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Abstract

Through-water photogrammetry for surveys of Underwater Cultural Heritage (UCH) is a problem addressed by scholars from

multiple perspectives. In addition to light attenuation as a function of distance travelled by light radiation through the liquid and

variation of water optical characteristics across short lenghts, undulation of the free surface and magnitude of refraction (which

varies at every point of each acquired image) also come into account. Our research aims to implement an automatic analysis

method to estimate a priori — and correct a posteriori — the camera behaviour, focussing on surveys of objects in shallow waters.

We proposed and tested a mathematical model to represent the effects of refraction across different water levels and states of motion.

In addition to acquiring image pairs with two consumer-grade cameras, we recorded short video sequences using a high-speed, high-

sensitivity monocular camera to enable time-series analysis of the phenomenon.

1. Introduction

Shallow water contexts hinder the use of submerged instru-

ments for surveying (we can take as an example an immov-

able cultural asset, attached to a shallow seabed and therefore

immersed in a volume of water only a few tens of centimetres

high). Using optical instruments out of water to detect geo-

metric shapes of submerged or semisubmerged objects requires

knowledge of: A) the behaviour of light rays outside and inside

the liquid; B) how to correct data recorded as results of the cap-

ture of these same rays by the sensors (Agrafiotis et al., 2018).

The aim of our investigation (1), which is focussed on Under-

water Cultural Heritage (UCH), is to formulate a problem from

this need and propose a solution for it, first by addressing some

preliminary theoretical and application issues that came to light

from experiments in a controlled environment. This is in order

to develop and test, at a later stage, data acquisition and pro-

cessing workflows suitable for through-water photogrammetry

operations under uncontrolled conditions and performed with

cameras placed outside water, such as those mounted on Un-

manned Aerial Vehicles (UAVs). Succinctly, the objectives of

our study are: I) to analyse by means of encoded target detec-

tion the physical behaviour of light rays, passing through two

media (air and water) and interacting with one or more digital

cameras placed outside the liquid, to which different conditions

of motion or free surface heights are imposed; II) to formulate,

from the observations made, a mathematical model that allows

the prediction of optical distortions in the captured images and

can be used to obtain corrective parameters; III) to apply the

aforementioned mathematical model and corrective parameters

during processing of data acquired with photogrammetric sur-

veys of cultural assets submerged at shallow depths or semisub-

(1): The authors participated equally in the experimental phase. In

writing this paper, M. R. was responsible for the Introduction and Con-

clusions, A. P. for Section 2 (State of the Art), R. R. for Section 3

(Methodology) and L. M. for Section 4 (Experiments and Results).

merged (Russo et al., 2024b). In this paper we further investi-

gate the formulation and validation of our mathematical model

presented earlier (Russo et al., 2024a). We considered three

case studies: for the first two, we captured images with two

consumer-grade cameras in stereoscopic mode, with a resolu-

tion of 350 Dot Per Inch (DPI); for the last one, we took video

footage with a high-sensitivity, high-speed monoscopic camera

capable of recording up to 500 frames per second (FPS), setting

up time series analyses.

2. State of the Art

In photogrammetry, the computation of spatial geometric prop-

erties of a scene relies on images acquired through perspec-

tive projections. Consequently, the photogrammetric process

requires the reconstruction in 3D space of the bundles of light

rays that formed these images. For each camera, knowledge

or simultaneous calibration of its intrinsic orientation (IO) and

extrinsic orientation (EO) parameters is required to solve the

collinearity equations (Luhmann et al., 2019). For both in-

water photogrammetry and through-water photogrammetry, we

must bear in mind that the liquid body itself has a ‘multime-

dia behaviour’, as its optical characteristics vary as a func-

tion of density, pressure, temperature, and salinity. Further-

more, depending on the distance light radiation travels from

the source through water, absorption and scattering exponen-

tially reduce its intensity (Mardani Nejad et al., 2021). In the

case of through-water photogrammetry, additional factors come

into play: I) free surface undulation and refraction magnitude

— which varies at every point of the acquired image — lead

to mathematically unstable solutions of the photogrammetric

problem; II) according to Snell’s Law, the effect of refraction

given by a light ray is a function of the depth it reaches and the

angle of incidence α of the ray with respect to the air/water in-

terface. In a situation of shallow waters, a standard camera cal-
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ibration procedure with a planar target is not sufficient to model

refraction effects in the captured images. Researchers are de-

veloping several strategies to overcome the issues summarised

above. There is a first methodological classification of these ap-

proaches, which distinguishes between two main criteria based

on survey configuration and how the collinearity equations are

applied (Luhmann et al., 2019, Mardani Nejad et al., 2021):

• The object-invariant interfaces approach, which assumes

that position and orientation of the interfaces between the

optical media are constant with respect to the object to be

surveyed.

