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Abstract

Optical 3D reconstruction in environments with complex light paths such as water-air surface interactions continues to be challen-

ging, particularly due to the inherent refraction effects. These effects compromise assumptions taken in standard photogrammetric

methods like the traditional Multi-View Stereo and newer approaches like Neural Radiance Fields (NeRFs). Addressing these limit-

ations is critical for monitoring coastal and riparian ecosystems, for flood-risk modeling, as climate change intensifies river flooding,

and in general to satisfy increasing demands for 3D topo-bathymetric data. To evaluate models explicitly built to consider a change

in refractivity along the image ray, simulation can be employed. In this study, we present a simulation and validation framework

designed to investigate these challenges by synthesizing controlled water scenes with artificial camera trajectories and evaluating

them with 2D and 3D (Cloud-to-Mesh, completeness) metrics. For that, a total of 130 images with a resolution of 1024 × 768

pixels were simulated to model both a water-free scene and a submerged scene. The results indicate that refractive effects must be

explicitly accounted for, as a water depth of 3.5 m led to errors on the order of 1 m, when refraction was not taken into account.

Furthermore, NeRFs proved to be particularly well suited for 3D analysis of photo-bathymetric surveys, achieving a completeness

that was 21 % higher than conventional MVS methods. The simulation workflow is particularly beneficial for the development and

testing of specialized NeRF-variants designed to better account for the complexities introduced by refraction at air-water interface.

1. Introduction

Anthropogenic climate change and concomitant global temper-

ature rise are profoundly affecting ecosystems and represent

one of the foremost societal challenges of our era. These effects

are particularly pronounced in aquatic environments, where el-

evated temperatures promote the occurrence of intense precip-

itation events and induce shifts in submerged biotic communit-

ies. Underwater photogrammetry has demonstrated its util-

ity for high-resolution mapping of shallow-water bathymetry.

Concurrently, the surveillance of submerged vegetation has as-

sumed growing importance, as the distribution and condition

of macrophyte assemblages serve as sensitive indicators of cli-

matic perturbations (Lind et al., 2022). To date, efficient large-

scale surveys of submerged vegetation have relied predomin-

antly on active laser-based remote sensing techniques utiliz-

ing a green laser. However, recent advances in machine learn-

ing, specifically Neural Radiance Fields (NeRFs), hold prom-

ise for developing purely image-based, cost-effective method-

ologies for three-dimensional mapping of underwater habitats,

where Multi-View Stereo (MVS) struggles. To improve new,

refraction-aware NeRF models, simulations can be used to cre-

ate synthetic image datasets, thereby enabling rigorous valida-

tion of refractive parameter estimation and reconstruction ac-

curacy under controlled scenarios. Upon completion of the

simulation-based testing phase, these models can be employed

to analyze real-world scenarios.

1.1 BathyNeRF

BathyNeRF, a transnational research project between the au-

thors’ institutions, focuses primarily on enhancing existing

methodologies for the detection and three-dimensional model-

ing of underwater topography and submerged vegetation with

radiance fields. Its primary objectives are, firstly, to refine

NeRF-based algorithms for reconstructing underwater topo-

graphy and underwater plants from above-water image acquis-

itions, and secondly, to perform a rigorous quantitative eval-

uation against established benchmarks, namely MVS photo-

bathymetry and airborne laser bathymetry. A central research

challenge involves the incorporation of refraction-induced phe-

nomena into the NeRF framework to ensure faithful reconstruc-

tion of subaqueous environments. During the project’s initial

phase, empirical data acquisition was conducted at the Pielach

River study site (Mandlburger et al., 2025). Additionally, NeR-

Frac code base (Zhan et al., 2023) was modified to integrate

refractive-index corrections (Guenthner et al., 2025) and to en-

able post-training point cloud export (Brezovsky et al., 2025).

The simulation framework described in this article constitutes

a critical component of this first phase, facilitating controlled

experiments to validate and calibrate the extended NeRF al-

gorithms prior to their application in real-world aquatic scen-

arios.

