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Abstract 
 
Underwater 3D reconstruction requires handling both geometric distortion and degraded visual conditions. This paper compares three 
complementary methods: a refraction-aware Structure-from-Motion (RSfM) pipeline using Underwater Colmap (UW-Colmap), a deep 
learning-based Hierarchical Localization framework (HLOC), and a neural rendering approach using Gaussian Splatting (GS). The 
first applies nonlinear refraction correction via a modified Colmap pipeline to compensate for distortions introduced by flat-pane 
housings. It improves geometric consistency and reduces artifacts in tank and open-water captures but relies on accurate refractive 
modeling. HLOC enhances matching robustness in low-contrast and low-texture scenes using SuperPoint and SuperGlue. However, it 
introduces considerable noise, particularly with retrieval and exhaustive matching, resulting in degraded reconstruction accuracy 
without geometric correction. Gaussian Splatting provides real-time rendering of visually realistic scenes using 3D Gaussian 
primitives. While not designed for structural accuracy, it delivers high visual quality when supplied with calibrated poses. The paper’s 
core contribution is a controlled, side-by-side evaluation of these methods using a dual-environment dataset (air and underwater). By 
applying consistent evaluation metrics, geometry alignment, surface completeness, and visual consistency, we reveal the strengths and 
limitations of each approach. Results show that RSfM combined with GS provides the most reliable reconstruction and visualization 
pipeline. Deep learning methods are best applied at the feature level, followed by structured SfM for accurate geometry. This offers 
practical guidance for underwater photogrammetry and highlights the potential of hybrid reconstruction strategies. 
 
 

1. Introduction 

Reconstructing a three-dimensional (3D) model from underwater 
imagery presents a complex set of challenges not present in 
terrestrial photogrammetry. The underwater environment 
introduces multiple sources of distortion that affect image quality 
and geometric accuracy (Glaeser and Schröcker, 2000). Among 
the most significant issues are refraction at the camera housing 
interface, scattering and absorption of light, and lack of similar 
visual features due to poor textures and lighting conditions 
(Menna et al., 2017; Mandlburger, 2022). These factors degrade 
the photometric and geometric signals critical for multi-view 
stereo and structure-from-motion (SfM) methods. 
 
Refraction is the most fundamental problem in underwater 
photogrammetry. When light passes through a flat lens housing 
such as glass, it bends at the water-glass and glass-air interfaces, 
introducing nonlinear distortions (Jordt-Sedlazeck and Koch, 
2012b). Traditional SfM pipelines assume an axial camera 
model, which is violated in this setting. As a result, pose 
estimation and 3D point triangulation can suffer from systematic 
errors. Several researchers have proposed solutions to this 
problem, including calibration techniques, multi-layer media 
models, or physics-based ray tracing through refractive layers 
(Gu et al., 2022; Jordt-Sedlazeck and Koch, 2012b; Łuczyński et 
al., 2017). 
 
In parallel, the problem of low-quality visual features remains a 
challenge. Underwater scenes often lack high-contrast textures or 

exhibit repetitive patterns like sand ripples, coral structures, or 
artificial artifacts. While robust to specific changes in viewpoint 
and lighting, traditional feature detectors such as SIFT and SURF 
tend to fail in scenes with heavy visual degradation (Rublee et 
al., 2014). This can lead to incorrect matches, reduced image 
overlap, and fragmented reconstructions. Various enhancement 
techniques have been proposed to mitigate this, including pre-
processing steps like color correction, contrast enhancement, or 
dehazing (Zhou et al., 2022). Still, these methods typically 
operate on a single image and do not address geometric 
consistency across views. 
 
Refractive Structure-from-Motion (RSfM) in Underwater 
Colmap (UW-Colmap) addresses the refraction distortion 
underwater by explicitly modelling how light bends through 
different media such as water–glass–air , resulting in more 
accurate camera poses and 3D reconstructions (She et al., 2024). 
This toolbox works by incorporating Snell’s law of ray 
propagation into the optimization process. Meanwhile, deep 
learning-based methods such as Hierarchical Localization 
(HLOC) leverage learned keypoints and matchers, namely 
SuperPoint for feature detection and SuperGlue for matching, to 
establish correspondences that are more robust underwater 
(Sarlin et al., 2019). 
 
