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Abstract

Satellite-derived bathymetry (SDB) provides a cost-effective solution for coastal mapping, but challenges remain in model inter-
pretability and uncertainty quantification. This study investigates the applicability of the least-squares-based deep learning (LSBDL)
framework for SDB, leveraging its hybrid structure that integrates neural networks with the available least-squares theory to en-
hance model transparency. ICESat-2 photon-counting LiDAR was used to train depth estimation from Sentinel-2 multispectral
imagery over an approximately 30 km x 30km region of near-coastal bathymetry at Anegada, British Virgin Islands. ICESat-2
provided high-precision depth information, of which 80% were used for training and the remainder for validation. LBSDL depth
estimation achieved a root-mean-square error (RMSE) of 2.74 m, representing around 10% of the maximum observed depth, with
the best performance in the 2—15 m depth range. These findings demonstrate the potential of LSBDL for interpretable and reliable
bathymetric mapping, highlighting ICESat-2 as a globally accessible training and validation source and advancing SDB capabilities

for data-sparse coastal regions.

1. Introduction

Bathymetric mapping of shallow coastal waters is essential for
navigational safety, environmental monitoring, and coastal in-
frastructure planning. Traditional methods such as echo sound-
ing and airborne light detection and ranging (LiDAR) offer high
accuracy but are often constrained by high cost, limited cov-
erage, and logistical challenges (Bernardis et al., 2023). As
an alternative, satellite-derived bathymetry (SDB) provides a
scalable, cost-effective means of estimating depth by exploit-
ing light attenuation in clear water using multispectral imagery.
This method facilitates rapid and frequent mapping of shallow
zones where in-situ data are sparse or unavailable.

A wide range of SDB approaches have been developed, broadly
categorized into empirical and physics-based models (Ashphaq
et al., 2021). Physics-based inversion methods estimate depth
by modeling the light propagation physic (Kim et al., 2024) or
by analyzing wave kinematics (Najar et al., 2022; Al Najar et
al., 2023). These methods, in principle, allow depth retrieval
without local depth samples. However, such methods often neg-
lect some environmental influences and require detailed know-
ledge of site-specific optical properties, which complicates their
general applicability. They can also be limited by the spectral
capabilities of the available imagery, particularly the need for
sufficient blue—green band sensitivity (Niroumand-Jadidi et al.,
2020).

Empirical methods, in contrast, rely on statistical relationships
between multispectral reflectance and water depth, commonly
implemented through band ratio techniques or multilinear re-
gression models (Eugenio et al., 2021). These models are com-
putationally efficient and easy to apply but typically require ca-
libration with in-situ depth measurements, which limits their
applicability in remote and data-sparse areas. Recent studies
have addressed this limitation by leveraging satellite LiDAR

data from ICESat-2 as a viable source of reference bathymet-
ric data. Accurate bathymetric points can be derived from the
ICESat-2 photon-counting laser altimeter, which can serve as
calibration data for SDB models (Ma et al., 2020). Replacing
field measurements with ICESat-2 depths enables fully satellite-
based workflows for bathymetry, greatly expanding the reach
of empirical SDB to areas previously lacking reference data.
However, these methods have been simplified to a large ex-
tent, which limits their performance to capture spatially com-
plex depth variations over larger areas.

Over the last decade, machine learning (ML) techniques have
increasingly been adopted to improve SDB by capturing com-
plex, nonlinear relationships between spectral data and depth. A
variety of ML models, including neural networks (NNs), sup-
port vector machines (SVMs), random forest (RF), and deep
learning (DL) models, have demonstrated promising perform-
ance in this domain (Xie et al., 2024). These data-driven meth-
ods can extract high-dimensional features from imagery and
do not require strict physics-based correction, such as detailed
atmospheric corrections or water column parameters. In par-
ticular, convolutional neural networks (CNNs) can exploit the
spatial context of pixels, such as the similarity of neighboring
reflectance and depth, to enhance bathymetric estimation accur-
acy (Xie et al., 2024). Nevertheless, conventional MLL/DL mod-
els function largely as “’black boxes” that fit statistical patterns
in the data while disregarding the physical processes, which can
raise concerns about interpretability and reliability.