• The bundle-invariant interfaces approach, whereby the in-

terfaces between the optical media are constant with re-

spect to the camera.

As a second recognised discriminating criterion, the literature

distinguishes five strategies nested in two main approaches, de-

pending on the optical media where IO and possible relative

orientation (RO) are determined (Kahmen et al., 2020, Rofall-

ski and Luhmann, 2022):

• The use of standard software to calibrate one or more cam-

eras, accompanied by implicit modelling of refraction ef-

fects to determine IO parameters and, where possible, RO

parameters, can automatically lead to gross scaling errors

if the IO is determined in air or to acceptable results if the

IO is defined in water (e.g. by pre-calibration and using

any RO to obtain scalar data).

• In the case of multiple cameras, the probability of scal-

ing errors can be reduced by an explicit modelling of the

interfaces between media, which must be associated with

water: a first option is to define both the IO and the RO in

water; a second strategy is to determine both the IO and

the RO in air; a third alternative is to define the IO in air

and the possible RO in water.

A third methodologically relevant classification concerns the

way refraction effects are corrected in the acquired data (Maas,

2015, Skarlatos and Agrafiotis, 2018):

• The analytical methods, consisting of a modification of

collinearity equations within the photogrammetric prob-

lem to adapt them to a situation of through-water survey.

These in turn are subdivided into the explicit deterministic

analytical method and the ambiguous, iterative undefined

analytical method.

• The image-based methods, which involve a reprojection of

the acquired image.

Most studied through-water photogrammetry applications con-

template the generation of Digital Elevation Models (DEMs) of

submerged and semisubmerged areas with Bundle Block Ad-

justment (BBA) or Structure from Motion (SfM), using datasets

acquired with passive optical sensors mounted on satellite (Cao

et al., 2019) or aircraft platforms, including UAVs (Del Savio

et al., 2023). During surveys under uncontrolled conditions, re-

fractive indices and free water surface heights may be measured

separately or included as unknowns in the BBA. However, in

the presence of waves, schematising the air/water interface as a

simple plane predictably leads to geometric errors. This is be-

cause agitation provokes quasi-random refraction phenomena.

Recently, researchers are developing — through simulations or

laboratory experiments — workflows addressing this specific

issue: model regular waves of the liquid body in sinusoidal

shapes, schematising the free surface as a diffuse or specular

surface (Rupnkik et al., 2020); compute parameters related to

the air/water interface as unknowns in a BBA process (Sarde-

mann et al., 2024); seek, within data relating to images acquired

with water in a state of agitation, entities analogous to measure-

ments that can be made through a planar free surface (Mulsow

et al., 2024).

3. Methodology

So far, we have conducted seven experiments in the Hydraulics

Laboratory of Sapienza University of Rome. The controlled

environment consists of an 80 × 80 × 50 cm tank with 1 cm

thick transparent glass side walls, placed under a metal frame

equipped with a system for millimetric movement of the cam-

eras. The glass walls and bottom of the tank were covered with

0.5 mm thick polyvinyl chloride (PVC) panels, secured with

silicone sealant. An adhesive depth gauge was placed at one

inner corner of the tank to monitor the water level in real time

up to 45 cm. To mitigate the reflection of artificial light, shaped

panels were added to both sides of the metal frame (Figure 1).

Figure 1. Photos of the equipment in the laboratory: a) view of

the entire set-up; b) Sony DSC-HX60 compact cameras; c)

Mikrotron EoSens CL MC1362 high-sensitivity, high-speed

camera (500 FPS maximum); d) tank with encoded targets.