Additionally, neural rendering techniques like Gaussian Splatting 
(GS) have emerged as an alternative way to visualize 3D content 
(Kerbl et al, 2023). These methods do not explicitly reconstruct 
dense geometry but render scenes directly from sparse point sets 
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and camera poses, encoding visual appearance in anisotropic 
Gaussian primitives (Li et al., 2025). Although not suited for 
metric reconstruction or measurement tasks, Gaussian Splatting 
can be valuable for producing high-quality visualizations from 
datasets where traditional SfM pipelines fail to generate complete 
models. 
 
This paper presents a comparative study of three different 
approaches to underwater 3D reconstruction: refraction-aware 
structure-from-motion, deep feature-based localization and 
matching, and neural rendering through Gaussian Splatting. To 
ensure a fair evaluation, we introduce a dual-environment dataset 
that includes controlled captures of the same objects in air and 
underwater. By applying each pipeline to the same input data, we 
assess their performance in terms of geometric accuracy, 
reconstruction completeness, visual quality, and computational 
efficiency. Our goal is not only to highlight the strengths and 
limitations of each method but also to understand how they might 
be combined into hybrid systems that can better address the 
unique challenges of underwater photogrammetry.. 
 

2. Experimental Setup 

All data were captured using a GoPro Hero 10, chosen for its 
compact size, wide-angle lens, and popularity in field-based 
underwater imaging. The camera was housed in a waterproof 
casing with 5 mm flat glass, introducing the refractive effects 
commonly encountered in practical deployments. The wide lens 
mode is selected because it has a large field of view of 105°. For 
data processing, a processing unit with an AMD Ryzen 9 5900X 
CPU, 64 GB RAM, and an NVIDIA RTX 3090 GPU is selected, 
ensuring the handling of computationally demanding tasks. 
 
2.1 Data Acquisition 

The multimedia camera setting is present because it is placed in 
a waterproof casing with 5 mm flat glass, introducing the 
refractive effects commonly encountered in practical 
deployments.  
 

 
Figure 1 Prepared datasets featuring three objects: a Rubik’s 

cube, a shipwreck model, and an aluminum cube with 
calibration patterns, captured in-air (left column) and 

underwater (right column). 
 
For data acquisition, the camera captures continuous frames in 
video format at 1080p/30fps with Hypersmooth boost 
stabilization set off, allowing for telemetry recording and later for 

motion stabilization IMU-based correction. To maintain 
consistent and controlled image sampling from video data, 
frames were extracted based on a predefined target frame rate. 
Depending on the original frame rate of the video, frames were 
selected at regular intervals to match this target rate. This 
approach ensured uniform spacing between frames across all 
datasets. Each selected frame was saved with a timestamp and 
label to support clear traceability throughout the reconstruction 
process. 
 
Following image preparation, object selection was critical to 
evaluating reconstruction performance across various 
geometrical and visual challenges. Three physical objects, as 
seen in Figure 1, were chosen to represent increasing complexity 
in shape, scale, and texture. These objects allow for structured 
analysis of how each reconstruction pipeline performs under 
varied photogrammetric conditions, from fine detail in compact 
scenes to baseline accuracy in controlled setups.  
 
Two types of environments were used to evaluate reconstruction 
under different spatial and visual constraints, as summarized in 
Table 1. The Rubik’s cube and the shipwreck model were placed 
in a small plastic basin measuring approximately 60 × 40 cm with 
a depth of 20 cm. This setup simulates highly confined 
underwater scenarios where the camera must operate at close 
range with limited maneuverability. These conditions introduce 
practical challenges for photogrammetry, such as restricted 
viewing angles and shallow depth of field. In contrast, the large 
reference cube was placed in an indoor water tank with 
dimensions of 1.5 × 12.0 m and a depth of approximately 1.5 m. 
 