In this work, we explore a novel least-squares-based deep learn-
ing (LSBDL) approach to SDB, which integrates the predictive
capabilities of deep neural networks with the statistical trans-
parency of classical least-squares estimation. LSBDL, recently
introduced by Amiri-Simkooei et al. (2024), is an emerging
paradigm that reformulates a deep learning model within the
framework of least-squares theory. In an LSBDL model, the
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neural network is trained to construct the design matrix for a
linear(ized) model relating input to output. The design mat-
rix is determined through an iterative procedure using the least-
squares optimization techniques such as steepest descent or the
Gauss—Newton method. This allows the network to handle and
train the nonlinear feature patterns, while the final prediction
step remains a linear least-squares solution that inherits all the
well-established statistical tools of that framework. A key ad-
vantage of LSBDL is thus its interpretability. For example, one
can directly compute quality measures like the covariance mat-
rix of the predicted outcomes. As a result, uncertainty estimates
for the predicted depths are inherently produced as part of the
model output, in contrast to conventional deep learning models,
which typically lack native uncertainty quantification.

We apply the LSBDL framework to derive bathymetry around
Anegada, British Virgin Islands—a coral reef environment—
using only freely available satellite data. Specifically, Sentinel-
2 multispectral imagery is used as input, while ICESat-2 LiDAR-
derived depths serve as training targets. Preliminary results
show that our LSBDL model achieves an overall depth estima-
tion root-mean-square error (RMSE) of about 2.74 m, with the
best performance across the 2-15m depth range. These find-
ings highlight the potential of LSBDL to produce accurate and
interpretable bathymetric maps for shallow waters, while tak-
ing advantage of the global accessibility of satellite data and
the statistical rigor of least-squares theory.

The remainder of this paper is organized as follows. Section 2
describes the datasets used in this study. This includes Sentinel-
2 multispectral imagery and ICESat-2 LiDAR data, along with
an overview of the study area around Anegada Island. Sec-
tion 3 outlines the overall workflow of the study and intro-
duces the two primary methodologies: the bathymetry retrieval
approach and the least-squares-based deep learning (LSBDL)
model. Section 4 presents the experimental results, while Sec-
tion 5 provides a discussion of the findings. Finally, Section 6
concludes the paper and offers directions for future research.

2. Data and Study Area

2.1 Study area: Anegada island

In this study, the area of interest is Anegada Island, the north-
ernmost of the British Virgin Islands (BVI), located in the north-
eastern Caribbean Sea. Unlike the other volcanic islands within
the BVI archipelago, Anegada is primarily composed of coral
and limestone, which makes it geologically unique and excep-
tionally low-lying. With a maximum elevation barely exceeding
8.5 m above the sea level, the island’s exposed landmass spans
approximately 24 km in length and 5 km in width, covering an
area of about 38 km?.

The defined rectangular study region surrounding Anegada Is-
land covers an area of approximately 30 km x 30 km, bounded
by latitudes 18.6527°—18.7683°N and longitudes 64.4305°—
64.2687°W. The southern coast of Anegada exhibits a depth
range from Om to approximately 40 m. The combination of
low turbidity and gradual depth increase makes this region an
ideal environment to evaluate the performance of the proposed
LSBDL model.

As illustrated in Figure 1, the study area is intersected by eight
ICESat-2 ground tracks per year for both 2022 and 2023, mak-
ing in total 16 tracks. These tracks span both the terrestrial
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Figure 1. Anegada Island overlaid with 16 ICESat-2 beam
patterns on Sentinel-2 imagery from 11/10/2023. Beam tracks
from 2023 are in green, and those from 2022 in red (8 per year).
Coordinates are in kilometers (EPSG:32620, WGS 84 / UTM
zone 20N).

area of the island and its southern coastal waters. They provide
sufficient coverage for accurate depth prediction throughout the
region.