For the seven experiments carried out (Figure 2), we devised

three possible acquisition configurations (Figure 3): a) zenithal

monoscopy, used only in Tests I and VII, with the optical axis

of the camera coinciding with the line perpendicular to the bot-

tom of the tank and therefore a null angle ω between these two

lines (ω = 0); b) zenithal stereoscopy, used from Test II to Test

VI, with the optical axes of the cameras parallel to the line per-

pendicular to the bottom of the tank (ω = 0) and 300 mm apart

(baseline = 300 mm); c) stereoscopy with converging optical

axes, used in Tests II, III, IV, and VI, inclined 15° with respect

to the line perpendicular to the bottom of the tank (ω = 15◦)
and having a 600 mm distance between the barycenters of the

sensors (baseline = 600 mm). Parameters and operating modes

of the consumer cameras used in Tests I to VI — two Sony

DSC-HX60 cameras — are shown in Table 1, while the corre-

sponding settings are shown in Table 2. The parameters and

operating mode of the high-sensitivity, high-speed monocam-

era used in Test VII — an EoSens CL MC1362 camera — are

shown in Table 3. Before acquisition, each camera was cali-

brated out of the water (i.e., in air), thus estimating their IO

parameters. The encoded target type we chose belongs to the

AprilTag family, a visual fiducial system commonly used in
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Figure 2. The experiments under consideration within our entire research project.

robotics and designed specifically to be detected effectively by

automated algorithms. AprilTag markers feature a standard

modular design, where a double square frame contains a planar

grid of bits arranged in sequence. Each AprilTag marker has

a unique identification sequence and is unequivocally named

with a number (Krogius et al., 2019, Olson, 2019). For this se-

ries of experiments, we used the tag36h11 family and the latest

version of the AprilTag detection algorithm, AprilTag 3, imple-

mented in the open source pupil-apriltags library for Python

programming language (Prietz, 2019, Rauch, 2019).

Figure 3. The three acquisition schemes used during the seven

tests: a) zenithal monoscopy; b) zenithal stereoscopy;

c) stereoscopy with converging axes.

We devised the experimental set-up considering the survey ref-

erence system as fixed to the objects to be detected — i.e., the

grids of encoded targets in the tank. By imposing variations

on the conditions of the water volume in the tank, namely free

surface level and state of motion of the liquid, we caused al-

terations in the trajectories of the light rays captured by the

sensors. Consequently, in each image captured in the pres-

ence of water, optical deformations of the Apriltag markers and

thus displacements in comparison to a reference image captured

with the tank empty were generated.

Lens Sony G

Sensor CMOS Exmor R - 7.76 mm (1/2.3”)

CMOS Size 5184 × 3456 px (6.03 × 4.62 mm)

Working Distance 1360 mm (to the base of the tank)

GSD 0.4 mm

Table 1. Sony DSC-HX60 consumer-grade cameras parameters

and working set-up.

In the stereoscopic tests, we evaluated, for each image, camera

positions and orientations (already known to us) by estimating

baseline and angle ω on the basis of IO parameters previously

calculated with calibration operations and EO parameters deter-

mined with the Point-n-Perspective (PnP) approach (Marchand

et al., 2016).

Focal Length Shutter Speed ISO Diaphragm

4 mm 1/10 80 3.5

Table 2. Sony DSC-HX60 consumer-grade cameras settings.

For each image dataset collected during the experiments, and

for both cameras in the stereoscopic cases, the optical distor-

tion caused by water refraction was automatically detected by

tracking the four corner points of each marker across images

captured under varying water levels or motion conditions. Since

the marker grids remained fixed throughout the experiments,

variations in the coordinates of the marker points, with respect

to their positions in the reference image — the image captured

with the tank empty, so without refraction — were attributed

solely to the optical distotion induced by refraction and used to

quantify it.

Sensitivity 25 V/lux.s

CMOS Size 1280 × 1024 px (17.92 ×
14.34 mm)

Maximum frame rate at
1280 × 1024 px mode

500 frames per second

Working Distance 1360 mm (to the base of the
tank)

Table 3. EoSens CL MC1362 high-sensitivity, high-speed

monocular camera parameters and working set-up.