Object Dimensions (cm) Purpose 
Rubik’s 
Cube 5 × 5 × 5 Tests fine detail capture 

in constrained views 
Shipwreck 
Model 23.5 × 4 × 10.5 Simulates complex, 

irregular surfaces  
Aluminium 
Cube  50 × 50 × 50 Tests larger objects with 

motion blur recorded 
Table 1. Summary of Objects Used for 3D Reconstruction 

Evaluation 
 
2.2 Calibration Data Processing 

Accurate camera calibration is critical for reliable 3D 
reconstruction in underwater environments, where refraction 
through flat glass housings introduces significant distortions. 
Traditional calibration methods, such as submerging planar 
checkerboards, often fail to account for the nonlinear light paths 
caused by refraction at the water-glass-air interfaces, leading to 
geometric inaccuracies and projection errors, particularly in 
wide-angle configurations. This study employs a refractive-
aware, object-based calibration approach using the CalibMar 
toolbox to address these challenges (CalibMar, Development 
Team, 2025). CalibMar is based on the refractive calibration 
model of flat port glass proposed by Jordt-Sedlazeck and Koch 
(2012), which simulates the nonlinear propagation of light across 
a multimedia model in the underwater environment.  
 
The toolbox is adapted from She et al. (2024) to introduce the 
Refractive Structure-from-Motion (RSfM) in Underwater 
Colmap (UW-Colmap), integrating ray tracing modeling into the 
standard Colmap pipeline (Schönberger and Frahm, 2016). It 
highlighted practical challenges in underwater 3D modeling 
where refractive distortion undermines traditional triangulation 
(Chadebecq et al., 2020; Muhammad et al., 2025; Pedersen et al., 
2018; Shortis, 2015), advocating for physically accurate 
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calibration models. Collectively, these works demonstrate the 
importance of modeling refractive geometry for improving the 
accuracy and robustness of underwater photogrammetric 
systems. 
 
The calibration begins with determining the camera’s intrinsic 
parameters in air using standard pinhole modeling from images 
of a known 3D object (an aluminum cube with printed markers), 
with the calculated parameters in Table 2. These in-air 
parameters were then used to input the Calibmar toolbox, which 
incorporates refractive geometry, housing thickness, lens-to-
glass distance, and interface normals, to simulate the light path 
through multimedia, assuming that the water properties are 
unchanged along the survey. Rather than re-optimizing the 
intrinsics underwater, Calibmar uses this information to generate 
a virtual camera model that more accurately represents 
underwater point projection, simulating the axial projection. 
Furthermore, the direct multiview calibration method estimates 
distortion directly from underwater image sequences, including 
refraction. However, this approach does not account for the 
physics of light bending at the interface and tends to add these 
errors to the distortion parameters.  
 

Parameter In-Air UW Description 
fx 1132.130 1132.130 Focal length (x) 
fy 1133.860 1133.860 Focal length (y) 
cx 962.040 962.040 Principal point (x) 
cy 544.365 544.365 Principal point (y) 
k1 -0.261 -0.260 Distortion 
k2 0.094 0.094 Distortion 
p1 0.001 0.001 Distortion 
p2 0.001 0.001 Distortion  
Nx – 0.012 Housing normal (x) 
Ny – 0.001 Housing normal (y) 
Nz – 0.999 Housing normal (z) 
int_dist – -0.003 Lens-to-glass (m) 
int_thick – 0.005 Glass thickness (m) 
na – 1.000 Ref. index of air 
ng – 1.490 Ref. index of glass 
nw – 1.334 Ref. index of water 
Table 2. In-air and underwater camera calibration parameters 

 
3. Methods 

This study evaluates three reconstruction pipelines for 
underwater photogrammetry under controlled conditions. The 
first is a refraction-aware Structure-from-Motion (RSfM) method 
using calibrated intrinsics and physical modeling of underwater 
light paths via UW-Colmap. The second integrates a hybrid 
pipeline in SfM with deep learning through Hierarchical 
Localization (HLOC). The third applies Gaussian Splatting, 
which synthesizes photorealistic views from sparse 
reconstructions using radiance-based 3D Gaussians. 
 
