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Abstract

Bundle adjustment in multimedia environments, such as underwater or through refractive interfaces, poses unique challenges
for parameter estimation due to increased correlations between interior orientation and refractive parameters. This contribution
investigates the estimability and correlation of these parameters in object-invariant multimedia bundles by presenting both a
simulated and a real-world dataset. Using a strict ray tracing bundle adjustment approach, we analyze how water depth, surface
tilt, and parameter set selection influence correlations and numerical stability. Statistical metrics - including correlation matrices,
parameter significance tests, and variance inflation factors (VIF) - are evaluated for their effectiveness in diagnosing problematic
configurations. Results show that while traditional metrics like σ0 may not reveal instability, VIF and correlation analysis provide
practical additional procedures for identifying robust parameter estimations. The findings offer a workflow for practitioners,
highlighting optimal parameter configurations and the limitations of statistical diagnostics in multimedia photogrammetry.

1. Introduction

Photogrammetric analysis in and through water becomes
increasingly important for the use of natural resources,
investigation of marine life and various industrial purposes. For
many applications highest accuracy is of utmost importance
while avoidable inaccuracies and mistakes should be avoided,
regardless of the application. Generally, a substantial accuracy
improvement can result from strict modeling of the imaging
geometry by including refraction in the bundle adjustment.

Ray tracing is a strict procedure for bundle adjustment to obtain
3D and calibration data from photogrammetric measurements
(Mulsow, 2010). However, adjusting both interior orientation
parameters (IOP) and refractive parameters can cause high
correlations, influenced by the parameter set and bundle
configuration. These correlations often lead to substantial
errors and cannot be observed directly by the reprojection
error (σ0) or other standard metrics. Evaluating correlation
coefficients can help identifying problematic datasets, but
correlations may be distributed across the dataset, making
it difficult for non-experts to assess result quality. The
goal of this contribution is to determine an optimum
parameter configuration for an object-invariant bundle where an
automated camera system faces through the water surface into a
conservation tank. Variance Inflation Factors (VIF) are used to
estimate numerical stability from covariance information, not
requiring ground truth data.

This paper outlines as follows: After introduction and related
work, the methodology for the evaluated object-invariant
datasets is presented. Next, two datasets are evaluated with
different focuses. First, a simulated semi-spherical bundle is
presented and correlations over different parameter changes
investigated. Following up is an investigation into a real-world
dataset from a monitoring system. The reader is guided

along a practical statistical investigation on the assessment and
statistical implications of an exemplary data set with a ray
tracing approach. Findings are then discussed, concluded and
an outlook on further analyses is given.

2. Related Work

Research on parameter estimability and correlations in
photogrammetric bundle adjustment has evolved and is
well-understood in air. Investigating and understanding
correlations is essential to bundle adjustment in order to
estimate 3D coordinates and other parameters accurately and
reliably. Luhmann et al. (2020) presents fundamental insights
into parameter interactions and correlations between IOP in the
Brown model, emphasizing the challenges in decoupling these
parameters. A practical guideline is presented on expectable
correlations and values are generally classified. Hastedt et al.
(2021) thoroughly investigated correlations and adjustments for
aspherical cameras to reduce systematic patterns. In this study,
the authors also deeply focus on the occurring correlations,
especially in an additional calibration model, applying Fourier
terms. However, both references do not focus on the special
implications in multimedia photogrammetry.

