
 Monitoring a flooded open-cast mine with combining remote sensing techniques 
 

 

Paulina Kujawa 1, Jaroslaw Wajs 1, Damian Kasza 1, Fabio Remondino2 
 
1 Department of Geodesy and Geoinformatics, Wrocław University of Science and Technology, Wrocław, Poland - (paulina.kujawa, 

jaroslaw.wajs, damian.kasza)@pwr.edu.pl 
2 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy – remondino@fbk.eu 

 

 

Keywords: Photogrammetry, LiDAR, Satellite imagery, Shoreline, Flooding, Open-cast mine. 

 

Abstract 

Monitoring environmental components at the land-water interface is very important for understanding as well as assessing dynamic 

hydrological and geomorphological processes. Such components include open-cast mines undergoing water reclamation. Three-

dimensional modeling of these changing landscapes is essential to understand the dynamics of the water surface and to guide the safe 
reclamation process. Existing approaches often do not effectively integrate data from different platforms and sensors. This study 

presents a combined remote sensing technique that utilizes imagery and LiDAR-based data from UAVs, airborne, and satellite 

platforms to support the mapping of flooded mine. The proposed workflow involves data fusion, multi-temporal analysis, and 3D 

reconstruction to detect morphological changes, monitor hydrodynamic behaviour, and predict future flood scenarios. The results show 
that the combination of data from active and passive sensors significantly improves spatial and temporal resolution, enabling accurate 

and detailed modeling. 

 

1. Introduction 

Large environmental changes can affect the surrounding area of 

open-cast mines for many years after excavation/mining 

processes have ended. Some of these changes may have adverse 

consequences (e.g. land subsidence, soil erosion, or habitat loss), 

so it is essential to systematically monitor these areas. Monitoring 

the process of open-cast mine reclamation, especially in the case 

of water reclamation, allows geotechnical and hydrological risks 

to be assessed and predicted. In the literature, active and passive 
sensor technologies are commonly employed (Kubendiran and 

Ramaiah, 2024) for monitoring the flooded area. The choice of 

technology and sensors determines the types of analyses that can 

be performed as well as and their accuracies. Depending on the 
type of collected data, analyses such as shoreline extraction, 

quantification of the flooded area (Nasser et al., 2024), 

morphological observation, and vegetation changes (Blachowski 

et al., 2023b) can be conducted. By using products such as Digital 
Terrain Models (DTMs) or Digital Surface Models (DSMs), in 

combination with GIS tools, it is possible to predict areas at risk 

of flooding (Osei et al., 2021). 

 

1.1 Flooding dynamics 

Monitoring the shoreline and tracking changes in water level is 

an effective way to control post-mining areas subjected to 

flooding. Point-wise height measurements can be taken using 

GNSS technology, and satellite or aerial imagery can be used for 

detailed analysis of water extent changes.  

 

Methods for extracting water surface from RGB imagery include, 
among others  edge-detection, machine learning, active contour 

model and polarization (Zhou et al., 2023). In a study by Vicens-

Miquel et al. (2022), a method for automatically detecting 

wet/dry shorelines based on deep learning is proposed. In 
contrast, Garcia et al. (2023) developed a method for automatic 

segmentation of the extent of water using only RGB data within 

a simplified physical model. 
 

Remote sensing indices are most commonly used in multispectral 

imaging to extract water surfaces. These indices are based on 

combinations of spectral bands, such as green, red, near-infrared 
(NIR), mid-infrared (MIR), and shortwave infrared (SWIR). 

Nasser et al. (2024) applied the Normalized Difference Water 

Index (NDWI) and Normalized Difference Moisture Index 
(NDMI) to monitor the effects of flooding in post-mining areas. 

They classified the imagery into aquatic and terrestrial zones by 

applying an appropriate threshold. Similarly, Petropoulos et al. 

(2024) developed a threshold-based image processing technique 
using the NDWI and Modified Normalized Difference Water 

Index (MNDWI) to map flooded areas.  

 

Although shoreline detection using LiDAR data is a common 
subject in scientific research, relatively few studies have focused 

on its application in flooded mining areas. Wang et al. (2023) 

outlined general shoreline extraction approaches, including 

methods based on proxy shoreline features, instantaneous 
shoreline detection, and multisource data fusion. 