2.2 Sentinel-2 satellite imagery

Sentinel-2 imagery was selected for depth retrieval around An-
egada Island due to its high spatial resolution, wide spectral
coverage, frequent revisit capability, and free availability. The
Sentinel-2 mission, operated by the European Space Agency
(ESA), provides multispectral optical data in 13 bands ranging
from the visible to the shortwave infrared (SWIR), with spatial
resolutions of 10 m, 20 m, and 60 m depending on the band. For
this study, Level-2A (L2A) surface reflectance products were
used, which include atmospheric corrections and cloud mask-
ing, making them suitable for shallow water and land surface
analysis. The combination of fine resolution, coastal-relevant
bands, and high temporal frequency (every five days at the equa-
tor with both Sentinel-2A and 2B) makes Sentinel-2 partic-
ularly valuable for monitoring dynamic coastal environments
like those surrounding Anegada.

In this study, we primarily used a Sentinel-2 image acquired
on 11 October 2023. This date was selected based on favor-
able acquisition geometry, including an off-nadir viewing angle
of less than 30°, a sun elevation between 30-60°, and an off-
set azimuth, providing optimal illumination and viewing condi-
tions (European Space Agency, 2015). Since the focus is on
data from 2023, this scene was chosen from several candid-
ates meeting those criteria. As shown in Figure 2, some cloud
coverage is present but was effectively masked using the Scene
Classification Layer (SCL) band during preprocessing. Band
10 is missing from this dataset; however, its absence is not con-
sidered significant, as it has a coarse spatial resolution (60 m)
and a central wavelength at 1375 nm, which is primarily used
for cirrus cloud detection and does not contribute to water pen-
etration or shallow water analysis.

2.3 ICESat-2 LiDAR dataset

ICESat-2, the Ice, Cloud, and land Elevation Satellite-2, was
launched by the National Aeronautics and Space Administra-
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Figure 2. Basemap of study area based on Sentinel-2 imagery
from 11/10/2023. Indicated also all ICESat-2 88 ground tracks
( 6 per beam pattern, with some missing). Tracks from 2023 are
in green and yellow; 2022 in red and pink. Coordinates are in
kilometers (EPSG:32620, WGS 84 / UTM zone 20N).

tion (NASA) in 2018. It provides high-resolution elevation data
through its Advanced Topographic Laser Altimeter System (AT-
LAS). ATLAS uses photon-counting LiDAR in combination
with precise geolocation from global positioning system (GPS),
star cameras, and onboard processing. As ICESat-2 orbits the
Earth, ATLAS emits laser pulses that are split into three beam
pairs, each consisting of a strong and a weak beam. This res-
ults in six approximately 14 m-wide laser footprints across the
ground track swath. These laser footprints are arranged as Ground
Tracks (GT) 1, 2, and 3, each with left (L) and right (R): GT1L,
GTIR, GT2L, GT2R, GT3L, and GT3R. This six-beam con-
figuration is often referred to as the “beam pattern” or “laser
footprint array” along the satellite’s orbital path, called also the
reference ground track. In some instances, one or more beams
may be missing due to signal dropout or acquisition anomalies.
Figure 3 illustrates the spatial arrangement of the six beams re-
lative to the satellite’s track.

Figure 3. Beam pattern for ICESat-2. Light green beams are
relatively low energy (weak) beams; dark green indicates
relatively high energy (strong) beams.

The ICESat-2 dataset typically includes 8 beam patterns per
year, yielding about 48 ground tracks and approximately 20,000
labeled data points annually when matched with Sentinel-2 im-
agery at 10-meter resolution. However, this size of dataset
proved insufficient for the LSBDL model, which exhibited per-

sistent underfitting—marked by high training error and failure
to capture spatial patterns—even after extensive hyperparameter
tuning. The core issue is the sparse spatial distribution of indi-
vidual beam patterns. To enhance spatial coverage without in-
troducing unnecessary redundancy, we incorporated data from
both 2022 and 2023. As illustrated in Figure 2, this increased
the number of ground tracks intersecting the island to approx-
imately 88, substantially improving coverage, especially in the
critical southern coastal region.