Maas (2015) provided insights on the accuracy potential
in underwater photogrammetry and discussed affecting
parameters. This includes network geometry, the refractive
objects just as physical effects, e.g. dispersion, chromatic
aberrations and other image degrading effects. The author states
a general accuracy reduction by a factor of 2-5 under favorable
laboratory conditions, compared to in-air measurements.
Kahmen et al. (2019) focused on multimedia errors, resulting in
stereo datasets from neglecting strict modeling, e.g. by implicit
calibration. It was found that exterior orientation parameters
are correlated with the baseline of stereo partners, affecting the
general bundle scale if no other scale representation is present.
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Extending this contribution, the authors performed further
extensive simulations in Kahmen et al. (2020). The influence of
varying acquisition distances was addressed when neglecting
refraction for stereo systems. Part of the investigations were
analyses on correlation parameters between interior orientation
and exterior orientation with respect to different convergence
angles of a stereo system, different amounts of water in the ray
path just as different object geometries. It was concluded that
with higher convergence angles, some correlations disappear,
probably favoring these for neglecting strict ray modeling
under water. Furthermore, no apparent correlation changes
were found when the amount of water in the ray path was
changed. Shortis (2019) extensively summarizes approaches
to camera calibration in underwater settings. This also
includes factors of accuracy and approaches to mitigating
accuracy-reducing effects. Among them, the author states best
practice approaches for optimum network geometry to reduce
correlations, especially when absorbing refraction by implicit
calibration. It is stated that a spatial test field, frame-filling
acquisition, just as rotation variation, are key to optimum
geometries with low correlations. This, of course, holds true
not just for underwater settings. Still, an accuracy loss of
factor 3-10 from in-air measurements was observed from cited
literature. The suggestions were taken up and employed in the
simulations of this contribution to provide an optimum network
geometry for clear results. Further deeper insights into accuracy
evaluations on multimedia datasets are provided by many works
of Erica Nocerino and Fabio Menna, e.g. in Nocerino et al.
(2018) or Menna et al. (2017).

This contribution focuses on further understanding correlation
and parameter estimability in multimedia environments,
especially for object-invariant interfaces. It aims to link the
guidelines from Luhmann et al. (2020) to multimedia datasets.

3. Adjustment and methodology

3.1 Ray tracing bundle adjustment

For all analyses in this contribution, we used the approach
by Rofallski and Luhmann (2022), applied to object-invariant
interfaces in Rofallski et al. (2024). It follows the strict
mathematics of Snell’s law and ray tracing bundle adjustment.
The optimization is however transferred from image space
to object space, enabling direct computation of the 3D error

function and omitting additional inner loops for computing the
ray tracing form point to image. The shifted optimization
to object space provides advantages in speed and reliability
and is therefore chosen over other implementations. However,
findings should be generally transferable to other strict
multimedia approaches like the ones from Mulsow (2010) or
Kotowski (1987).

Apart from the standard Brown parameters, the refractive
parameters included to the bundle are for the water plane in
Hesse Normal form with N = (nx, ny, nz)

T and d as absolute
value, yielding N⃗ · P⃗0 − d = 0, subject to ||N⃗ || = 1. µw is the
refractive index of water and adjusted for while the refractive
index of air is held constant µair = 1.00028. For further details
on the approach and ray tracing bundle adjustment, refer to the
aforementioned publications.

3.2 Methodology

In the following, two setups are investigated. The first is
a pure simulation designed to understand the mechanics of
correlations. A spatial test artifact with a semi-spherical
arrangement of exterior orientations above provides
near-optimal conditions to analyze inevitable correlations
in multimedia photogrammetry with object-invariant water
surfaces. The second is a real-world example from a
wood-monitoring system over a conservation tank, used to
assess statistical metrics. To investigate parameter estimability
and correlations, six parameter sets were analyzed. Generally,
all parameters of exterior orientation (EOP), object points
(OP), and refractive parameters (nx, ny , d, and implicitly
nz =

√
1− n2

x − n2
y), denoted ”Ref”, were adjusted.

Pre-calibration was included, either simulated or from the
real dataset. For each dataset, interior orientation parameters,
namely camera constant (c), principal point (pp), radial
symmetric distortion with three parameters (rad), decentering
distortion with two parameters (dec), and affinity and shear
(aff ) were gradually added following definitions from Brown
(1971) and El-Hakim (1986).

The simulation focuses on correlations to extend knowledge
from air-based studies such as Luhmann et al. (2020)
and Hastedt et al. (2021). This is then extended to a
best-practice guide for assessing the monitoring system dataset,
incorporating additional statistical parameters from literature to
estimate photogrammetric multimedia bundle quality.