3.1 Underwater Photogrammetric Model 

The underwater environment presents significant challenges to 
photogrammetry due to the refractive properties of water, which 
distort the light rays passing between media. Traditional SfM 
methods assume a single medium, typically air, and therefore 
struggle to accurately model the complexities of underwater 
imaging. To address this, UW-Colmap incorporates a refractive 
camera model and refractive SfM based on multimedium point 
projection (Agrawal et al., 2012) and refractive SfM (Jordt-
Sedlazeck and Koch, 2012a). A notable alternative to the 
refraction calibration is the Pinax camera model (Łuczyński et 

al., 2017), which addresses underwater refraction using a 
correction map beneficial for rectification and real-time 
applications such as SLAM. This model is based on a 
combination of a virtual pinhole and axial camera projection, 
allowing refraction correction through a real-time lookup table. 
However, unlike refractive SfM, which calculates point 
projection directly, the Pinax model does not account for view-
dependent light path variation, making it less suited for large-
scale reconstructions.  
 
The refractive camera models in UW-Colmap explicitly consider 
the bending of light as it transitions between water, the camera 
housing, and air. In addition, two camera housings typical for 
multimedia photogrammetry are being tested: flat ports and dome 
ports. For flat ports, light undergoes refraction as it passes 
through the flat glass of the camera housing, altering the 
perceived positions of scene points. In the case of dome ports, the 
curved surface of the housing presents a more complex refraction 
geometry, where the refractive axis remains a crucial component 
in modeling the distortion. Unlike traditional SfM, which 
assumes linear epipolar geometry, refractive SfM introduces a 
feature-dependent virtual epipolar geometry to account for light 
refraction. The relative point projection and epipolar line 
between camera frames are readjusted by introducing a virtual 
camera correlated with the refraction index and Snell's laws of 
ray propagation, correcting invalid axial projection underwater 
(She et al., 2024). 
 
3.2 Hierarchical Localization (HLOC) 

Hierarchical localization (HLOC) is initially used to estimate 
camera poses in large environments based on the reconstructed 
scene or known environment (Sarlin et al., 2019). It starts with 
global image retrieval and then moves to local feature matching. 
The first step, coarse localization, uses global descriptors such as 
NetVLAD to select a small number of candidate images from a 
set of image scenes. NetVLAD combines the Vector of Locally 
Aggregated Descriptors (VLAD) aggregation method with a 
convolutional neural network (CNN). This allows it to create 
compact global descriptors that handle changes in viewpoint and 
lighting conditions across all scenes. In the fine localization step, 
local features are extracted from the query image and matched 
using deep learning models like SuperPoint (DeTone et al., 
2018). These models use convolutional networks to extract 
distinctive and reliable features, even when scenes have little 
texture or are visually degraded. The matched features are then 
used to estimate the camera pose using geometric techniques, 
often with the Perspective-n-Point (PnP) algorithm combined 
with RANSAC to filter out incorrect matches. 
 
Feature matching can be improved using more advanced neural 
network-based matchers such as SuperGlue (Sarlin et al., 2020). 
It limits and enhances fine matching to only the candidate images 
selected earlier, making the method efficient and scalable to 
larger datasets. At the same time, it maintains a high level of 
accuracy. Its modular design also makes it easy to swap in 
different tools for feature extraction or matching, which helps 
when working in varied or challenging environments. The global 
bundle adjustment is then used for 3D reconstruction in the 
pipeline, which helps refine the overall pipeline model for the 
entire database. Although global bundle adjustment aims to 
refine the reconstruction, it can introduce inaccuracies when 
initial errors or mismatches exist. To achieve a more robust 
reconstruction, feature matches from HLOC are integrated into 
the Colmap pipeline (Schönberger and Frahm, 2016). By 
combining deep learning-based matching from HLOC with 
Colmap’s incremental pose estimation, this hybrid approach 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W10-2025 
3D Underwater Mapping from Above and Below – 3rd International Workshop, 8–11 July 2025, TU Wien, Vienna, Austria

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-199-2025 | © Author(s) 2025. CC BY 4.0 License.