2. Methodology

In this section, the fundamentals of the employed reconstruction

techniques are first presented. Section 2.1 provides an over-

view of the Structure-from-Motion (SfM) workflow. Based on

these results, a dense point cloud is generated using MVS in

Section 2.2 and a radiance field-based approach with NeRFs in

Section 2.3.
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2.1 SfM

SfM is a photogrammetric technique that reconstructs

3D scenes from 2D images by simultaneously estimating cam-

era poses and the tie point cloud (Schönberger and Frahm,

2016). The process begins with the detection of distinctive

features, which are commonly extracted by the Scale Invari-

ant Feature Transform (SIFT) algorithm (Lowe, 2004) or vari-

ants thereof. These features are then matched across stereo im-

age pairs using the outlier-robust Random Sample Consensus

(RANSAC) algorithm (Fischler and Bolles, 1981). From the

resulting correspondences, the relative orientations of the cam-

era positions are estimated. Finally, a bundle adjustment is per-

formed to refine all camera parameters and 3D point locations

by minimizing the overall reprojection error, thereby enhancing

both the camera calibration and the accuracy of the tie points

(Triggs et al., 2000).

2.2 MVS

MVS is a framework that builds on the SfM-workflow and com-

putes a dense point cloud from the sparse tie point cloud to-

gether with the cameras’ interior and exterior orientation para-

meters (Schönberger et al., 2016). MVS first identifies corres-

ponding image points across overlapping views of the same

scene and uses these correspondences to estimate depth val-

ues for each pixel in every picture. These depth maps are then

matched and fused to produce a complete, dense 3D point cloud

of the scene (Furukawa and Hernández, 2015). On smooth,

well-textured surfaces, these algorithms perform robustly and

can rival the results of much more expensive laser scanning sys-

tems. However, under poor lighting conditions, particularly on

textureless, reflective, or refractive surfaces, the quality of the

reconstruction deteriorates significantly and may become unus-

able.

2.3 NeRF

NeRFs are a deep-learning technique for implicitly represent-

ing 3D scenes from calibrated photographs. Given a set of input

images with known exterior and interior camera parameters, a

neural network is trained to synthesize novel views from arbit-

rary directions. Unlike traditional geodetic methods that expli-

citly store 3D points, NeRFs encode the entire scene within the

network’s learned weights.

In the Vanilla-NeRF formulation (Mildenhall et al., 2021), the

input to the network is a 5D vector comprising a 3D spatial loc-

ation (x, y, z) and a 2D viewing direction (θ, φ). Along each

camera ray intersecting the scene, these vectors are sampled.

For each sample the model yields an RGB-color (R,G,B)
alongside a volume density (σ). Synthetic images are rendered

during training by numerically integrating the colors and dens-

ities along rays according to classical volume-rendering prin-

ciples (Yariv et al., 2021), where σ represents the differential

probability of the ray terminating at that point. The network is

optimized by minimizing the rendering loss, which is the dif-

ference between these synthetic images and the actual photo-

graphs, leveraging the differentiability of the volume-rendering

equation to adjust the multilayer perceptron’s weights until the

scene is faithfully reconstructed.

To produce a 3D point cloud comparable to that obtained via

classical MVS, a post-processing step extracts surface geometry

from the learned radiance field. During point cloud extraction,

camera rays from the withheld test set are traced until the pre-

dicted volume density exceeds a fixed threshold, and the corres-

ponding RGB value at that point is recorded as a surface sample

(Oechsle et al., 2021).

3. Simulation

This section outlines the simulation framework shown in Fig-

ure 1. Section 3.1 covers the generation of the reference mesh,

followed by the flight-planning workflow in Section 3.2, and

the Blender-based simulation implementation in Section 3.3

(Blender Development Team, 2024).

Figure 1. Simulation framework for 3D underwater

reconstruction.

3.1 Create combined reference mesh

Prior to validating the MVS and NeRF point clouds, an initial

reference dataset must be established. This dataset should be

available as a mesh so that the subsequently generated point

clouds can be assessed via a Cloud-to-Mesh (C2M) compar-

ison. Meshes can also easily be imported in the simulation soft-

ware Blender. Simulations offer the major advantage here that

both datasets derived from topographic surveys and purely syn-

thetic datasets both can be employed. Real datasets have the

benefit that simulation can be optimized for a specific area or

future survey site. However, if no data are available or existing

data lack sufficient accuracy or resolution, synthetic data can

still be generated.