3. Methodology

In this study, we followed a structured workflow to apply LS-
BDL for SDB, starting with data preprocessing. For Sentinel-2
imagery, the preprocessing involved converting reflectance val-
ues, masking non-water pixels, and normalizing spectral bands.
ICESat-2 data underwent a series of corrections including noise
filtering, geoid and atmospheric adjustments, and refraction cor-
rection. From the corrected ICESat-2 dataset, bathymetric pro-
files were extracted to obtain depth measurements. The depth
values were then co-registered with the Sentinel-2 image at a
10-meter resolution. After the data cleaning steps, they were
split into training and validation sets. The LSBDL model was
trained using the prepared training data, and subsequently was
applied to predict bathymetry on the validation subset. Finally,
model performance was assessed through error analysis. The
complete end-to-end pipeline for this LSBDL-based SDB ap-
proach is illustrated in the diagram in Figure 4. We first in-
troduce the methodology used for bathymetry extraction using
ICESat-2 data. We then present the LSBDL model, detailing its
structure and the procedures for training and prediction.

E=ae
‘ Matching (co-registering) ‘

Depth Predictions
Error Analysis

Figure 4. Workflow for LSBDL-based satellite-derived
bathymetry (SDB) using Sentinel-2 and ICESat-2 data.

3.1 Bathymetry extraction from ICESat-2 data

The geolocated seafloor photon returns from ICESat-2 data can-
not be directly used as bathymetric measurements because the
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standard ICESat-2 data products do not account for the refrac-
tion that occurs at the air—water interface. Therefore, a dedi-
cated post-processing step is required to produce accurate ba-
thymetric estimates. In this study, we implemented the photon-
based refraction correction methodology developed by Parrish
et al. (2019). In their validation over the U.S. Virgin Islands us-
ing airborne bathymetric LiIDAR, this method achieved vertical
root mean square errors (RMSEs) of around 0.43 m.

Our workflow begins with the ATLO3 geolocated photon data.
An initial filtering step is applied using the YAPC (Yet Another
Photon Classifier) density-based score (Sutterley, 2023) to as-
sign a confidence value to each photon. A threshold is then ap-
plied to exclude noise photons, and this is further refined by in-
corporating the photon weights available in the ICESat-2 mete-
data. The water surface is extracted by identifying the most fre-
quent elevation value among the surface-return photons. To fa-
cilitate efficient along-track analysis, the photon cloud is binned
into a vertical histogram at a resolution defined by the ATL03
segment bin size. Bottom-return photons are then identified by
detecting the second peak in the vertical histogram, which is
expected to correspond to seafloor reflections from below the
water surface. Once the bottom photons are segmented, the re-
fraction correction algorithm is applied to determine the depth.
An example of refraction-corrected bathymetry is illustrated in
Figure 5.

Refraction Corrected Bathymetry

of s rwm

A Py ‘z”ﬂ

N
* 15000 m

cted Heights, m
|

Corre

Uncorrected Photons.  7500m

—40 + Refraction Corrected Photon Data
«  Estimated Water Surface

— Estimated Seafloor

Along-track dtrec(m&

0 5000 10000 15000 20000 25000

Along-track distance, m

Figure 5. Example of extracted bathymetry from ICESat-2
ground track ATL03_20220808011200_07201601_006_01
GT2R (left), and the corresponding ground track overlaid on
Sentinel-2 imagery from 30/12/2023 (right).

The refraction correction method relies on known or assumed
values for the refractive indices of air and water. For each
photon, the algorithm computes the corrected position in three
dimensions by calculating the difference between the apparent
and true locations of the seafloor return. This involves estim-
ating the slant path through the water column and adjusting
for the change in light direction and speed due to refraction.
The method is computationally efficient and accounts for Earth
curvature when needed. This allows accurate bathymetric es-
timation even from near-nadir observations.

3.2 Least-squares-based deep learning model

Least-squares-based deep learning (LSBDL) is adopted here as
a novel framework that combines the interpretability of linear
least-squares models with the predictive power of deep neural
networks. As illustrated in Figure 6, the LSBDL training pipe-
line feeds the input features through a nonlinear activation layer
and then computes the output weights by solving a Tikhonov-
regularized least-squares problem (ridge regression) to model
the reference depths. The initial depth prediction is compared
to the ICESat-2-derived target, yielding a residual error E.LS-
BDL can in principle apply back-propagation of this error through

multiple layers. For a single-layer model, LSBDL uses the re-
sidual to directly update the hidden-layer weight matrix W in a
forward manner, and then recomputes the global optimal output
weights X in the next iteration. This iterative residual-based
update continues until convergence, which ensures that each
weight adjustment is explicitly tied to reducing the prediction
error. Consequently, the training process is more transparent
and interpretable than that of a conventional deep network, be-
cause it is formulated in the framework of the existing least-
squares theory.

