
3D Reconstruction of Underwater Shipwrecks: 3D Gaussian Splatting and Structure from 

Motion for the Melania shipwreck 
 

Dario Billi 1, Valeria Croce 2, Andrea Piemonte 1, Gabriella Caroti 1 

 
1 Department of Civil and Industrial Engineering, ASTRO Laboratory, University of Pisa, L.go Lucio Lazzarino, 56122 Pisa, Italy; 

dario.billi@phd.unipi.it; andrea.piemonte@ing.unipi.it, gabriella.caroti@ing.unipi.it 
2 LISPEN EA7515, Arts et Métiers Institute of Technology, 2 Cours des Arts et Métiers, 13617 Aix-en-Provence, France; 

valeria.croce@ensam.eu 

 

Keywords: Underwater, Photogrammetry, 3D-Gaussian Splatting, Melania shipwreck, Artificial Intelligence, Agisoft Metashape  

 

Abstract 

 

Underwater cultural heritage documentation presents significant challenges due to optical distortions inherent to aquatic 

environments. This study presents a dual approach for 3D reconstruction of underwater environments using two image-based 3D 

reconstruction techniques: Structure from Motion (SfM) and 3D Gaussian Splatting (3DGS). The goal is to evaluate the respective 

efficacy of each in terms of geometric accuracy and texture fidelity. The comparison is performed on the pilot case study of the 

Melania shipwreck, off the coast of Vada in Livorno, Italy. The results demonstrate that, while SfM proves more effective in 

structural reconstruction of submerged remains, 3DGS might enhance texture photo-realism and more effectively mitigate 

underwater lighting distortions. Conducted within the framework of the Sub-IA project, this research contributes to the development 

of integrated methodologies for the high-fidelity and realistic, image-based digital documentation of underwater heritage. 

 

 

1. Introduction 

Documenting submerged archaeological sites presents 

significant challenges due to the inherent conditions of 

underwater environments. Optical distortions, such as spectrally 

dependent attenuation and backscatter, severely impair the 

performance of conventional computer vision and 

photogrammetric techniques. 

 

Recent advances in neural rendering offer promising 

alternatives (Croce et al., 2023) to Structure-from-Motion (SfM) 

for real-time 3D reconstruction. Among these, 3D Gaussian 

Splatting (3DGS) (Kerbl et al., 2023) allows rendering 3D 

scenes by means of anisotropic Gaussians, enabling efficient 

and photorealistic rendering even under complex lighting and 

environmental conditions. 

 

This work compares SfM and 3DGS through a real-world case 

study: the Melania shipwreck, located in the Tuscan 

Archipelago. The research explores how these technologies can 

be integrated to generate high-fidelity, visually realistic 3D 

models suitable for both structural analysis and public 

dissemination. 

 

2. Related work 

2.1 Underwater 3D Reconstruction with Gaussian 

Splatting 

Recent studies have successfully adapted the 3D Gaussian 

Splatting (3DGS) technique, originally developed for terrestrial 

environments, to underwater settings: WaterSplatting (Li et al., 

2024) introduced a pipeline that combines the explicit geometric 

representation of 3DGS with volumetric rendering designed to 

simulate water-induced scattering. By incorporating a separate 

volumetric field to model the optical properties of water, this 

method effectively reduces visual distortion and improves 

rendering quality when compared to NeRF-based approaches 

(Mildenhall et al., 2020). Building on a similar concept, 

SeaSplat (Yang et al., 2024) enhanced underwater 3D 

representation by introducing a physically grounded image 

formation model that realistically accounts for light absorption 

and scattering. This enables real-time, photorealistic rendering 

and allows for accurate color correction of submerged objects, 

effectively overcoming the typical blue-green cast seen in 

underwater imagery. 

 

RecGS (Zhang et al., 2024) used a recurrent neural framework 

to address the removal of dynamic light patterns, commonly 

known as water caustics, caused by surface refraction, to 

capture the temporal evolution of light artifacts, leading to more 

temporally stable and visually coherent reconstructions.  

 

UW-GS (Wang et al., 2024) introduced a distance-aware color 

modeling strategy and dynamically adjusted the density of 

Gaussian points based on scene depth. Binary motion masks are 

also employed to accurately reconstruct dynamic scene in 

complex underwater environments. 