(a) Height variation (b) Angle variation

Figure 1. Bundle geometry with respective variation of the water surface by (a) shifting its height along the global Z-axis and tilting it
around the X-axis (b). Camera stations are red, object points of spatial test artifact are blue.
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4. Simulated datasets

To analyze parameter correlations in multimedia environments,
we simulated configurations using a spatial test artifact with
semi-spherical bundle geometry. This near-optimal setup
(132 cameras arranged spherically at 1500mm radius/height
above a 1000mm × 700mm × 500mm artifact) ensures
clear observation of correlation patterns under varying water
conditions. We tested water depth variations of 300 - 1500mm
and surface tilts of 45 - 90◦ while maintaining constant camera
and object positions just as error-free image coordinates.
Simulation parameters are presented in Table 1. The parameters
were chosen to obtain a full frame coverage of image points and
otherwise standard values for refractive parameters.

Figure 1 show the bundle geometry with the respective water
plane variations for the single simulations. We simulated both
an increase of water depth in steps of 100mm and a tilt of
the water surface from fully perpendicular (i.e. 90◦) to 45◦

at a constant water height of 500mm from the barycenter of
the object points. The exterior orientations and locations of
the object points remained constant throughout the simulations.
Image coordinates were simulated without any errors.

Generally, all adjustments converged to a plausible and accurate
solution. The differences in the calibration and in object space
were marginal and are not discussed any further here. More
interesting were the implications of correlations that arise from
this rather favorable bundle geometry. Elements ri,j , denoting
the correlation coefficient between the i-th and j-th parameter
of the adjustment are calculated as follows:

ri,j =
Σxxi,j√

Σxxi,i ·
√

Σxxj,j

(1)

where Σxx is the covariance matrix of the adjustment.

Figure 2 provides an exemplary correlation matrix from
900mm water height with all parameters included for
adjustment. This is indicative of the increased correlations
that we could observe in other datasets from the simulation.
Clearly, the functionally known correlations from the standard
Brown model were visible, as well. This includes especially
the correlations among the radial-symmetric parameters and
decentering distortion with the principal point. However,
additional correlations, dependent on the imaging geometry
occurred and change with different water surface arrangements.
Especially, correlation between camera constant and refractive
parameters d and µw and between d and µw show observable
trends which are discussed in the following. For the sake of
conciseness, we do not present all correlation matrices.

Table 1. Setup parameters for simulated data set

Camera constant c -20mm
Principal point x′

0 = y′
0 =0mm

Distortion parameters 0
µair 1.00028
µw 1.3318
Image noise 0.0 px

No. cam. stations 132
No. object points 208
No. image points
(approx. per bundle) 25,000

4.1 Water height variation

In total, 13 datasets were simulated at water depths of 300mm
to 1500mm or an air-to-water ratio of 12% to 58%. In
Agrafiotis and Georgopoulos (2015) and Kahmen et al. (2019),
the statistical considerations were related to the air-water ratio,
independent of the bundle scale. We also correlate the distances
to the water percentage w% (equal to 100% − w%) to relate
our findings to this metric, as well since effects should be
transferable to other scales. The values were calculated by the
distance between the barycenter of the EOP and the OP and
represent an average distance over all coordinates.

In this and the following section, the adjustment with refraction
and the camera constant Ref + c is focused as only major
correlations and trends between these two parameter sets were
found. Furthermore, Figure 3 (a) shows the trend of the
three aforementioned correlations of camera constant with
refraction parameters and among two of them. Clear trends
are observable that show a decline of the two correlations with
the refraction index of water µw while the correlation between
camera constant and the absolute value of the plane (d) rises
with increasing water percentage, i.e. a decrease of air-water
ratio.

4.2 Tilted water surface

For the tilted dataset, 10 datasets with increments of 5◦ were
simulated. Figure 3 (b) shows the results for the same
configuration as a function of the tilting angle of the water
surface α. The rotation was carried out around the x-axis
which is reflected in correlations between nx and d just as
between nx and µw. Especially these correlations clearly
change for different angles (purple and green line). The green
curve (nx, µw) exhibits high correlation values close to 1 for
smaller angles (α = 45 − 80◦), indicating a strong linear
relationship between these parameters in this range. However,
as the angle approaches 90◦ the correlation rapidly decreases
logarithmically, reaching zero at 90◦. The same applies to the
purple curve (nx, d), decreasing close to linearly to zero at 90◦.
This suggests both parameters to be decoupled in this range.