 

1.2 Morphological changes  

Within open-cast mining excavations, after the closure of 
extraction, destructive processes (such as erosion and mass 

movements) as well as constructive ones (such as transport and 

sedimentation) often intensify. To assess these processes, 

researchers commonly use digital models derived from processed 
RGB imagery or LiDAR data. Padró et al. (2022) demonstrated 

the effectiveness of DEMs and orthophotos for identifying and 

quantifying erosion processes in reclaimed mining environments. 

In addition, this study examined slope maps to estimate erosion 
rates and determine their ranges. The analysis revealed a clear 

relationship between site topography and erosion intensity. 

Similarly, Blachowski et al. (2023a), employed UAV imagery 

and differential DEMs to analyse surface changes in gullies 
formed within a reclaimed lignite mine. The height models, 

created with a sub-centimetre precision, allowed for the 

quantification of material loss. In a study by Reinprech & Kieffer 

(2025), DSMs were used for morphometric feature extraction 
such as slope, curvature, roughness, dDEM (differential DEM), 

and dDSM (differential DSM) supporting the monitoring of 

mining areas and forested landslides zones.  
 

1.3 Vegetation analyses 

Multispectral imaging and vegetation indices are commonly used 

for monitoring vegetation dynamics in the reclaimed area.  These 
indices support the assessment of ongoing reclamation, detection 

of vegetation anomalies and evaluation of the impact of mining 
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activities on vegetation cover. Multispectral data from various 

sensors can be compared and correlated to provide detailed 

information through long-term monitoring. In the study by Hu et 
al. (2022), data from Landsat 8, Sentinel-2, and HJ1A sensors 

were used to compare vegetation indices in a reclaimed mining 

area. Similarly, Buczyńska et al. (2023), analysed vegetation 

conditions in a post-mining landscape and modeled the 
relationship between historical mining activities and vegetation 

changes. The authors used several vegetation indices, including 

the Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Infrared Index (NDII), and the Modified 
Triangular Vegetation Index – Improved (MTVI2). Also, 

Reinprech & Kieffer (2025)  used multispectral UAV imagery to 

identify differences in vegetation density and growth rates in 

former mining areas by determining indices such as NDVI and 
NDWI. 

 

1.4 Predictions 

Forecasting future processes on reclaimed mine sites is crucial, 
especially in the context of water reclamation, where ensuring 

safety is particularly important. UAV data and GIS tools can 

successfully assess geohazard risk. For instance, Mao et al. 

(2024) performed a quantitative landslide risk analysis in loess 
areas, considering drivers and triggers such as roads, rivers, 

groundwater, slope, and lithology. They assessed landslide risk 

for different precipitation scenarios and return times. In contrast, 

Qing et al. (2025) presented a novel approach to landslide 
prediction in open-cast mines, integrating UAV data, GIS tools, 

3D geological modeling, machine learning, and numerical 

simulations to provide a detailed and interpretable assessment of 

slope hazards. 
 

1.5 Paper's aim 

The aim of this study is to integrate remote sensing data for 

comprehensive monitoring of a flooding process in a reclaimed 
open-cast mine. Based on both collected and open-source data, 

key analyses and observations include:  

(i) hydrodynamic changes, e.g. delineating shorelines, 

calculating reservoir area and estimating volume changes 
based on RGB images, LiDAR data and multispectral data 

from Sentinel-2; 

(ii) morphological changes based on RGB images and LiDAR 

data;  
(iii) land cover detection based on multispectral imagery;  

(iv) prediction of further water rise as well as identification of 

high-risk zones of significant morphological changes. 

The entire methodology is shown in Figure 1 and reported in 
Section 3. 

 

2. Study area and datasets 

The paper related to the implementation of a periodic monitoring 
project at the Stanisław Mine (SW Poland), specifically focusing 

on the Stanisław-South excavation site. This post-mining 

excavation is undergoing water reclamation. The primary source 

of water inflow into the excavation site is precipitation, with 
groundwater inflows playing a secondary role. Due to the 

properties of the clay soils, which form an impermeable isolating 

layer, visible erosion features caused by surface runoff and 
concentrated groundwater inflows can be observed in the basin 

of the filling excavation, particularly in its southern part. Water 

reclamation has been ongoing since 2023.  