 

In terms of performance, as well as focusing on the rendering 

speed, Gaussian Splashing (Mualem et al., 2024) leveraged the 

inherent efficiency of 3DGS to achieve reconstructions at up to 

140 frames per second. It also demonstrated enhanced depth 

estimation capabilities, making it particularly suitable for real-

time applications such as exploration or in-field operations. 

 

For scenes involving motion or environmental change, UDR-

GS (Du et al., 2024) proposed a depth-regularized optimization 

framework. The method used depth information that is not 

distorted by the water medium to obtain more geometrically 

consistent reconstructions of floating or moving objects.  

 

Finally, Water-Adapted 3D Gaussian Splatting (Fan et al., 

2025) refined the standard approach by introducing an adaptive 

point distribution that responds to local scene complexity. 

Combined with multi-scale rendering based on depth cues, this 

technique significantly improves both geometric accuracy and 

visual coherence. 

 

2.2 Underwater Photogrammetry and Shipwreck 

Modelling 

Underwater photogrammetry has emerged as a critical 

methodology for the non-invasive documentation and analysis 

of submerged archaeological sites and benthic ecosystems. 
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Recent advancements have addressed both technical challenges 

of underwater data acquisition and subsequent data processing 

for accurate 3D reconstructions. Alongside advanced neural 

rendering techniques, photogrammetry continues to play a 

fundamental role in the documentation of underwater 

environments, especially for archaeological shipwrecks. Recent 

research has emphasized the importance of meticulous image 

processing, both before and after 3D reconstruction. 

 

The study titled Image Pre-Processing Strategies for Enhancing 

Photogrammetric 3D Reconstruction of Underwater Shipwreck 

Datasets (Calantropio et al., 2020) demonstrated how pre-

processing steps, such as contrast enhancement, filtering, and 

lighting correction, can substantially improve the sharpness and 

overall quality of 3D models obtained in low-visibility 

environments. Complementing this research, the work by 

Adams et al. (2024) focused on post-processing strategies that 

enhance the interpretability of photogrammetric outputs. This is 

particularly relevant for underwater archaeology, where small 

structural features can hold significant scientific and historical 

value. Together, traditional and neural approaches offer a 

diverse and powerful toolkit for advancing the study and 

preservation of underwater cultural heritage. 

 

Drap et al. (2015) presented a photogrammetric approach 

integrated with semantic knowledge representation for deep-sea 

surveys, exemplified by the case study of the Xlendi wreck off 

Malta. Their methodology involved real-time low-resolution 3D 

model generation from submarine-acquired images, followed by 

high-resolution modeling in laboratory conditions. Furthermore, 

the extraction and identification of artefacts are enhanced 

through the application of ontologies, specifically the CIDOC-

CRM model, bridging logical frameworks with 

photogrammetric workflows. 

 

The restoration and enhancement of underwater images, 

especially in complex lighting conditions, remain significant 

challenges due to the dynamic illumination setups in deep-sea 

environments. Song et al. (2023) proposed a novel method 

exploiting light field constraints within the camera frustum, 

capturing illumination and backscatter information 

volumetrically. Their system improves the accuracy of albedo 

restoration for multi-light setups, supporting consistent 

texturing in large-scale 3D underwater maps, for both 

archaeological documentation and marine biology studies. 

 

Complementary to image restoration techniques, an extensive 

review by Vlachos and Skarlatos (2021) analyzed developments 

in underwater image color correction over the past fifteen years. 

Their survey underscores the evolution from early model-based 

corrections to modern AI-driven approaches, emphasizing the 

need for robust quality evaluation metrics. 

 

In ecological monitoring contexts, Nocerino et al. (2020) 

demonstrated a rigorous underwater photogrammetry pipeline 

developed for the Moorea Island Digital Ecosystem Avatar 

project. By integrating underwater geodetic networks and 

rigorous camera calibration procedures, their work highlights 

the importance of minimizing geometric deformation and 

quantifying uncertainty propagation in multi-temporal 3D reef 

monitoring. 

 

Doležal et al. (2019) further introduced a virtual reality (VR) 

educational tool designed to teach maritime archaeology 

students the fundamentals of underwater photogrammetry. The 

VR environment allows users to simulate marker placement, 

distance measurement, and photographic acquisition, promoting 

experiential learning and reducing errors during real-world 

deployments. 

