both land and water areas,

however, the improvements introduced by masking are less pro-

nounced. This can be attributed to the spatial distribution of the

test image: approximately 20 % of the pixels belong to water-

covered regions, while the remaining 80 % represent terrestrial

features. As a result, the contribution of refractive ray modeling

is diluted in the full-frame metrics, despite its targeted benefits.

Among all tested refractive indices, the value IORwater =
1.333 consistently yielded the best performance, particularly

when combined with masking. While the absolute differences

compared to neighboring IOR values (e.g., 1.32 or 1.34) are

small, the consistency of this result across metrics underscores

the model’s sensitivity to physically accurate refraction para-

meters.

Visually, the differences between all model outputs are remark-

ably subtle. Even in cropped close-ups of the water region, de-

viations between masked and unmasked renderings are difficult

to discern. This emphasizes the importance of robust, quantit-

ative evaluation metrics such as PSNR and SSIM in assessing

the effectiveness of refraction-aware NeRFs. In practice, per-

ceptual metrics like LPIPS cannot be meaningfully applied in

masked regions due to their reliance on full-frame context, and

are therefore omitted from the regional evaluation.

The introduced mask-based extension to NeRFrac currently re-

lies on manually created water masks. This manual effort is

time-consuming and does not scale well to larger or more com-

plex datasets. Future work should therefore explore automated

segmentation approaches to streamline and scale the mask cre-

ation process.

Another limitation is the lack of explicit geometric validation.

While qualitative renderings and image-based metrics indicate

improved fidelity, no 3D reconstruction quality was evaluated

against external ground truth. A promising avenue for future re-

search is the analysis of point cloud accuracy, following the ap-

proach of Brezovsky et al. (2025), who assess refractive NeRFs

in terms of geometric reconstruction performance.

7. Conclusion

This contribution presents the first application of a refraction

aware NeRF variant, specifically NeRFrac, to real-world UAV

data captured in an uncontrolled outdoor riverine setting. Our

findings demonstrate that refractive NeRFs can be successfully

trained on high-resolution aerial imagery to model complex

light interactions at the air–water interface. In particular, apply-

ing a physically plausible index of refraction (IOR = 1.333)

exclusively to rays intersecting water, using per-pixel masks,

yields the highest reconstruction accuracy in submerged re-

gions. While the global image quality does not improve uni-

formly through refraction modeling, due to its localized benefit

in water and potential interference in terrestrial areas, targeted

refractive ray modeling proves highly effective for bathymetric

regions.

This study demonstrates the feasibility of integrating physic-

ally grounded refraction modeling into NeRFs for aerial photo-

grammetry. It contributes to the field of optical bathymetry by

opening up new possibilities for 3D scene reconstruction be-

neath refractive surfaces. Moreover, it extends the scope of

hybrid NeRF architectures, where rays are treated heterogen-

eously depending on scene semantics, an approach recently ex-

plored (Wei et al., 2025), but not yet applied to natural water

surfaces.

In addition, future studies should include direct comparisons

with methods that explicitly model refractive effects at air-

water interfaces, such as Eikonal Fields (Bemana et al., 2022),

NeRRF (Chen et al., 2023), and REF2-NeRF (Kim et al., 2024).

Integrating such comparisons would help to more precisely situ-

ate NeRFrac within the broader landscape of refraction-aware

neural rendering.

To enhance the scalability and automation of the presented ap-

proach, future work should focus on integrating semantic seg-

mentation for automatic water mask generation and incorporat-

ing refractive NeRFs into broader photogrammetric workflows,

such as dense point cloud extraction and georeferencing. In

addition, combining the method with LiDAR or depth-based

measurements will enable full 3D validation and extend its ap-

plicability to full-scale hydrographic mapping.
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