--D‘ Weight Matrix W ‘ [ Feature Matrix D

Activation function ¢

Parameter Vector X

o | |
]

[ Predicted Depth ¥

Observed Depth ¥

Steepest descent update

Residual (Y - )

Figure 6. Schematic flowchart of the LSBDL model pipeline
used for satellite-derived bathymetry.

In the implementation, the input vector consists of 12 Sentinel-
2 spectral bands (B1-B12, excluding B10), with all band values
normalized to the range [-1, 1]. Bathymetry output data, extrac-
ted from ICESat-2, is used to label the corresponding Sentinel-2
pixels, forming the training and validation datasets. An import-
ant step in data preparation involves outlier removal: after an
initial model run, individual data points with residuals exceed-
ing five meters were removed. These outliers predominantly oc-
cur around the outline of the island, likely due to inaccuracies in
the Scene Classification Layer (SCL) of Sentinel-2, which may
misclassify land pixels as water. Such misclassifications intro-
duce bias into the training step, and thus were removed prior to
further analysis.

The model architecture consists of a single hidden layer with
n = 50 neurons and a nonlinear ’sigmoid’ activation function,
followed by a linear output layer as described above. The data-
set is randomly split, with 80% of the samples used for training
and 20% for validation/testing to ensure robust spatial general-
ization. Training employs a learning rate of « = 10, a soften-
ing parameter of s = 0.5, and a momentum term of x = 0.9 to
iteratively update the weights 1W. A small regularization factor
k = 1075 is used in the least-squares solution to stabilize the
weight estimation X. This configuration, presented in Table 1,
enables the LSBDL model to capture complex and nonlinear re-
lationships in the data while preserving interpretability through
explicit parameter-to-feature mapping. This offers a transpar-
ent and effective alternative to conventional “black-box” deep
learning approaches for satellite-derived bathymetry.

A total of 42,823 data points were constructed by pairing 12-
band Sentinel-2 imagery acquired on October 11, 2023, with
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sigmoid 800
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Table 1. Hyperparameter settings used for training the LSBDL
model. Parameters include n: number of hidden layer neurons,
s: softening parameter, y: momentum parameter, «: learning
rate, k: regularization factor, activation function used, and
number of training iterations.

co-located depth measurements derived from ICESat-2, resam-
pled to a spatial resolution of 10 meters. These data were sub-
sequently partitioned into training and validation subsets us-
ing an 80:20 split, resulting in 36,008 samples for training and
6,815 samples for validation.

Figure 7 presents the training and validation error curves over
800 iterations during the training of the LSBDL model. Both
curves exhibit a steady decline in error and begin to level off
around iteration 600, which indicates convergence. The small
gap between the training and validation errors suggests that the
model generalizes well to the validation data. Notably, there
is no indication of significant overfitting or underfitting. As
further indication, increasing / decreasing the number of hidden
neurons to 100 / 25 did not result in a substantial improvement
/ deterioration in error, which suggests that the original model
capacity was sufficient. A more detailed analysis of the model’s
performance will be provided in next section.

Training vs Validation Error

1a \ —— Training Error

Validation Error

0 100 200 300 400 500 600 700 80O
Iteration

Figure 7. Training vs. validation error (measured in MSE) of the
training process.

4. Results

The model outputs predicted depth values corresponding to the
validation dataset. The performance metrics such as the coeffi-
cient of determination (R?), root mean squared error (RMSE),
and mean absolute error (MAE) were computed. In particu-
lar, the LSBDL model leverages the statistical foundations of
least-squares theory to estimate the output covariance associ-
ated with the predicted depths. This output covariance serves
as an uncertainty estimate, providing insight into the reliability
of the model predictions.