 

3. Materials and data collection 

3.1 The Melania Shipwreck 

The wreck of the cargo ship Melania, built in 1938 and sunk in 

February 1970 (Figure 1), lies at a depth of 7 to 12 meters off 

the coast of Vada, in Livorno, Italy. In March and April of 

1970, the wreck was divided into three sections by the divers of 

the Italian Navy using explosive charges, due to the risk posed 

to navigation. The structure rests on a seabed largely covered by 

Posidonia oceanica, adding ecological and visual complexity to 

the survey. 

 

3.2 Survey Techniques 

Underwater surveys were conducted using GoPro cameras 

mounted on divers. Multiple video sequences were collected 

and frames were extracted using FFmpeg. A total of 2649 

images were exported from the video sequences, each with a 

resolution of 4000 × 3000 pixels at 300 dpi. A color checker 

was included in the scene to enable color correction in Adobe 

Lightroom. This step is crucial to mitigate the effects of spectral 

attenuation, particularly the loss of red tones at depth. Tests are 

conducted using an NVIDIA GeForce RTX 4090 GPU (24 GB 

VRAM) and an AMD Ryzen 97950X 16-Core CPU. 

 

 
 

 
 

Figure 1. The MV Suffolk Coast, a British merchant ship, 

photographed during its service under the Liverpool flag. It 

was later renamed Melania. 

Source: Daily Nautica – "Melania, the Forgotten Wreck" 

(above), and stern detail of the Melania wreck (below). 
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3.3 Software and environment employed: 

• Agisoft Metashape v.2.0.0 (SfM software) 

• Lightroom Classic v.14.0.1 (color correction) 

• 3D Gaussian-Splatting (latest code update on Aug. 

2024) 

• Anaconda environment v.conda 23.7.4 (prompt for 

3DGS) 

• SuperSplat (latest code update on Apr. 2025) 

4. Methodology 

The methodology (Figure 2) begins for both SfM and 3DGS 

with a shared input generated through the creation of a sparse 

point cloud from colour-corrected images. This initial step is 

fundamental, as it addresses the photogrammetric challenge by 

estimating both the internal and external parameters of the 

cameras used to capture the imagery. Typically, inside 3DGS 

this process is carried out using COLMAP, an open-source tool 

well-regarded for its performance in 3D reconstruction through 

Structure-from-Motion (SfM) techniques. However, in our case, 

COLMAP encountered difficulties in correctly aligning all 

images, resulting in incomplete reconstructions and inaccuracies 

in camera parameter estimation. To overcome these limitations, 

we opt for an executable script that processes input data from 

SfM analysis conducted with Agisoft Metashape. This approach 

provides two key benefits: it guarantees complete image 

alignment and produces a high-quality sparse point cloud, 

which serves as the common foundation for the two parallel 

processes.  The common parameters for the alignment are 

shown in Table 1: 

On the one hand, the photogrammetric reconstruction is 

performed. The process is run via Agisoft Metashape and 

includes: dense point cloud generation, mesh construction, and 

texture mapping. The parameters for model generation are 

shown in Table 2. 

 

On the other hand, for 3DGS, a set of anisotropic Gaussian 

ellipsoids is generated from the 3D points, with each ellipsoid 

modeled as a 3D Gaussian distribution. These ellipsoids are 

then projected onto 2D images from multiple viewpoints using 

the recovered camera poses. Within the camera frustum, the 

differentiable Gaussian functions are rendered into images 

through rasterization. A loss function is then computed by 

comparing the rendered images to the ground truth images, 

leading to adjustments of each Gaussian's parameters, including 

position, size, and orientation. An adaptive density control 

method is also applied to optimize the properties of the 

Gaussian ellipsoids, refining their spatial distribution, scale, 

orientation, quantity, color, and opacity. 

 

The 3DGS model was generated using a script executed via the 

Anaconda Prompt, with all parameters left at their default 

values except for the image resolution, which was reduced to 

1/8 of the maximum value in order to shorten the processing 

time. This adjustment was necessary due to the large number 

and high quality of the input images. The training process was 

carried out for 30,000 iterations.  
 

4.1 3DGS Rendering evaluation metrics  

For novel view synthesis using 3DGS, visual quality is 

evaluated using widely adopted metrics (Table 3). The most 

common among these are Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index Measure (SSIM) (Wang et al., 

2004), and Learned Perceptual Image Patch Similarity (LPIPS) 

(Zhang et al., 2018). 