 
201



 

ensures resilient correspondences and improves reconstruction 
accuracy, as shown in Figure 2.  
 

 
Figure 2. HLOC+Colmap pipeline. 

 
3.3 Gaussian Splatting 

Gaussian Splatting is used in the method to synthesize 
photorealistic views from sparse three-dimensional point clouds 
obtained through Structure from Motion (SfM) pipelines such as 
Colmap or HLOC (Sarlin et al., 2019). The process begins by 
estimating camera poses and sparse geometry from multiview 
images using Colmap or HLOC pipeline in correspondence 
searching. These outputs, including camera intrinsics, extrinsics, 
and 3D sparse points, serve as input to the GS  pipeline. Each 
point in the reconstruction is represented as an anisotropic 
Gaussian, with attributes learned from the dataset. These 
attributes include camera pose, orientation, and color 
information. It directly rasterizes Gaussians in screen space. This 
approach enables faster rendering and is more robust to noise 
(Kerbl et al., 2023). 
 
Initially, the parameters of each Gaussian are optimized using 
photometric consistency across input views. The known camera 
poses guide the projection of Gaussians, and their attributes are 
refined to minimize the difference between rendered and 
observed images, which is beneficial for underwater data. To 
address underwater environment challenges, some 
implementations introduce additional learning strategies. For 
example, WaterSplatting (Li et al., 2025) modifies the pipeline to 
enable fast reconstruction in underwater environments, 
incorporating techniques such as backscatter modeling and color 
correction. While it is not intended for precise geometric 
measurements, Gaussian Splatting is effective for qualitative 
visualization. 
 

4. Results and Discussions 

 
4.1 Feature Matching 

In the UW-Colmap setup, SIFT Feature matching is used an 
exhaustive strategy to compare all image pairs. While thorough, 
this method often produces incorrect matches, particularly in 
scenes with repeated structures or low texture, such as the Cube 
dataset. HLOC takes a different approach using learned 
descriptors like SuperPoint and feature matchers like SuperGlue. 
Although HLOC can also perform exhaustive matching, its use 
of deep learning makes the results more selective. In practice, the 
number of false matches is lower than with traditional SIFT-
based methods. This difference becomes clear when inspecting 
matched image pairs. In UW-Colmap, incorrect correspondences 
appear frequently, especially in complex or repetitive scenes. 
HLOC, by comparison, tends to produce more consistent and 
focused matches, shown in Figure 3. 
 
The way images were captured also plays a role. Because the 
image sequences have a strong overlap between consecutive 
frames, most reliable matches are found along the diagonal of the 

matching matrix, as seen in Figure 4. Matches outside this 
diagonal represent less overlapping image pairs, where errors are 
more likely. 
 

 
Figure 3. Feature Matching comparison between SIFT and 
SuperGlue in Rubik (top), Shipwreck (middle), and Cube 

(bottom) datasets. 
 

 
Figure 4. Match matrix comparison between UW-Colmap, 

HLOC-NetVlad, and HLOC-exhaustive for Rubik, Shipwreck, 
and Cube datasets. 
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Both methods show strong diagonal structures in the Rubik's 
dataset, suggesting that frame-to-frame matching works well. 
Colmap, however, also shows more matches outside that region, 
which often include mismatches due to similar-looking textures 
across views. HLOC keeps the matrix tighter around the 
diagonal, focusing only on image pairs with meaningful overlap. 
The Shipwreck dataset is more difficult due to uneven surfaces 
and weaker texture cues. Both methods show consistent diagonal 
patterns, but Colmap produces more off-diagonal matches that 
are less reliable. On the other hand, HLOC concentrates on 
feature matches in areas with actual image overlap, illustrating 
more consistent feature matching. Both tools perform well for the 
Cube dataset, which contains regular geometry and clear 
markers. Still, Colmap shows occasional off-diagonal 
connections, while HLOC’s match structure remains cleaner.  
 