 
The data used for the geodetic monitoring are presented in Table 

1. For in situ UAV measurements, two types of platforms/sensors 

ere used: (i) a DJI Phantom 4, equipped with a 20-megapixel 

digital camera, and (ii) a DJI Matrice 300, equipped with a 

miniVUX-3 UAV laser scanner. 

 

Techno- 

logy 

Date of 

measur. 

Type of data GSD / 

Resolution 

ALS 02.04.2019 LiDAR 8 pts/m2 

UAV 02.12.2022 

13.09.2023 

21.10.2024 

RGB images 

RGB images 

LiDAR + RGB images 

0.05 m 

0.05 m 

120 pts/m2 

Satellite 01.04.2019 

06.11.2022 
12.09.2023 

26.10.2024 

S2 imagery (13 bands) 

S2 imagery (13 bands) 
S2 imagery (13 bands) 

S2 imagery (13 bands) 

10 

10 
10 

10 

Table 1. Description of the used datasets. 

3. Methods 

 
Figure 1. Workflow of the proposed methodology. 

 

3.1 Geospatial data collection and creation 

The first stage of the proposed methodology involves few 

processing steps to generate geospatial data for subsequent 

analysis. UAV images were processed using a standard 
photogrammetric pipeline supported by GCPs for scaling and 

georeferencing purposes.  

 

LiDAR data from the UAV were filtered manually to eliminate 
noise in the water surface area caused by single plants and sticks 

and registered water surface points. RGB images were used to 

colorize the LiDAR point cloud from UAV. As no GCPs were 

available, the alignment of the images relied solely on the data 
from the camera positions. The image-based point cloud was then 

aligned to the LiDAR dataset using an Iterative Closest Point 

(ICP) algorithm. RGB values were then transferred to the LiDAR 

points via spatial, proximity-based interpolation. Airborne 
LiDAR data over the AOI were extracted from the national 

geoportal (www.geoportal.gov.pl).  
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To generate DTMs, ground points from LiDAR and 

photogrammetric processing were extracted during the 

classification process. The resolution of each DTM was defined 
based on the density of the point cloud, ensuring terrain detail 

was preserved while avoiding unnecessary data redundancy. In 

some cases, the terrain models were aggregated to ensure 

compatibility with specific types of analysis - for instance, when 
comparing datasets from different time periods or performing 

correlation analyses.  

 

Sentinel-2 L2A images were downloaded from the Copernicus 
Data Space Ecosystem Browser. They were resampled and 

reprojected. The final step for all data was the transformation into 

a common coordinate system. 

 

3.2 Flooding dynamics 

Flood dynamics were assessed based on shoreline changes 

derived from the 3D model. A manual segmentation process was 

applied to the RGB images obtained from the UAV. Coarse 
shoreline points were identified on the point cloud and verified 

using the orthomosaics. A plane representing the water surface 

was then fitted to these extracted points and dense shoreline 

points were extracted using the C2M comparison. Due to the 
dense vegetation along the shoreline, polygons representing the 

water surface were manually drawn. For both UAV and ALS 

LiDAR data, the water extent extraction process was performed 

similarly. In the case of airborne LiDAR, water points identified 
during the classification process were used as coarse shoreline 

points. A plane was then fitted to these points, and the subsequent 

steps followed the same procedure as for UAV imagery. For 

Sentinel-2 imagery, the NDWI index (Eq. 1) was used to extract 
the water area. 

 

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

  (1) 

 

Next, the raster representing the water area was converted into 

polygon and smoothed to eliminate sharp angles. The water 
surface area was calculated based on the generated polygons. 

 

The increase in water volume for each period was also calculated. 

To determine this, two surface models were compared: a 
reference model representing the baseline area and a water 

surface model corresponding to the flood extent of the target 

period. By calculating the enclosed volume between the two 

surfaces, the change in water volume over time was established. 
 