The blue (c, d), red (d, µw), and yellow (c, µw) curves display
intermediate behaviors. The correlation between c and d (blue)
slightly increases with α, while the correlation between d and
µw (red) shows a sinus-like behavior but remaining below 0.8.
The correlation between c and µw (yellow) remains relatively
low and falls to zero at 55◦ but increases at higher angles.
These patterns reflect varying degrees of parameter coupling
influenced by the geometric setup.
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Figure 2. Correlation matrix from dataset with 900mm,
α = 90◦ water surface and all parameters included
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Figure 3. Identified major correlations over the entire simulations for height variation (a) and angle variation (b), Ref + c

4.3 Variation between parameter sets

As last investigation, the variation of the major correlation
parameters along different parameter sets was examined. From
this data, no consistent trends were observable, other than
mostly constant tenor. However, as an example, a tilted dataset
at 65◦ is presented as there are all discussed correlations
unequal to zero (Figure 4). It is observable that most parameters
remained constant over all parameter sets which holds true for
the other datasets as well. Some parameters change slightly
(d, µw; c, µw), starting with the radial-symmetric parameters
while these changes are always decreases in correlations. This
can be observed from other analyses, as well with different
values but remain similar in magnitude.

4.4 Discussion

The three investigations reveal clear trends in five identified
major correlations. Correlations with µw decreased as more
water was added to the ray path, likely because greater
water depth allows refraction effects to be better resolved and
decouples image scale from this parameter (Nocerino et al.,
2021). In contrast, the correlation between c and d increased
with higher water percentage, which is expected since shifting
the surface toward the camera affects image scale and thus
the camera constant, though the exact reason for this increase
remains unclear. Angular variation data also showed that
the water surface orientation relative to the camera stations
influences correlations, particularly as the rotated normal vector
component nx strongly changed its correlation with d and µw.
This may be because the intersection area between ray paths
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Figure 4. Identified major correlations over the entire
simulations for 500mm water depth and 65◦ tilting angle

and the plane is largest when perpendicular and shrinks at lower
angles, reducing the estimability of this rotation. Reducing
such correlations, especially near α = 45◦ may require extra
constraints, measurements, or careful experimental design.
Whether these correlations impair bundle accuracy depends
on the specific dataset and other statistical metrics. In these
datasets, all bundles converged correctly without accuracy loss,
though this may differ in real-world scenarios with image noise.

Interestingly, the decentering distortion does not show any
correlations with the water plane parameters. Since decentering
is partly able to absorb the effects of small tilts between camera
axis and plane (Shortis, 2019), it would have been expected to
show in this dataset, too. This is probably resolved through the
full semi-spherical bundle geometry which allows to observe
the interface from different angles and distances.

When focusing on the changes in correlations over different
parameter sets, it was observable that, apart from a generally
non-affected behavior, some correlation parameters, especially
c, µw decreased when radial-symmetric parameters were added.
This is likely due to a ”smearing effect” of correlations when
additional parameters are introduced, particularly the radially
symmetric component, which can partially account for an
increased image scale. This would affect both the camera
constant c and refraction (d and µw).

Simulating down to a mean angle of 45◦ between the main
observation axis and the water surface is rather theoretical,
since total internal reflection occurs at α = arcsin(nair/nw) =
48.7◦, so some orientations may not observe all submerged
object points. This effect was not considered in the simulation
and could influence the continuous correlation trends.