In particular, we modelled the effects of refraction on target

displacements ∆ using a radial distortion law, where the dis-

placement modulo increases with distance d from a central

point of optical deformation, i.e. distortion centre C(xC , yC)
(Figure 4). Therefore, target displacements encode deforma-

tion caused by refraction of optical rays due to presence of in-

creasing water levels. By marker displacement ∆, we mean the

Euclidean distance of segment PP ′ between distorted position

P ′(xP ′ , yP ′) — expressed in terms of image coordinates — of

the i-th marker at the k-th filling step of the tank (every water

level height equals 5 × k cm with k ≥ 1) and undistorted po-

sition P (xP , yP ) of the same marker at the first filling step of

the tank (no water: water level equals to 0 cm). Thus, we pro-

pose the following functional model: ∆ = K · dX , where dis-

placements ∆ represent the observations and the four unknown

parameters are the distortion centre coordinates (xC , yC), and

the two parameters K and X . The model just outlined above is

not linear, since: 1) coordinates (xC , yC) are within distance d,

which is given by Pythagoras’ Theorem as the square root of the
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sum of their squares; 2) X is an exponent. If, however, we ap-

ply the natural logarithm to both sides of the previous equation,

we obtain: ln(∆) = ln(K) +X − ln(d), a linearised form of

the model that allows for the application of the Least Squares

method via Gauss-Newton iterative scheme for the parameter

estimation.

Figure 4. Schematic representation of optical distortion: P

denotes the real position of a marker point (no water), while P ′

represents its apparent (distorted) position caused by water

refraction. Displacement vector ∆, from P to P ′, quantifies the

deformation considered in the proposed model.

From Test I to Test VI, the consumer cameras were individu-

ally controlled via Wi-Fi using the Sony Imaging Edge Mobile

(IEM) app for portable digital devices, avoiding movement dur-

ing the recording phase and attempting to capture frames simul-

taneously. In Test VII, several 1.5-second takes were recorded

with the tank empty and with a water volume of 20 cm in vari-

ous motion conditions, controlling the high-speed monoscopic

camera via cable. We mainly organised the AprilTag markers

according to known size and layout grids, printed on 3 mm thick

Forex panels and secured to the tank using methods that were

gradually refined (in order to prevent buoyancy, deformation,

and unwanted movements). In all experiments, a 7 × 7 grid

covering the tank bottom (parallel to the latter or inclined) was

always present, while for tests III onwards, we added two 7 ×

4 grids — one on the left wall and one on the right wall of the

tank inside. The targets of these three grids have a side length

of 75 mm. We also placed eight smaller AprilTag markers, with

a side length of 40 mm, on the tank edge to define the constant

reference frame of the survey. For Test V, designed to simulate

a shooting from a UAV, a target with an orthophoto was printed

on a 5 mm thick Plexiglas sheet, then glued to the Forex panel

at the tank bottom with removable adhesive.

4. Experiments and Results

For each camera in every experimental setup dictated by the

free surface height or the motion state of water, one (Test V)

or three images (Test III, IV, and VI) were captured and pro-

cessed. Whenever possible, we selected for each water condi-

tion the best pair from the three available pairs of images before

processing. In Test VII, on the other hand, we recorded a 1.5-

second take with the high-speed monoscopic camera at 500 FPS

for each of the several water motion conditions considered, col-

lecting frames that were all different from each other. Given

the computing power required in this case, we have so far been

able to perform partial processing by subsampling the recorded

dataset at 25 and 50 FPS. Thanks to the known geometry of

the marker grids (Ground Truth), the position and orientation

of each camera could be estimated in relation to the targets. For

every acquisition, positions of the four corners of each marker

detected were automatically tracked, monitoring displacements

of target vertices caused by refraction of the optical rays due to

progressively higher water levels — Tests III, IV, and V (Figure

5) — or increasingly intense motion — Tests VI (Figure 6) and

VII (Figure 7). For each experiment, the files containing the

acquired images were sorted and divided according to the re-

spective test iteration number, the source camera (monoscopic,

left, or right), and the dataset (parallel axis or converging axis

configuration). In Tests VI and VII, we envisaged eleven differ-

ent water motion conditions, imposed with an electric fan and

manual stirring: 1) still water; 2) fan at slow speed; 3) fan at

medium speed; 4) fan at maximum speed; 5) fan at maximum

speed and additional mild stir; 6) fan at maximum speed and

additional strong stir; 7) water undergoing stabilisation after 6

minutes since condition no. 6; 8) water undergoing stabilisa-

tion after 9 minutes since condition no. 6; 9) water undergo-

ing stabilisation after 10 minutes since condition no. 6; 10)