3.3 Morphological changes 

Changes in ground elevation were analysed using the differential 

DTM (dDTM) approach. This method involves subtracting 
DTMs generated during different measurement epochs to 

quantify vertical changes in surface elevation, as well as detect 

and assess subsidence or uplift processes. To better interpret the 

intensity of terrain changes in the study area, a classification 
scheme was applied to the dDTM results. The terrain was divided 

into six classes based on morphological change. These classes 

distinguish between significant, very significant, and extreme 

changes in terrain. The classification criteria and corresponding 
elevation change ranges are provided in Table 2. 

 

Class Value 

Extreme subsidence < - 2 m  

Very significant subsidence -2 to -1 m 

Significant subsidence -1 to 0 m 

Significant uplift 0 to 1 m 

Very significant uplift 1 to 2 m 

Extreme uplift >  2 m 

Table 2. Classification of morphological changes based on 

vertical elevation differences. 

 

3.4 Vegetation changes 

In addition, vegetation dynamics were analysed by calculating 

the NDVI index (Eq. 2) from Sentinel-2 imagery.  

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

  (2) 

 

As shown in Table 3, five land cover classes were distinguished 

based on NDVI index thresholds adapted from Vorovencia 

(2021). To improve the accuracy of delineating the water surface, 
especially in areas with ambiguous reflectance values, the NDWI 

was also used. The water mask derived from the NDWI was 

integrated with the NDVI-based classification through a mosaic 

operation. This combination minimized the misclassification of 
water surfaces in vegetated regions, improving the classification 

results' overall reliability. 

 

 

Class Value 

No vegetation / water < 0.0 

Barren land 0.0 – 0.1 

Sparse grass 0.1 – 0.2 

Grass and shrubs 0.2 – 0.3 

Mixed vegetation < 1 

Table 3. NDVI classes. 

 

3.5 Predictions 

The initial stage of the predictive analysis involved determining 
the potential extent of flooding at different water levels. Based 

on the latest DTM from 2024, the spatial extent of flooding was 

estimated for progressive increases in water level (by 1 m, 2 m, 

5 m and 10 m) and the corresponding water volume was 
calculated. This information is particularly valuable in the 

context of managed reclamation, as it enables the precise 

estimation of the volume of water (in cubic metres) required to 

inundate the post-mining area to a certain height. 
 

In the second prediction processing, the dDTM and slope data 

were used to identify areas prone to surface deformation. For 

each dDTM layer, zones of significant uplift (>1 m) and 
subsidence (< -1 m) were extracted and then combined to 

highlight areas that experienced significant changes in elevation 

over time. In the following step - these deformation zones were 

compared with areas where the slope exceeded 20 degrees, as 
well as regions of barren land and sparse grass identified from 

satellite imagery.  The resulting overlaps represent potential risk 

zones. 

 

4. Results 

4.1 Geospatial data  

The photogrammetric processing of the collected UAV images 

(Table 4) produced dense point clouds, elevation models and 
orthomosaics. Errors in object space (RMSE) are in the order of 

the image GSD for the 2022 datasets due to a non-optimal 

imaging geometry. After ground point classification, the number 
of points in the cloud was reduced, and the spatial resolution was 

recalculated. The aggregated resolution, along with the adjusted 

resolutions used for subsequent analyses, is presented in Table 5. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W10-2025 
3D Underwater Mapping from Above and Below – 3rd International Workshop, 8–11 July 2025, TU Wien, Vienna, Austria

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-155-2025 | © Author(s) 2025. CC BY 4.0 License.

 
157



 

 

Date 2022 2023 

Number of images 429 761 

Image resolution [pix] 5472 x 3648 5472 x 3648 

Image GSD [cm/pix] 3.1 2.6 

RMSE [cm] / [pix] 3.4 / 1.1 1.2 / 0.4 

Table 4. UAV image acquisitions and bundle adjustment results 

for the 2022 and 2023 campaigns. 
 