To illustrate this benefit, we first utilized a laser scanning data-

set of the former Jamtal glacier valley (WGS84: 46.90° N,

10.17° E), located above 2000 m a.s.l. The site features a river

channel that feeds into a broad, flat gravel bar, providing a var-

ied yet representative terrain for our simulation. In order to

render the laser scanning point cloud usable for further ana-

lyses, the dataset was converted into a mesh in CloudCompare
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using a 2.5D Delaunay triangulation. The raw survey data, ac-

quired by a DJI L2 LiDAR scanner, had a ground sampling dis-

tance (GSD) of approximately 4 cm and was colored with the

internal L2-camera. To prevent artifacts during later ray tracing,

a Laplacian smoothing algorithm was applied to the resulting

mesh using CloudCompare (Version 2.13.2).

As the synthetic dataset, a freely downloadable ship model was

selected1. Placing the ship underwater not only complements

the thematic context of the scene but also provides an interest-

ing structural object for analysis, as it exhibits both large-scale

curvatures and fine details. Although the comparison of the re-

construction methods is not the primary focus of this study, it

will enable comparative reconstruction analyses between MVS

and NeRF approaches.

Finally, the combined reference mesh, incorporating both the

laser-scaned terrain and the synthetic ship, can be exported as

an fbx-file, preserving vertex coloration for subsequent simu-

lation steps. This composite mesh serves as the foundational

geometry for all further investigations. Ideally, the edge length

of the mesh should be below the GSD of the simulated flight

mission. Unfortunately, this was not achieved here, but will be

remedied in future measurements by using terrestrial laser scan

measurements with a higher resolution

3.2 Generation of flight path

To achieve the most realistic simulation possible, the camera

positions and flight trajectory must resemble those of an ac-

tual UAV mission. In order to test different scenarios, a Python

script was developed which calculates the exterior orientation

parameters of the camera (X, Y, Z, φ, ω, κ). For this, the cam-

era model must be defined. This comprises the focal length,

the pixel pitch (i.e. the pixel spacing on the sensor), and the

sensor resolution. Other intrinsic calibration parameters, such

as the sensor’s principal point and lens distortion coefficients,

were not modeled. Table 1 lists the specifications used for this

experiment. A low resolution camera sensor was chosen so

Parameter Value

Focal length 35 mm
Pixel pitch 20 µm
Sensor resolution 1024 × 768

(0.8 MP)

Table 1. Virtual camera model parameters used in this study.

that the subsequent NeRF training can be performed on ori-

ginal resolution images, thereby facilitating a direct compar-

ison with MVS. Training on large numbers of high-resolution

images from conventional drone camera systems (e.g. Sony Al-

pha 7 IV: 32.7 MP, DJI Zenmuse P1: 44.7 MP, Phase One iXM:

100 MP) presents significant challenges even on state-of-the-art

hardware (NVIDIA RTX 4090 - 24 GB VRAM). The resource

requirements are so high that multi-resolution image pyramids

are usually generated prior to training in order to reduce the

effective resolution, hindering direct comparisons to the MVS

results.

Next, the flight parameters must be specified. In this case these

are the lateral and longitudinal overlap, the GSD and the num-

1 © user m23ldx0191. Dutch ship is licensed under CC BY 4.0. No

changes were made. (26.05.2025) Available at:

https://sketchfab.com/3d-models/dutch-ship-

6e1a27f4db4c48e6adc53f6a3528ac9d

Figure 2. Camera positions on top of the untextured model in

Blender. The positions that are used to take pictures in both

nadir and oblique orientations are outlined in red.

ber of flight strips (or total area covered). Previous investiga-

tions with NeRFs have shown that oblique images are essential

for robust geometric reconstruction, so these were also imple-

mented. As illustrated in Figure 3, in the central region above

the ship, nadir and oblique images towards the point of interest

(POI, located at the center of the ship) are acquired first. Sub-

sequently, three additional strips surrounding the central region

are simulated, in which only oblique shots towards the direc-

tion of the POI are taken. Initially, the DJI Smart-Oblique mode

(DJI Enterprise, 2021) was employed, which simulates a penta-

camera (nadir + four obliques) above the area of interest. How-

ever, the dimensions of the site were found to be too small too

small for that mode, as the oblique frames would have missed

the target area. Therefore, an adapted approach was used in

which only a single oblique shot towards the direction of the

POI is acquired at each position. Table 2 summarizes the flight

parameters used. Using these parameters, two text files were

Parameter Value

Lateral overlap 60 %
Longitudinal overlap 80 %
GSD 3 cm
Number of central-region points [4 x 5]
Number of outer oblique strips 3

Table 2. Flight parameters applied during the UAV mission.

generated: One containing the camera positions of the image

sets and the other specifying the camera model. These files can

be imported into both Blender (Version 4.3.2) and the photo-

grammetry software Agisoft Metashape (Version 2.2.1) used in

this work. In the future, we plan to extend the script to enable

the simulation of additional flight scenarios.