water undergoing stabilisation after 11 minutes since condition

no. 6; 11) water undergoing stabilisation after 12 minutes since

condition no. 6. The analysis was carried out using a custom

Python script developed with the Open Source Computer Vision

Library (OpenCV) (OpenCV team, 2000). It first read the IO

parameters of the cameras, obtained previously through calibra-

tion outside water (i.e., in air) using standard software, and re-

constructed the Ground Truth of the marker grids by calculating

their already known 3D coordinates. To improve efficiency of

the marker recognition phase, the script converted each image

from RGB colours to greyscale and applied a combination of

thresholding techniques: the binary method and Otsu’s method

(Otsu, 1979). Each AprilTag is detected by the dedicated soft-

ware library when its unique 36-bit sequence (white or black

square elements), its black inner frame (with a 1-bit border)

and its white outer frame (also with a 1-bit border) are recog-

nisable in the image under consideration (Rauch, 2019). The

script then located the four corners of each marker that met the

aforementioned conditions and plotted the position of its cen-

tre as the intersection between the diagonals of a parallelogram

with the same corners (Figures 5b, 5g, 6b, 6g, 7b), before stor-

ing the image coordinates of these five significant points in a

nested array associated with the analysed image. Once the tar-

gets were detected, the script independently calculated the EO

parameters for each camera using the PnP approach (Marchand

et al., 2016). For each marker grid, the image coordinate sets

of the significant points of the targets were divided into Ground

Control Points (GCPs) and Check Points (CPs), allowing the

average reprojection error to be checked using the estimated

EO parameters, thus reprojecting the known 3D coordinates of

the markers examined into the reference system of the image

under processing. Using the independent EO of the cameras,

our script conducted an estimate of every baseline — calcu-

lated as the Euclidean distance between the estimated positions

of the centres of the two cameras — and a comparison with the

values set in the experimental setup. The values of baselines

and angles ω (ω being the angle between each optical axis and

the line perpendicular to the tank bottom) were then saved in

a spreadsheet in .csv format, together with their corresponding

expected values. The strategy employed up to this point can be

subsumed under image-based methods of refraction correction,

since EO parameters, baselines, and angles ω of the two cam-

eras were calculated by reprojecting the captured frames (Maas,

2015, Skarlatos and Agrafiotis, 2018). Our deliberate choice —

undertaken independently by other researchers as well (Mulsow

et al., 2024) — to avoid explicit modelling of the free surface

and to calibrate the cameras in air using standard software was
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Figure 5. Excerpts from Test V (stereoscopy with parallel axes). Left camera: reference image DSC03393.JPG without water (a) and

results from its comparison with image DSC03428.JPG, taken with a 45 cm water level (b-e). Right camera: reference image

DSC01591.JPG without water (f) and results from its comparison with image DSC01626.JPG, taken with a 45 cm water level (g-j).

Behaviour plots of parameters xC and yC (k), K∗ (l), X (m), baseline (n), and angle ω (o).

dictated by the need to obtain common IO parameters for

all shooting conditions (water levels and motion states). Our

method, therefore, falls into neither object-invariant interfaces

nor bundle-invariant interfaces approaches (Luhmann et al.,

2019, Mardani Nejad et al., 2021), however, the multimedia

photogrammetric problem framing adopted here does not suffer

from scaling errors (Kahmen et al., 2020, Rofallski and Luh-

mann, 2022), thanks to the computation of a set of EO param-

eters estimated with the PnP approach for each shooting con-

dition (Marchand et al., 2016). To begin the modelling phase

of each sequence of n images captured with a given camera in

each dataset, the script compared the image coordinate array

of significant points of markers detected in the respective refer-

ence image — without water (Figures 5a, 5f, 6a, 6f, 7a) — with

the corresponding coordinates of the same points in all the other

n−1 images. For each of these n−1 comparisons, the program

calculated the geometric distortion field — represented by the

displacements of marker significant points — and depicted it as
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Figure 6. Excerpts from Test VI (stereoscopy with converging axes). Left camera: reference image DSC06998.JPG without water (a)

and results from its comparison with image DSC06993.JPG, taken with a 20 cm water level in motion state no. 5 (b-e). Right camera:

reference image DSC04426.JPG without water (f) and results from its comparison with image DSC04421.JPG, taken with a 20 cm

water level in motion state no. 5 (g-j). Behaviour plots of parameters xC and yC (k), K∗ (l), X (m), baseline (n), and angle ω (o).