 
Figure 5. Feature matching processing time. 

 
The way features are matched clearly affects processing time, as 
seen in Figure 5. The UW-Colmap here uses exhaustive 
matching, clearly showing long processing time, but the most 
consistent reconstruction. Using HLOC with exhaustive 
matching reduced the mismatched features, but took significantly 
longer. For example, the Rubik’s Cube dataset required about 5 
hours, the Shipwreck around 7 hours, and the Cube dataset took 
up to 17 hours. This reflects the high computational cost of 
matching many image pairs in detail. In comparison, HLOC and 
NetVLAD retrieval completed all datasets in less than an hour. 
This approach is much faster because it narrows down image 
pairs before matching. However, the results were sometimes less 
complete, and in some cases, incorrect matches affected the final 
reconstruction quality. 
 
Gaussian Splatting processed all datasets in less than an hour 
because it avoids traditional feature matching and reconstruction 
steps. It uses precomputed camera poses and renders scenes 
directly from sparse point clouds, which makes the process 
significantly faster. While it’s not intended for tasks like 
measurement or geometric evaluation, it does provide high-
quality visualizations in a short amount of time. For comparison, 
the UW-Colmap setup generally completed faster than the HLOC 
Exhaustive pipeline. Depending on the dataset, total runtimes 
ranged from around 3 to 7 hours. Although HLOC can offer more 
robust feature matching under challenging conditions, Colmap 
balances speed and geometric accuracy, making it a practical 
option for structured underwater reconstruction tasks. 

 
In the Rubik dataset, traditional SIFT-based matching frequently 
results in incorrect correspondences between non-overlapping 
views, indicated in Figure 6. The repetitive high-contrast color 
patterns of the Rubik’s cube make it particularly prone to false 
matches, as similar-looking features, such as square corners and 
color transitions, are detected across multiple unrelated frames. 
These errors highlight SIFT’s sensitivity to the lack of features in 

all image sets. In contrast, SuperGlue demonstrates stronger 
feature matching, avoiding false feature candidates even in 
exhaustive matching. 
 

 
Figure 6. Typical mismatched features from UW-Colmap. 

 
Matching features in the Shipwreck dataset is especially 
challenging because of the repeated structures and irregular 
geometry. Elements like railings or windows often appear very 
similar across different parts of the scene, which can confuse 
matchers that rely only on local descriptors. This sometimes leads 
to incorrect matches between frames that are far apart. SuperGlue 
tends to handle this better. The Cube dataset, while simpler in 
structure, also presents matching issues. Each face of the cube 
includes calibration markers with very similar textures, which 
makes it hard for local descriptors to tell one side from another. 
Overall, the results across datasets highlight a key difference 
between traditional and learned matching. SIFT is more 
susceptible to problems in scenes with repeated patterns or 
structured elements, while SuperGlue’s ability to model global 
context makes it more robust. 
 
4.2 3D reconstruction 

The 3D reconstruction comparison evaluates results from UW-
Colmap and HLOC combined using Colmap for dense 
reconstruction and neural rendering via GS, with Table 3 
providing a summary of the results.  
 

Object Method Result 

Shipwreck 
Model 

UW-Colmap  Sharp peak, minimal surface 
noise, highly consistent model 

HLOC 
(NetVLAD) 

Noisy and broad error and 
noise distribution 

HLOC + 
Colmap 

Moderate noise, no duplication 
artifacts, improved geometric  

GS Sparse and inconsistent 
geometry, visually coherent  

Rubik’s 
Cube 
 

UW-Colmap  Very narrow error distribution, 
clean reconstruction  

HLOC 
(NetVLAD) 

Comparable to UW-Colmap , 
with noise increase 

GS Visually appealing output, but 
sparse point density 

Aluminium 
Cube  – Failed due to motion blur and 

lack of detectable features 
Table 3. Summary of reconstruction result 
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(a) 

 
 (b) 

 
(c) 

Figure 7. 3D reconstruction of (a) Rubik (b) Shipwreck, and (c) 
Cube dataset. 