 
Figure 2. Overview of the proposed methodology 

 

Alignment settings  

  

Accuracy High 

Limit key points 0 

Limit tie points 0 

Generic preselection No 

Reference preselection No 

Adaptive camera model fitting No 

Exclude stationary tie points Yes 

Guided image matching No 

 

Table 1. Common alignment parameters 

 

Mesh settings  

  

Source data Depth Maps 

Surface type Arbitrary 

Quality High 

Face count High 

Interpolation Enabled 

Depth filtering Mild 

 

Table 2. Agisoft Metashape parameters to generate mesh 

model 
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PSNR measures the similarity between rendered images and 

corresponding ground truth images, where higher PSNR values 

indicate better image fidelity. However, PSNR mainly focuses 

on mean squared error and does not account for human 

sensitivity to different frequency components or perceptual 

distortions. As a result, PSNR may not always accurately reflect 

subjective visual quality. 

 

SSIM evaluates structural similarity by considering brightness, 

contrast, and structural information between two images. Its 

values range from −1 to 1, with scores closer to 1 indicating 

greater similarity. 

 

LPIPS assesses image similarity based on feature 

representations extracted by deep neural networks pre-trained 

for image classification. The original LPIPS framework 

employed networks such as SqueezeNet (Iandola et al., 2016), 

VGG (Simonyan and Zisserman, 2015), and AlexNet 

(Krizhevsky et al., 2012) as feature extractors. Unlike 

traditional metrics such as PSNR and SSIM, which rely on 

pixel-based comparisons, LPIPS leverages deep learning to 

measure perceptual similarity more closely aligned with human 

visual judgments. Lower LPIPS scores correspond to higher 

perceived similarity between images. 

 

By utilizing deep feature distances rather than raw pixel 

differences, LPIPS offers a more perceptually relevant 

assessment of image quality, making it particularly suitable for 

evaluating the outputs of neural rendering techniques like 

3DGS. In the final phase of the workflow, the SuperSplat 

platform was employed to manually refine the 3D Gaussian 

 

Metric Range Interpolation 

   

SSIM > 0.90 Excellent structural 

similarity 

 0.85 – 0.90 High quality 

 0.80 – 0.85 Good quality 

 <0.80 Noticeable structural 

degradation 

PSNR > 27 Very high visual fidelity 

 23 – 27 High quality 

 20 – 23 Medium/acceptable quality 

 < 20 Perceptible degradation 

LPIPS < 0.10 Excellent perceptual 

similarity 

 0.10 – 0.15 High perceptual quality 

 0.15 – 0.20 Medium quality 

 > 0.20 Low perceptual 

fidelity/perceptible error 

 

Table 3. Metric quality thresholds for underwater scenes 

estimated using as reference, WaterSplatting (Li et al., 

2024) and SeaSplat (Yang et al., 2024)  

 
 

 
 

Figure 3. The manual ellipsoids filtering process implemented in SuperSplat (above), and SIBR viewer inside 3DGS 

environment (below). 
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Splat (3DGS) model. This open-source browser-based tool, 

developed on the PlayCanvas engine, enabled the efficient 

inspection and selective editing of individual splats, which was 

particularly useful for removing noise and artifacts such as 

misaligned or floating ellipsoids generated during the 

reconstruction process.  

 

Thanks to its native support for the PLY format and its intuitive 

interface, SuperSplat allowed for precise selection, translation, 

and deletion of splats directly within the 3D environment 

without the need for local installations. This made it an ideal 

solution for the final cleanup and preparation of the dataset for 

visualization and dissemination. 

 

5. Results and discussion 

Figure 4 displays a visual comparison between the textured 

mesh obtained via Agisoft Metashape and the corresponding 

Gaussian splat. As for 3DGS, rendering is executed through 

SIBR viewer and post-processed using SuperSplats for final 

manual cleanup (Figure 3).  

 

The comparison of Figure 4 reveals a clear trade-off between 

geometric fidelity and textural realism. In terms of geometric 

accuracy, SfM provides a detailed and reliable structural 

representation, making it particularly effective for 

archaeological measurements and modeling tasks. The resulting 

mesh accurately captures the shape and dimensions of the 

wreck, preserving the essential geometric characteristics of the 

scene. 