Type on 

analysis 

Data 

/ model used 

Date Resolu- 

tion 

/ density 

Shoreline 

extraction 

Point clouds 

(pre-

classification) 

2019, 2022, 

2023, 2024 

8, 305, 

370, 120 

pts/m2 

S2 imagery 
2019, 2022, 

2023, 2024 
10 m 

Volume DTM 
2019, 2022, 

2023, 2024 

80, 15, 

15, 30 cm 

Morpho-

logical 
changes 

dDTM; 

DTM slope  
vs. dDTM 

2019-2022, 

2022-2023, 
2023-2024 

80, 

15,  
30 cm 

Vegetation 
changes 

NDVI / NDWI 
rasters 

2019, 2022, 
2023, 2024 

10 m 

Vegetation cover 
vs. dDTM 

2019-2022, 
2022-2023, 

2023-2024 

10 m 

Predictions 

Water surface 

cover (DTM) 
2024 30 cm 

High-risk zone 

detection (DTM) 
2024 80 cm 

Table 5. DSM resolutions adopted for the respective analyses. 

 

4.2 Flooding dynamics 

The interpolated shorelines (Figure 2) clearly show a progressive 

increase in water surface area over the analysed period. The 
largest increase was observed between 2019 and 2022, when the 

reservoir was intensively filled, reaching a volume of 

approximately 448,879 m³. In 2023, the area of the reservoir 

increased by 9,302 m2, while in 2024 it increased by a further 3 
ha, which resulted in an increase in water volume of about 

246,425 m³. Detailed quantitative data is provided in Table 6.  

 
Figure 2. Reservoir shorelines generated based on UAV, ALS 

and satellite data: (a) 2019,  (b) 2022, (c) 2023, and (d) 2024. 

 

Date Sensor Water  

area [m2] 

Increase  

volume [m3] 

2019 ALS 

S2 

2332 

2186 

- 

+469636 2022 UAV 116478 

 S2 102013 

+99248 2023 UAV 125780 

 S2 114025 

+244561 2024 UAV 155862 

 S2 132097 - 

Table 6. Statistics presenting the dynamics of changes in a 

flooded open-cast mine. 

A comparison of water areas extracted from Sentinel-2 satellite 

data and UAV imagery revealed an average difference of 12%. 
The high correlation coefficient (r = 0.968) confirmed the strong 

agreement between the two data sets. However, the greatest 

discrepancies in shoreline position were observed in vegetated 

areas. This is mainly due to the lower resolution of the satellite 
imagery, which leads to generalization of the results. 

Additionally, emergent vegetation above the water surface but 

not in direct contact with land was classified as land area in the 

analysis using the NDWI index. In such cases, the boundary 
between water and vegetation was too narrow for processing 

based on spectral values to detect it correctly. 

 

4.3 Morphological changes 

Comparison of the dDTM models (Figure 3) not only allowed 

changes to be observed but also helped to identify areas with 

significant erosion and sedimentation processes. In the 2019-

2022 period, the water level rose by more than 4 metres, and 
landslides in the south-western part of the AOI are particularly 

evident. In some locations, displacements of up to 8 meters were 

reported. 

 
Figure 3. dDTM (a–c) and classification of displacement based 
on significance (d–f) for: (a, d) 2019–2022, (b, e) 2022–2023, 

and (c, f) 2023–2024. 
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During the next period, from 2022 to 2023, the water level 

increased by about 0.8 meters. This was accompanied by 

significant additional mass movements around the reservoir. 
Small landslides with an amplitude of displacement of approx. 2 

meters were identified in the southern and southeastern part of 

the AOI. Additionally, a new zone of deformation emerged in the 

eastern region of the reservoir, with maximum displacements 
reaching 4 meters. 

 

In the final analysed time interval, from 2023 to 2024, the water 

level increased sharply by 1.8 meters. Zones of landslide activity 
remained largely coincident with those previously identified, 

reaching similar displacement values. 

 

An analysis was conducted to investigate the relationship 
between land displacement (dDTM) and slope (Figure 4). To 

avoid misinterpreting uplift caused by hydraulic reclamation, 

areas subjected to water reclamation were excluded. From 2019 

to 2022, significant subsidence and uplift mainly occurred on 
gentle slopes (mean: 11.76° and 12.49°, respectively), with 

extreme changes near 10°, which indicates large-scale land 

movement. Between 2022 and 2023, significant uplift and 

subsidence began to dominate on slightly steeper slopes 
(approximately 14°), probably reflecting the ongoing reshaping 

and subsidence of the fill. These changes continued between 

2023 and 2024. The overall trend suggests increasing surface 

stability and ongoing reclamation success. 