 
The dense reconstruction is then applied to all datasets, with the 
result shown in Figure 7. In the Rubik dataset, UW-Colmap 
yielded clean and geometrically accurate surfaces, with minimal 
noise around the cube and rulers. HLOC reconstructions 

appeared slightly denser but introduced mild noise in regions of 
fine detail. Despite these issues, both pipelines effectively 
reconstructed the high-contrast, feature-rich Rubik model. 
 
In the Shipwreck dataset, UW-Colmap maintained structural 
consistency across complex geometry. HLOC reconstructions 
showed more irregularities, especially in dense or ambiguous 
regions. Gaussian Splatting produced compelling visual results. 
It was particularly effective in rendering fine-scale features and 
providing a realistic appearance. However, at close range, its 
Gaussian splatter affected object edges and influenced the 
perception of the model’s true shape. Along the model 
reconstruction, the Rubik and Shipwreck models lacked 
background geometry due to the low feature content of the 
surrounding regions. In contrast, the Cube dataset included pool 
walls and floors with enough texture for feature detection. 
Nevertheless, the reflective surface of the Cube model limited 
feature matching, causing reconstruction failure in all HLOC-
based methods, with only UW-Colmap successfully producing a 
complete model. 

 
 

 
(a) 

 

 
(b) 

Figure 8. Cloud2cloud distance between in-air reconstruction 
and underwater reconstruction of (a) Rubik and (b) Shipwreck.  

 
Due to its direct refraction modeling, UW-Colmap consistently 
delivered the most geometrically reliable outputs, while GS 

HLOC

Gaussian SplattingHLOC+Colmap

UW-Colmap

HLOC

Gaussian SplattingHLOC+Colmap

UW-Colmap

HLOC

Gaussian SplattingHLOC+Colmap

UW-Colmap

UW-Colmap HLOC

HLOC+Colmap Gaussian Splatting

HLOC

Gaussian SplattingHLOC+Colmap

UW-Colmap
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excelled in photorealistic modelling. HLOC, combined with 
exhaustive matching and Colmap reconstruction, provided 
competitive results but remained more noisy. The accuracy of 
each reconstruction pipeline was assessed by comparing the 
underwater models to their corresponding in-air reconstructions 
using Cloud-to-Cloud (C2C) absolute distance metrics, shown in 
Figure 8. These distributions reflect how closely each method 
approximates the ground truth geometry and help quantify the 
presence of surface noise and misalignment. For the Shipwreck 
dataset, UW-Colmap produced the most accurate and consistent 
reconstruction. It yielded approximately 2 million points and a 
root mean square error (RMSE) of 1.8 mm, with a tightly 
concentrated error distribution and minimal surface deviation. 
This confirms that direct refractive modeling enhances geometric 
consistency in underwater environments. 
 
HLOC using NetVLAD retrieval exhibited significantly more 
noise, including structural duplication—notably, a duplicated 
ship bow—resulting in a degraded model with an RMSE of 
2.5 mm and fewer than 900,000 usable points. This indicates 
poor feature matching and the absence of native refraction 
correction, which are critical weaknesses in this configuration. 
However, when HLOC was used with exhaustive matching and 
its features were passed to Colmap for reconstruction, the results 
improved considerably after applying a correction map based on 
the Pinax model. This hybrid pipeline generated approximately 
2.08 million points with an RMSE of 2.1 mm, effectively 
avoiding structural artifacts and reducing surface noise. 
However, it still falls short of the precision achieved by direct 
ray-traced modeling. 
 
All methods performed well in the Rubik dataset, which features 
high contrast and strong geometry. UW-Colmap achieved around 
2 million points with an RMSE of 1.5 mm, offering the highest 
precision. The HLOC+Pinax+Colmap combination produced 
approximately 920,000 points with an RMSE of 1.9 mm, 
showing good accuracy despite lower point density. Gaussian 
Splatting generated a visually coherent but sparse model 
(~17,000 points, RMSE 4.3 mm), demonstrating usefulness for 
visualization but not for metric analysis. The Cube dataset posed 
the most significant challenge. Only UW-Colmap succeeded in 
reconstructing a usable 3D model. HLOC-based pipelines failed 
due to motion blur, specular surfaces, and a lack of consistent 
visual features. These factors disrupted feature matching and 
triangulation, rendering the outputs incomplete or invalid for 
comparison. No C2C distance evaluation could be conducted for 
these failed cases, highlighting the robustness of direct refractive 
correction in degraded visual conditions. 
 