Table 2 presents the performance metrics of the LSBDL model.
These results indicate that the model generalizes well to un-
seen data. Furthermore, the small difference between the MAE
(2.28 m) and RMSE (2.74 m) suggests that the prediction errors
are relatively consistent, with limited influence from extreme
outliers. Overall, the model demonstrates robust and reliable
predictive performance.

Figure 8 compares the true depth data for both the training
and validation datasets, and the predicted depths for only the

Met. | R* RMSE MAE
Val. [ 075 274 228

Table 2. Performance metrics of the applied LSBDL model.

validation dataset. Overall, the depth values range from ap-
proximately O m to 25 m, with greater depths observed further
from the island, which aligns well with expectations. However,
a closer examination of the two depth maps reveals system-
atic discrepancies: in the shallow regions near the island, the
predicted depths are generally overestimated, whereas in the
deeper regions, particularly in the lower-left quadrant, the pre-
dicted depths tend to be underestimated compared to the true
values.
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(a) True depth data in study area, including both training and
validation datasets. 42,823 data points in total
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(b) Predicted depth on validation dataset. 6,815 data points in total.

Figure 8. Comparison of true depths (a) and predicted depths on
validation set (b).

To further elaborate on the previous statement, the prediction
errors of the predicted depths (on validation data) are presen-
ted in Figure 9. As shown in Figure 9b, 95% of the resid-
uals fall within approximately +4.7 m, which indicates strong
overall model performance and is smaller than the estimated
5.57 m standard deviation of the training data, suggesting that
the model is making predictions with less variability than is in-
herent in the training dataset. However, the spatial distribution
in Figure 9a reveals a clear pattern: overestimation (positive re-
siduals) is concentrated in the shallow reef areas near the island,
while underestimation (negative residuals) is more common in
deeper offshore regions, particularly to the south and southwest.

Figure 10 illustrates the uncertainty of predicted depth using
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(a) Spatial distribution of residuals from depth predictions on the
validation dataset, overlaid on Sentinel-2 imagery acquired
11/10/2023.
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(b) Residuals of depth predictions by observation ID on the
validation dataset. The shaded gray area represents the interval
within which 90% of the residuals fall, indicating the typical range
of prediction errors.

Figure 9. Residual analysis of depth predictions on the
validation dataset.

the LSBDL model. This explains the standard deviation of the
estimated depths, a well known metric to assess uncertainty in
least squares solutions. The distribution across observation IDs
(Figure 10b) reveals standard deviations ranging from 0 to 1.
Given the amount of the available data, this suggests a high
level of confidence in most model outputs with respect to ran-
dom errors. The spatial distribution of prediction uncertainty
(Figure 10a) highlights localized regions with higher uncertain-
ties, particularly in the bottom-left and top-right parts of the
study area. They may be attributed to factors such as lower data
density, and hence limited training coverage in those regions, as
well as potential effects like cloud occlusion.

5. Discussion

The LSBDL model demonstrates strong performance for depths
ranging from approximately 2—15 m, but its predictions become
less reliable beyond 15 m, with increasing residual errors. This
limitation is expected: at greater depths, the signal-to-noise ra-
tio deteriorates due to light attenuation, a known constraint of
passive SDB methods (Cesbron et al., 2021).

The residual error map (Figure 9a) reveals a systematic bias:

Standard Deviation of Predicted Depth on Test Set (6815 points)
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(a) Spatial distribution of standard deviation of depth predictions on
the validation dataset, overlaid on Sentinel-2 imagery acquired on
11/10/2023
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(b) Standard deviation of depth predictions by observation ID on
the validation dataset.

Figure 10. Prediction standard deviation of depth estimates
generated by the LSBDL model on the validation dataset.

the model tends to overestimate depth in shallow reef areas and
underestimate it in deeper offshore regions. For example, a
nearshore site exhibits larger residuals than a deeper offshore
site, which suggests that factors beyond depth alone influence
prediction accuracy. One possible explanation is that in shal-
low waters, darker benthic substrates—such as dense seagrass
or coral shadows—reflect less light, making the water appear
optically deeper (Casal et al., 2020; Towle, 2013). This can
lead to depth overestimation in those areas. Addressing such
effects will require further investigation to enhance the model’s
generalization and reduce systematic error.