 
Figure. 4. Relationship between slope of the DTM and dDTM: 

(a) 2019-2022, (b) 2022-2023, (c) 2023-2024. 

 

4.4 Vegetation changes 

As shown in Figure 5, clay extraction was still being carried out 

in 2019, as evidenced by the presence of barren land (18.5%) and 

sparse grass (38.6%). In subsequent years, the flooded area 

expanded, reaching 19.2% in 2022. This expansion had a dual 
effect on the local landscape. First, some vegetated zones were 

submerged, including areas of grass and shrubs. Second, it 

stimulated the growth of mixed vegetation around the reservoir, 

which reached 53.1% in 2022. Although mixed vegetation 
decreased in 2023, it recovered in 2024. Sparse grass and barren 

land consistently declined over time. 

 

Analyzing the change in vegetation between 2019 and 2024 
clearly illustrates the effects of water reclamation. There has been 

a transition from predominantly terrestrial environment to 

aquatic and mixed-vegetation ecosystems, which enhances 

habitat diversity in the reclaimed landscape. 

 

 
Figure 5. Vegetation cover based on NDVI and NDWI in (a) 

2019, (b) 2022, (c) 2023, and (d) 2024. 

 
Figure. 6. Relationship between vegetation cover and dDTM: 

(a) 2019-2022, (b) 2022-2023, (c) 2023-2024. 
 

A correlation analysis was carried out between the observed 

displacement values for each year and the NDVI values before 

deformation (Figure 6). For this reason, all datasets were 
aggregated to a spatial resolution of 10 metres. For the period 

from 2019 to 2022, a weak yet significant trend emerged. It 
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indicates that increased vegetation leads to reduced erosion and 

greater stability. This theory is also supported by degraded barren 

land, where the average displacement value was -0.936 m. 
Analysis of the 2022-2023 period revealed a weak but 

statistically significant trend. Once again, erosion was lower in 

areas with mixed vegetation. There is no clear trend in the final 

analysed period, which may be related to the stabilization of the 
area and the healthy vegetation dominating the reclaimed study 

area. 

 

4.5  Predictions  

Further increase in water level is expected in the study area as a 

result of ongoing water reclamation. It is crucial to monitor the 

site and mitigate the negative effects of rapid landform changes. 

To achieve this, the potential extent of water should be observed 
(Figure 7). Based on the current water surface area of 155,862 m² 

(from 2024) and the total volume increase of 813,445 m³ (from 

2019), further simulations indicate that increasing the water level 

by 1 meter would expand the surface area to 166,893 m² and add 
approximately 160,123 m³ of water. Conversely, a potential 10-

meter increase would result in an area of 241,199 m² and a 

cumulative volume increase of over 2 million m³. 

Figure 7. Prediction of water surface cover on the 2024 DSM 

model after an increase of (a) 1 m, (b) 2 m, (c) 5 m, and (d) 10 

m. 

 

Figure 8. High-risk zone detection based on DTM from 2024 
analysis. 

 

It is also necessary to analyse the terrain and its slope. Figure 8 

shows the potential locations of significant subsidence. Three key 
high-risk zones were identified. These zones are located near the 

reservoir, making it especially important to monitor them in the 

event of further flooding. 

 

5. Discussion and conclusions 

Remote sensing data are widely used to monitor mining areas, 

especially those undergoing reclamation and characterised by 

dynamic environmental changes. Flooded areas require special 
attention, and the fusion of data from different sources - UAV, 

airborne, and satellite - provides a comprehensive observation 

that allows for ongoing monitoring and evaluation of restoration 

efforts, as well as a rapid response to any concerning changes. 
 