5. Wood monitoring dataset

The investigated setup is based on the developed monitoring
system in the DBU-funded project ”OptiKons” (Rofallski et
al., 2024). It aims to understand and quantify deformations
on archaeological wood during conservation treatment. The
system consists of a biaxial measurement unit, carrying a stereo
camera system on top of a water tank, used for treatment
(Fig. 6 (a)). The cameras face downwards through the liquid
surface, creating a multimedia photogrammetric problem with
refraction at the liquid surface. According to Kotowski (1987),
this is an object-invariant setup, meaning that the refractive
surface remains stable with respect to the object while the
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(a) Biaxial measurement unit

(b) Bundle geometry (Rofallski et al., 2024)

Figure 6. Automated measurement system (top) and resulting
bundle geometry (bottom). Camera stations are blue, object

points red/orange and scale bars black.

camera moves independent of this setup. The camera system
meanders over the object points but does not employ rotation or
height variation (Fig. 6 (b)).

In a previous study, the configuration to adjust for EOP, OP,
refractive parameters and a free relative orientation between the
stereo pairs was deemed to provide the best results (Rofallski et
al., 2024). Consistently with the previous section, this setup
is referred to as Ref with all added parameters being named
analogously. For scale definition, a single CFRP scale bar
placed in the middle of the bundle with 2m length was used.

5.1 Best practice for single dataset

To guide readers, this section provides a guideline for possible
parameters and statistical values that may provide information
about the reliability of a solution when no ground truth is
present. These guidelines apply equally to multimedia datasets
and to regular single-media or other configurations. The
statistical indicators are presented along a representative dataset
from the monitoring system. Usually, it is not feasible for a
practitioner to obtain ground truth data due to time or practical
concerns, especially in refractive environments. However, to
better understand the subsequent results, the accuracy estimate

is presented first to observe differences between ground truth
and statistical metrics.

LME values To estimate accuracy, two independent,
calibrated CFRP scale bars (1m each) were used. Length
measurement errors (LME) were calculated for all parameter
sets according to VDI/VDE 2634-1, which defines the
maximum error as the decisive metric (VDI/VDE,
2002). Figure 5 (b) shows maximum LME values for all
performed adjustments. Values decrease across the first three
configurations, reaching a minimum when adjusting refraction,
c, and pp, but increase again with more parameters, partly
exceeding the refraction-only case. This independent metric
should be considered in the following when evaluating the
statistical metrics, as it highlights potential pitfalls of relying
solely on statistical parameters.

Standard deviation of unit weight The first evaluation
towards data quality usually is performed, using the standard
deviation of unit weight after adjustment (σ0). Figure 5 (a)
shows the respective values for each parameter set. These
are generally comparable but show the expectable trend of
decreasing magnitude towards more estimated parameters with
the minimum of 34.97 µm for the dataset with all parameters
estimated (Ref+c+pp+rad+dec+aff ). From this analysis,
no implication towards an accuracy decline with the last three
adjustments can be made.

Parameter significance Next, information from the
covariance matrix can be used to estimate standard deviations
of the estimated parameters.

Σxx = σ2
0 · (JTPJ)−1 (2)

The estimated standard deviation for the i-th parameter is
calculated from the main diagonal of the covariance matrix:

σxi =
√

Σxxi,i (3)

It is desirable to receive significant parameter results, meaning
that the standard deviation of each parameter should be
significantly lower than its estimated value. This can be
calculated by performing Student’s t-test. However, it is not
feasible to assess all parameters, including EOP and OP values
for they are usually large in numbers and therefore hard to
locate single parameters. Figure 7 shows a bar chart of the test
statistics for each parameter set from one of the two interior
orientations. A practical confidence value of 95% was chosen,
yielding a t-value of 1.96, indicated by the horizontal dashed
line. Values above this line are considered significant while

Ref

Ref
+c

Ref
+c+

pp

Ref
+c+

pp
+ra

d

Ref
+c+

pp
+ra

d+
de

c

Ref
+c+

pp
+ra

d+
de

c+
af

f
20

30

40

µ 0
 [

µ
m

]

37.36
35.78 35.53 35.08 35.05 34.97

(a) Standard deviation of unit weight

R
ef

R
ef

+c

R
ef

+c+
pp

R
ef

+c+
pp

+ra
d

R
ef

+c+
pp

+ra
d+

de
c

R
ef

+c+
pp

+ra
d+

de
c+

af
f

0

0.2

0.4

L
M

E
m

ax
 [

m
m

]