A comparison between Figure 10a and Figure 9a reveals that
the standard deviation of the predicted depth closely aligns with
the residual distribution. Regions with high residuals, particu-
larly in the lower-right area, also exhibit high predicted stand-
ard deviation. This correspondence suggests that the model’s
self-estimated standard deviation is a meaningful indicator of
prediction uncertainty and represents a key advantage of the
LSBDL framework. However, since the estimated standard de-
viations are generally smaller than the prediction errors (resid-
uals), this suggests the presence of unmodeled effects in the
modeling. For example, it can indicate that depth is likely
not the sole factor influencing variations in the spectral bands.
Other parameters, such as water clarity or bottom type, may
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also need to be considered to improve the model’s performance.

Our results indicated that using ICESat-2 data as the reference
for true depths is effective, which eliminates the need for in-
situ calibration and enabling a fully satellite-based workflow.
Although ICESat-2 depth points are sparser than traditional sur-
veys, they provide a reliable and globally accessible source of
bathymetric information.

Despite these strengths, the approach has several limitations.
Most notably, the final RMSE of 2.74 m may be insufficient
for applications requiring high precision, such as safe navig-
ation. Additionally, the method remains constrained in wa-
ters deeper than 15 m, a challenge common to most SDB tech-
niques. Lastly, reliance on ICESat-2 data imposes coverage
constraints—particularly for applications that require high tem-
poral resolution—due to the limited spatial density of available
ground tracks.

6. Conclusion and Outlook
6.1 Conclusion

This study demonstrated a novel integration of neural networks
with least-squares estimation for SDB, using Sentinel-2 imagery
and ICESat-2 LiDAR data over Anegada’s south coast. We
showed that the LSBDL model can produce bathymetric maps
with accuracy and consistency similar to traditional methods,
while also providing enhanced interpretability through built-
in uncertainty estimates. Key contributions of this work in-
clude: (1) applying the LSBDL framework to SDB for the first
time, showing that it can give reliable depth predictions without
site-specific calibrations; (2) demonstrating the practical use
of freely available ICESat-2 photon-counting data as reference
depths to train an SDB model over a 900 km? area, validating a
cost-effective approach for mapping shallow seas; and (3) high-
lighting how interpretability from the least-squares theory can
be leveraged to analyze residuals and quantify prediction con-
fidence across the mapped area. In general, these findings ad-
vance the state-of-the-art in SDB by providing a technique that
is not only accurate but also transparent. The outcomes are es-
pecially significant for data-sparse regions: coastal managers
and scientists can now produce depth estimates with known
confidence levels using only global satellite data, which is a
substantial step forward in making coastal mapping more ac-
cessible and reliable.

6.2 Outlook

Building on this successful case study, there are several sugges-
tions for future research to improve the applicability and robust-
ness of the LSBDL approach for bathymetric mapping.

1. To improve the model’s adaptation to turbid or optically
complex waters, some additional inputs or modifications can
be added to the LSBDL framework, for example, water qual-
ity indicators (turbidity estimates or colored dissolves organic
matter indices) can be used as an additional input. Besides,
physical-laws can be integrated into the model to account for
light attenuation more explicitly.

2. Multisensor data or multi-image approaches can be explored
to try extend the depth range the model is able to predict. For
example, Sentinel-1 synthetic aperture radar (SAR) data can be
utilized combined with wave-based depth inference.

3. Beyond this study area of Anegada, the LSBDL model can be
tested in different water types, like tropical atolls or temperate
estuaries, to validate its broad utility. New case studies can also
reveal new challenges.

It is concluded that LSBDL has shown great promise for SDB,
by combining the strengths of deep learning with the statistical
rigor of least-squares. By addressing the limitations and pur-
suing the former-mentioned future directions, we may broaden
the impact of LSBDL. We anticipate that this work has the po-
tential to enhance coastal bathymetry mapping by improving
confidence and scalability, thereby contributing to safer navig-
ation, more effective coastal zone management, and a deeper
scientific understanding of underwater environments.

References

Al Najar, M., Thoumyre, G., Bergsma, E. W., Almar, R., Ben-
shila, R., Wilson, D. G., 2023. Satellite derived bathymetry us-
ing deep learning. Machine Learning, 112, 1107-1130.