The approach proposed in this study is an important contribution 

to the field of post-mining land reclamation. It introduces a 

comprehensive, repeatable workflow for monitoring and 
assessing reclamation progress, particularly with regard to water 

reclamation. Integrating data from various sources — UAV, 

LiDAR, and Sentinel-2 — enables precise tracking of shoreline 

dynamics, estimation of water volume changes in flooded areas, 
assessment of morphological land transformations (including 

displacements), analysis of vegetation cover dynamics and state, 

and forecasting of future geomorphological and hydrological 

processes. In the long term, the proposed methodology can 
support decision-making in the planning and execution of 

reclamation activities, particularly those related to water 

management. It can also provide a basis for reclamation policies 

that aim to restore and maintain sustainable environmental 
conditions. 

 

High-resolution UAV images and LiDAR data were essential in 

this research to provide the best possible accuracy and resolution. 
However, the proposed methodology is not limited to UAV-

based data only. It can be adapted to use aerial images or existing 

elevation models available from national portals or other spatial 

data providers. This flexibility enables the workflow to be used 
in various scenarios, depending on the available instruments, data 

and the scale of the study area. 

 

It is possible to accurately extract the water surface from 
processed RGB images acquired by a UAV using a simple 

manual workflow with GIS tools. This method is particularly 

relevant when direct shoreline measurements using GNSS 

techniques are impossible or extremely difficult. Although 
satellite multispectral images are an excellent alternative to 

photogrammetry, their accuracy is, on average, about 12% lower 

due to their lower spatial resolution. An additional limitation is 

the need for cloud-free imagery. Additionally, shoreline 
classification may be inaccurate due to the presence of 

submerged vegetation. Although such vegetation does not form 

the actual shoreline, it can be misclassified as land area, 

especially if it is located near the shore. 
 

The 3D models obtained from photogrammetric and LiDAR 

processing allow the assessment of morphological changes 
taking place around the reservoir. The accuracy of the dDTM 

method primarily depends on the georeferencing, spatial 

resolution, and precision of the data used to create digital models. 

The dDTM approach achieves very high accuracy using high-
resolution data, such as models generated from UAV 

photogrammetry or LiDAR scanning. The analyses presented 

here are based on data with a spatial resolution in the range of 10-

60 cm.  This resolution enables the detection of significant 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W10-2025 
3D Underwater Mapping from Above and Below – 3rd International Workshop, 8–11 July 2025, TU Wien, Vienna, Austria

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-155-2025 | © Author(s) 2025. CC BY 4.0 License.

 
160



 

morphological changes, including surface erosion, 

sedimentation, and ground subsidence. Several key advantages 

of this method over other techniques should be highlighted: 
greater spatial coverage than point-based GNSS data collection, 

higher spatial resolution than radar techniques such as InSAR, 

and more efficient and non-invasive data collection than 

terrestrial laser scanning. In summary, using high-quality digital 
models in combination with dDTM differential analysis provides 

an effective, accurate tool for monitoring land dynamics at local 

and medium scales. 

 
Multispectral imaging, which allows analysis of vegetation 

changes, is of added value in monitoring post-mining areas. The 

analysed reclaimed mine area shows an increase in aquatic areas 

and mixed vegetation. This indicates positive natural ecological 
succession. The disappearance of barren soil and sparse grass and 

the development of mixed vegetation around the reservoir 

suggest improved habitat conditions and the formation of new 

ecosystems. Mixed vegetation may promote slope stabilization 
and reduce erosion. However, the high-risk zone prediction 

analysis shows that there are still areas where deformation may 

occur. These areas should be monitored in the future. 

 
The methods proposed in this study can be successfully applied 

to other mining areas with different environmental conditions and 

problems. The developed workflow combines UAV, LiDAR, and 

Sentinel-2 data with commonly available, user-friendly GIS 
tools, allowing it to adapt to different landscapes. Its modular, 

repeatable structure enables users to customize their input data, 

classification schemes, and spatial resolutions according to their 

sensors and the unique characteristics of their study area. This 
flexibility makes the methodology suitable for a wide range of 

post-mining environments undergoing various reclamation 

processes. 

 
Future studies of the Stanislaw Mine site will include bathymetric 

measurements using an echo sounder. This data will enable us to 

assess the dynamics of morphological changes to the bottom over 

time, identify accumulation and erosion zones, and improve our 
understanding of the processes that occur during and after water 

reclamation. 
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