0.263

0.138

0.096

0.279

0.197

0.364

(b) Maximum length measurement errors

Figure 5. Standard deviation of unit weight after adjustment (left) and maximum LME values for the investigated dataset (right).
Clearly, the standard deviation does not reflect the independent quality measure of the corresponding LME.
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values below that are considered non-significant and may pose a
problem in adjustment due to correlation with other parameters.
The figure is grouped by the respective parameter and shows the
corresponding test statistic:

ti =
xi

σxi

(4)

It can be observed that the test statistic decreases for all other
values when more unknown parameters are being estimated,
i.e. lower redundancy. Furthermore, all values up to Ref +
c + pp + rad are above the significance value, implying no
further problems or quality decline. Additionally adjusting
for decentering distortion and affinity and shear yielded
non-significant values which are still close to significance,
except for b2 in the last parameter set. It also becomes apparent
that other parameters are affected and reduce their statistic value
when distortion terms rad, dec and/or aff are added, most
notably with the camera constant. From this data, datasets with
dec and aff appear suspicious for harmful correlations.

The test statistic decreases as more parameters are added
(reducing redundancy). All adjustments up to Ref + c +
pp + rad remain above the significance threshold, indicating
reliability. However, adding decentering distortion and
affinity/shear yields non-significant values, though being near
the threshold, particularly for b2. The camera constant shows
reduced significance when distortion terms (rad, dec, aff ) are
included, suggesting harmful correlations in these datasets.

Correlation matrix Thus, the next information that can
be derived from the covariance or cofactor matrix is the
correlation matrix R as described in the section before.
Analysis of the correlation matrix can be performed globally
by assessing the magnitude of the single correlations and
their amounts. Also, the matrix can be investigated by
assessing single local parameter combinations to identify
possibly problematic parameters that are correlated or obsolete.
Generally, polynomial parameters are strongly correlated with
each other, often reaching values close to 1. This usually is not
a problem, as long as the parameters are statistically significant
and correlations do not reach r = 1. Also, decentering
parameters are often correlated with the principal point which
is also present in this dataset (Luhmann et al., 2020).

Since ri,j = rj,i, R is a symmetric matrix. Thus, we depict
the lower triangular matrix as a heat map in Figure 8 for all six
parameter sets. Correlation coefficients |r| ≥ 0.4 are printed
while the other elements are shown true to the color map.
Again, only the first camera is depicted to be a representative
sample. Results and findings are similar and transferable.

Datasets including refraction, camera constant, and principal
point (a-c) exhibit small correlations. Introducing distortion
polynomials (d) increases correlations, particularly between
refractive parameters, c, and pp. Known functional
correlations emerge in sets d-f, with strong links between
c and yp, and between d, yp, and decentering distortion.
While affinity/shear adjustments (f) reduce camera constant
correlations, decentering distortion and d remain correlated.

Generally, it is not straight-forward to single out one dataset
that contains a number of correlations that should provide
the maximum accuracy possible. However, when considering
the full adjustment series, it can be concluded that with the
inclusion of radial-symmetric parameters and all additional
parameters, problematic correlations occur. Contrarily, if only
the dataset with all parameters was present, it might not be clear
whether that dataset contains problematic correlations.

Variance inflation factors The last metric for this dataset
is the Variance Inflation Factor (VIF), a well-known measure
from statistics which is not very present in photogrammetry or
geodesy (Kutner et al., 2005). VIF is defined as

VIFi =
1

1−R2
(5)

with R2 being the coefficient of determination. VIF is
calculated as a ratio between the parameters’ variance in the
full model with all correlations (multivariate) and a univariate
model without correlations. From this transition, it can be
shown that VIF can also be calculated from the main diagonals
of the normal equation matrix (N = JTPJ) and the cofactor
matrix (Qx = N−1) (Kutner et al., 2005):

VIFi = Ni,i ·Qxi,i (6)