Amiri-Simkooei, A., Tiberius, C., Lindenbergh, R., 2024. Deep
learning in standard least-squares theory of linear models: Per-
spective, development and vision. Engineering Applications of
Artificial Intelligence, 138, 109376.

Ashphaq, M., Srivastava, P. K., Mitra, D., 2021. Review of
near-shore satellite derived bathymetry: Classification and ac-
count of five decades of coastal bathymetry research. Journal of
Ocean Engineering and Science, 6(4), 340-359.

Bernardis, M., Nardini, R., Apicella, L., Demarte, M., Guideri,
M., Federici, B., Quarati, A., De Martino, M., 2023. Use of
ICEsat-2 and Sentinel-2 open data for the derivation of bathy-
metry in shallow waters: Case studies in Sardinia and in the
Venice lagoon. Remote Sensing, 15(11), 2944.

Casal, G., Hedley, J. D., Monteys, X., Harris, P., Cahalane, C.,
McCarthy, T., 2020. Satellite-derived bathymetry in optically
complex waters using a model inversion approach and Sentinel-
2 data. Estuarine, Coastal and Shelf Science, 241, 106814.

Cesbron, G., Melet, A., Almar, R., Lifermann, A., Tullot, D.,
Crosnier, L., 2021. Pan-European Satellite-derived coastal ba-
thymetry—review, user needs and future services. Frontiers in
Marine Science, 8, 740830.

Eugenio, F., Marcello, J., Mederos-Barrera, A., Marqués, F.,
2021. High-resolution satellite bathymetry mapping: Regres-
sion and machine learning-based approaches. IEEE Transac-
tions on Geoscience and Remote Sensing, 60, 1-14.

European Space Agency, 2015. Sentinel-2 user handbook.
https://sentinel.esa.int/documents/247904/685211/
Sentinel-2_User_Handbook. Issue 1, Revision 2.

Kim, M., Danielson, J., Storlazzi, C., Park, S., 2024. Physics-
based satellite-derived bathymetry (SDB) using Landsat OLI
images. Remote Sensing, 16(5), 843.

Ma, Y., Xu, N, Liu, Z., Yang, B., Yang, F.,, Wang, X. H,, Li, S.,
2020. Satellite-derived bathymetry using the ICESat-2 lidar and
Sentinel-2 imagery datasets. Remote Sensing of Environment,
250, 112047.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W10-2025-169-2025 | © Author(s) 2025. CC BY 4.0 License. 175



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W10-2025

3D Underwater Mapping from Above and Below — 3rd International Workshop, 8-11 July 2025, TU Wien, Vienna, Austria

Najar, M. A., Benshila, R., Bennioui, Y. E., Thoumyre, G., Al-
mar, R., Bergsma, E. W., Delvit, J.-M., Wilson, D. G., 2022.
Coastal bathymetry estimation from Sentinel-2 satellite im-
agery: Comparing deep learning and physics-based approaches.
Remote Sensing, 14(5), 1196.

Niroumand-Jadidi, M., Bovolo, F., Bruzzone, L., Gege, P,
2020. Physics-based bathymetry and water quality retrieval us-
ing planetscope imagery: Impacts of 2020 COVID-19 lock-
down and 2019 extreme flood in the Venice Lagoon. Remote
Sensing, 12(15), 2381.

Parrish, C. E., Magruder, L. A., Neuenschwander, A. L.,
Forfinski-Sarkozi, N., Alonzo, M., Jasinski, M., 2019. Valida-
tion of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s
bathymetric mapping performance. Remote Sensing, 11(14),
1634.

Sutterley, T., 2023. YAPC: Yet another photon classifier.
https://github.com/tsutterley/yapc. Accessed: 2025-
05-19.

Towle, E. L., 2013. Island resources foundation. Technical re-
port, Island Resources Foundation.

Xie, C., Chen, P., Zhang, S., Huang, H., 2024. Nearshore bathy-
metry from ICESat-2 LiDAR and Sentinel-2 imagery datasets
using physics-informed CNN. Remote Sensing, 16(3), 511.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W10-2025-169-2025 | © Author(s) 2025. CC BY 4.0 License.

176