 

Conversely, with respect to textural realism, 3DGS 

demonstrates a superior capacity to mitigate underwater lighting 

distortions. The reconstructed colors appear more vivid and 

closer to real-world perception, effectively addressing the 

 
 

Figure 4. Visual comparison between Agisoft Metashape and 3D Gaussian-Splatting models. 
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typical limitations encountered in SfM-based texture rendering 

under aquatic conditions. 

While the SfM model retains high geometric completeness, it 

exhibits muted colors and a general loss of contrast. In contrast, 

the 3DGS model produces visually more vibrant and 

perceptually engaging imagery, particularly in areas most 

affected by depth-induced light attenuation. 

 

The rendering metrics computed for the 3DGS model (Table 4) 

report an SSIM of 0.79, a PSNR of 25.24, and an LPIPS score 

of 0.29. According to the quality thresholds outlined in Table 3, 

these values indicate a medium level of structural similarity and 

visual fidelity, with low perceptual quality. 

 

Specifically, the SSIM value of 0.79 falls into the lower range, 

signaling noticeable structural degradation, though not severe. 

The PSNR score of 25.24 falls within the high-quality bracket, 

indicating good visual fidelity in terms of signal-to-noise ratio 

and supporting the preservation of photometric and geometric 

details. However, the LPIPS score of 0.29 exceeds the 0.20 

threshold, reflecting low perceptual similarity and a more 

pronounced visual discrepancy when compared to ground-truth 

references, based on learned perceptual metrics. 

 

These results show that, while the 3DGS model does not 

achieve top-tier structural or perceptual scores, it succeeds in 

maintaining a solid trade-off between visual quality and 

accuracy, especially in challenging underwater scenarios. The 

model’s ability to achieve a high PSNR is particularly relevant 

for underwater archaeological imaging, where environmental 

conditions often compromise image integrity. In this context, 

although perceptual similarity remains limited, the level of 

structural and photometric detail achieved represents a 

significant improvement over previous methods, supporting 

both the visual interpretability and the scientific utility of the 

generated documentation. 

 

However, while the current outcomes are encouraging, the 

model’s suitability for high-precision spatial or metric 

applications should be further assessed. Future developments 

may focus on hybrid approaches that integrate the geometric 

precision of Structure-from-Motion (SfM) with the perceptual 

realism enabled by 3DGS. Such pipelines could offer enhanced 

tools for rigorous documentation and more accessible visual 

communication in the study and preservation of underwater 

cultural heritage. 

 

6. Conclusions 

This study investigated the effectiveness of two distinct 

approaches to 3D reconstruction in underwater environments: 

traditional photogrammetry based on SfM and the more recent 

neural rendering method known as 3DGS. Using the Melania 

shipwreck as a case study, we evaluated the strengths and 

limitations of each technique, both in terms of geometric 

accuracy and visual fidelity. 

 

The SfM pipeline, implemented using Agisoft Metashape, 

proved to be robust in generating detailed and metrically 

accurate meshes. However, its final output quality is highly 

dependent on image visibility conditions, which are often 

compromised underwater due to turbidity, refraction, and 

selective light absorption. 

 

Conversely, the 3DGS method, tested via the SuperSplat 

implementation, yielded impressive results in terms of 

photorealistic rendering and photometric consistency, while also 

significantly reducing processing times compared to traditional 

workflows. Nevertheless, this approach relies on an implicit 

representation, lacking an explicit triangular mesh, which limits 

its applicability in metric analyses or detailed geometric 

evaluations. 

 

In conclusion, the findings suggest that: 

 

• Photogrammetry remains the most suitable tool for 

applications requiring metric precision and models 

that can be exported to CAD/GIS platforms. 

• 3D Gaussian Splatting offers a valuable alternative for 

immersive visualization, rapid documentation, and 

digital museum dissemination, with enhanced visual 

fidelity. 

• The future integration of both methods could lead to 

an ideal hybrid solution, combining the geometric 

precision of SfM with the photorealistic rendering 

capabilities of 3DGS. 

 

Further research should explore the optimization of 

preprocessing techniques for underwater imagery (e.g., 

dehazing, color correction) and the extension of the pipeline to 

more complex or dynamic scenarios. 
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