In summary, UW-Colmap consistently produced the most 
accurate and dense reconstructions across all datasets. The 
HLOC+Colmap hybrid approach proved a viable alternative 
when equipped with exhaustive matching and correction via the 
Pinax model, though it remained sensitive to feature quality. 
Native HLOC with NetVLAD struggled in underwater 
environments, especially in scenes with limited visibility or 
ambiguous features. Gaussian Splatting was effective for 
visualization but not appropriate for high-precision 
reconstruction. These findings highlight the value of directly 
integrating refractive modeling into the reconstruction pipeline 
and the importance of reliable feature matching in challenging 
underwater photogrammetry. 
 

 
Figure 9. Reconstruction Error of Rubik and Shipwreck 

datasets. 
 
Figure 9 compares the reconstruction error, in millimeters, for 
four different methods, UW-Colmap, HLOC, HLOC+Colmap, 
and GS, applied to two datasets: Rubik and Shipwreck. Each 
dataset is shown on the horizontal axis, and the vertical axis 
represents the error magnitude. The colored boxes indicate the 
range of error values for each method, with the thick horizontal 
line inside each box representing the median error. Thin lines 
(whiskers) extend to show the general spread of the data, while 
isolated dots indicate individual outlier values. In the Rubik’s 
dataset, all methods show relatively low reconstruction errors. 
UW-Colmap and HLOC+Colmap have the smallest spread and 
lowest medians, suggesting more accurate and consistent results. 
HLOC shows slightly more variability, while GS has a visibly 
wider distribution, indicating less precision, though its overall 
errors remain low. 
 
In the Shipwreck dataset, the differences between methods 
become more pronounced. UW-Colmap again shows the lowest 
error range, indicating it handles underwater reconstruction well. 
HLOC has a broader spread and more outliers, suggesting 
inconsistent performance. HLOC+Colmap improves on native 
HLOC, reducing error spread and lowering the median. GS 
shows the most extensive spread in this dataset, with high 
variability and multiple outliers, reflecting challenges in 
maintaining accurate geometry despite producing photorealistic 
outputs. 
 

5. Conclusion 

This study compares traditional and modern 3D reconstruction 
methods for underwater photogrammetry using a structured 
workflow built with open-source tools. It evaluates refraction-
aware Structure-from-Motion (RSfM) using UW-Colmap, 
Hierarchical Localization (HLOC), and Gaussian Splatting using 
data from a GoPro Hero 10. Refractive calibration was performed 
using a physically based model and a submerged checkerboard, 
which were applied without further optimization to isolate their 
geometric effects. Because HLOC does not directly incorporate 
refractive modeling, calibration was applied through a correction 
map generated by the Pinax model to compensate for refractive 
distortions before reconstruction. 
 
Experiments showed that refraction-aware SfM consistently 
produced accurate and clean reconstructions. HLOC improved 
feature matching but introduced noise, particularly in low-
visibility, small-scale scenes. Combining HLOC’s deep feature 
extraction with Colmap’s reconstruction pipeline improved 
stability and achieved millimeter-level accuracy in the Rubik and 
Shipwreck datasets. However, in the Cube dataset, this approach 
struggled due to reflective surfaces and low texture, resulting in 
incomplete reconstruction and residual noise. Gaussian Splatting 
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provided visually compelling renderings and enhanced scene 
interpretability, especially in noisy or texture-poor underwater 
conditions. The future direction of the work will explore 
integrating deep learning directly into refractive modeling 
through learned ray tracing or data-driven depth correction to 
improve reconstruction robustness and accuracy in complex or 
large-scale underwater environments. 
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