VIF provides a metric, how well one parameter can be
estimated by the other parameters by analyzing the cofactor or
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Figure 8. Correlation coefficients for different analyses. Only values |r| ≥ 0.4 are printed out.

covariance matrix. Generally, VIF ≥ 10 for a given parameter
implicate possibly problematic correlations between parameters
that may have degrading effects on the numerical stability
of least squares adjustment. Conversely, very small or large
values often indicate poor matrix conditioning, potentially due
to an unstable adjustment (Kutner et al., 2005). These factors,
computed per variable, reflect the inflation from an uncorrelated
to a correlated adjustment.

Figure 9 shows a heatmap of the adjusted parameter sets
on the x-axis and the respective parameters on the y-axis.
The VIF values are color coded, according to the guidelines
presented. From the figure, the key insights are that all values
for adjustments without polynomial parameters are below 5 and
hence implicate statistical reliability. From there, especially the
radial and decentering parameters show to be strongly affected,
just as the camera constant and the d value from the water plane.
However, values are directly associated with a distinct value
which can be interpreted and compared against a threshold.

5.2 Discussion

The data with the lowest LME values result from the adjustment
including refraction, camera constant and principal point.
These parameters are rather simple in its mathematical form
(contrary to polynomial parameters a,b,c) and therefore usually
easier to estimate. However, especially due to the missing
rotation and height variation, it was not necessarily anticipated
to return better results. The original calibration took place about
four months prior to the dataset. Analyzing the values for
the camera constant and principal point, two distinct changes
were observable. For one, yp increased whereas xp remained
identical within statistical error margins. Additionally, the
camera constant increased slightly. This could indicate a tilt
of the lens, leveraging on the mount. Since the cameras
were oriented oblique, gravity acting on the lens mount could
provoke this behavior. It appears consistent with the fact that
the pre-calibration was performed outside the water tank with
the cameras facing in a horizontal direction. This could have
introduced small changes on the positioning. Furthermore,

temperature and humidity on site were not controlled and hence
might have impacted the values further over time.

The presented statistical parameters provide a guideline for a
user to understand the quality of the acquired data. In the
presented case, not all of these parameters pointed towards
the parameter set with the lowest LME. It can especially be
concluded that the standard deviation of unit weight cannot
point towards the best solution in this case. However, if no
systematic errors or major correlations are present, this metric
can work as an accuracy estimate. In this case, the t-test
on parameter significance pointed out that the adjustments
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with decentering and affinity/shear could be problematic but it
failed to show clear tendencies towards the radial parameters.
From the correlation analysis, it became more clear that also
the radial parameters affect the solution and VIF additionally
attributed a number to that tendency. While the findings
from the correlation analysis back these values, the correlation
matrices do not show the implications per parameter but only
per parameter pair. Here, it can clearly be stated where a
starting point for optimization could be. Employing VIF in
practical adjustments can be done similarly to a Baarda test
by removing the parameter (block) with the highest VIF and
then re-running the adjustment until all values are below the
threshold of 10. The observed strong correlations between
refractive parameter d and the decentering distortion may most
likely arise due to the missing rotation around the optical axis.
Hence, decentering can probably explain most of the refractive
plane which is not resolved by different rotations.

6. Conclusion

With this contribution, insights on the behavior of correlations
and estimability of parameters for object-invariant multimedia
bundles were presented. Along with theoretical investigations
on a simulated dataset, a real-world example was presented and
practically investigated. It is hard to generalize the findings
and transfer them completely to other data, as this dataset is
only a very limited sample. Other geometries, applications
or configurations may yield different results which may have
to be treated differently. Therefore, it is always advisable to
look through all possible statistical metrics and/or - if possible
- acquire some sort of reference data, e.g. by known length
measurements. From other datasets, we saw that VIF often
points towards radial-symmetric parameters being problematic
even if the results are accurate. It is unclear whether this
behavior was incidental or if it is because of a mathematical
instability that generalizes to other geometries. This would
have to be investigated further in the future to understand the
implications that can be drawn from VIF.
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