a ruled surface in Cartesian space. In absence of relevant per-

turbations, the field of optical distortions induced by water re-

fraction tends to take the form of an elliptic pseudo-paraboloid

(Figures 5c, 5h), a function of image coordinates x, y and ob-

served values of modulus ∆. The more the water is agitated,

the more irregular the 3D diagram of the optical deformation

field becomes (Figures 6c, 6h, 7c). In order to estimate the four

unknowns of the mathematical model, it was first necessary to

apply a regularisation of the marker image coordinates to avoid

numerical instability phenomena. The script then computed ap-

proximate values of the coordinates of distortion centre C, as-

suming that it coincides with the minimum point of the dis-

placement vector field, i.e. the point where observed modulus

∆ assumes the smallest value in the entire image. To calculate

approximate values of unknowns K and X , we first applied the

RANdom SAmple Consensus (RANSAC) algorithm (Fischler

and Bolles, 1981) to robustly estimate the parameters of the

line fitting the observations in ln− ln domain. Secondly, the
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Figure 7. Excerpts from Test VII (Monoscopic, subsampled 25 FPS footage). Reference image A Set1 00cm 01Static 00000.bmp

without water (a) and results from its comparison with image E Set1 20cm 04EFAhig 00660.bmp, taken with a 20 cm water level in

motion state no. 4 (b-e). Behaviour plots of parameters xC and yC (f), K∗ (g), X (h). Distortion centre C trajectories during

observation intervals of 1.5 seconds in motion states no. 1 (i) and 3 (j).

script implemented the non-linear Ordinary Least Squares

(OLS) method according to the Gauss-Newton iteration

scheme (Fletcher, 1987) until satisfactory coefficients of deter-

mination R2 and scale values σ0 (sigma zero) were obtained,

thus ensuring that the numerical algorithm used during mod-

elling was stable. Once the iterative process was complete, the

script determined the optimal values of the four modelling pa-

rameters (xC , yC ,K,X) and plotted two diagrams with ln− ln

interpolation lines: the graph of the RANSAC line used to find

the approximate values of the parameters K and X as well as

the graph of the final optimised line, whose parameters were

estimated at the end of the least squares iteration scheme. Pre-

dictably, the results with higher R2 coefficients and lower σ0

values were those with water in static or stabilising conditions

(Figures 5e, 5j), since the more intense the motion, the greater

the number of markers that cannot be correctly detected due to

ripples, thus lowering the number of observations useful for the

calculation (Figures 6e, 6j, 7e). For each of the n − 1 com-

parisons, the script also generated a quiver plot, i.e. a diagram

representing the optical distortions — the displacements of all

significant points of the detected markers — as vectors (Figures

5d, 5i, 6d, 6i, 7d). Finally, for each dataset, the program plotted

behaviour diagrams of modelling parameters (xC , yC ,K,X)
(Figures 5k, 5l, 5m, 6k, 6l, 6m, 7f, 7g, 7h) and, when possible,

baselines (Figures 5n, 6n) and angles ω (Figures 5o, 6o) across

the various shooting conditions (depth levels and water motion

states). In Test VII, carried out by recording a 1.5-second video

for each water motion condition, these diagrams effectively be-

came historical series and also allowed us to plot the distortion

centre C trajectory across time, e.g. in static condition (Figure

7i) or with motion induced by an electric fan at medium speed

(Figure 7j).
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5. Conclusions

We tested our model under controlled conditions, with free sur-

face heights ranging from 5 to 45 cm and motion induced by

fans and manual stir. Empirical data from the time series pre-

sented here confirm the robustness of our model as long as water

is not excessively agitated. Aside from possible improvements

in automatic detection of marker vertices displacements (e.g.

through machine learning), the most immediate future develop-

ments for our method concern applications to case studies in-

volving non-planar geometric shapes in space (a necessary step

before carrying out any test under uncontrolled conditions).
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