3.3 Simulation in Blender

In this section, the simulation with the open-source software

Blender is described. Here, the 3D scene is converted into

2D image captures, thus simulating a photogrammetric mis-

sion. Further details on all settings can be found in the pro-

gram documentation (Blender Development Team, 2024). First,

the combined mesh from the real laser scan and the synthetic

ship dataset are imported in the software. In addition, appropri-

ate scene lighting must be chosen. To avoid additional reflec-

tion effects that would disturb the simulation, a luminous plane

matching the scene dimensions was chosen, which illuminates

the scene uniformly with an exposure simulating an overcast

day. In general, the simulation was kept as simple as possible

to specifically investigate the refractive influence of water. To

investigate the effect of refraction on the evaluation models, a
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water body must be inserted into the scene. For this purpose,

a rectangular water block with a depth of 3.5 m is added on

top of the imported laser scan surface. This represents a real-

istic use case, since the image centers of all pictures lie on the

plane with an elevation of 42.5 m above the terrain and thus

the light rays spend only a small portion of their path under-

water. Next, so-called BSDF (Bidirectional Scattering Distri-

bution Function) shaders can be assigned to this water. These

provide the mathematical basis for how light is scattered or

refracted at a surface (Bartell et al., 1981). As inputs, an in-

dex of refraction of 1.333 and a color of (R = 0.8 / G = 0.9 /

B = 1.0) are chosen to simulate realistic water properties. Fur-

thermore, a damping coefficient (Volume Absorption) can be

introduced, which, according to the exponential Beer–Lambert

law, describes how strongly a light ray is absorbed in water. For

this simulation, a value of 0.01 m−1 was used, corresponding to

very clear water. Subsequently, the 130 camera positions (ex-

Figure 3. Side view in the Blender scene. From this underwater

viewpoint, total refraction at the water surface can be seen,

highlighting the ray tracing capabilities of Blender. In top of the

background some camera positions are visible.

terior orientation) with their associated camera model (interior

orientation without calibration parameters) could be imported

automatically via Blender’s Python API. The camera’s depth of

field and motion blur were disabled to avoid introducing addi-

tional sources of error into the simulation. This simplification

is not given in real photos, as there are always distorted im-

ages, which must be corrected afterwards by a camera calibra-

tion (Luhmann, 2010). Now, images must be rendered from the

synthetic scene. For this, the Cycles engine, Blender’s phys-

ically based path tracer was chosen, which follows rays from

the camera and computes both direct and indirect illumination.

To best simulate the scene, various settings must be configured,

which are explained below: First, the number of samples, i.e.

the number of paths per pixel in the final image, must be spe-

cified. An adaptive sampling scheme with a maximum of 4096

samples was selected. Once the noise threshold is reached, im-

age quality is deemed sufficient and rendering terminates. The

Max Bounces, i.e. the number of reflection, refraction, and scat-

tering events per photon, were limited to twelve, which on one

hand allows realistic light interactions and on the other hand

keeps render times within practical bounds. The OptiX denois-

ing algorithm (Chaitanya et al., 2017), a GPU-accelerated AI

method that can reduce the rendering time of a high-resolution

image without visible artifacts, was disabled to avoid stochastic

deviations. For the same reason, the Compositing option was

disabled too, so that Blender outputs the image produced dir-

ectly by the Cycles engine without any color corrections or ef-

fects. In this way, refraction, which is the primary focus of this

investigation, as well as reflection and absorption of the light

rays can be calculated in good physical approximation. With

these settings and an NVIDIA RTX 4090 GPU, render times

per image were approximately 10 s without the water block and

50 s including it. The longer runtime is explained by the more

complex light paths in the volumetric medium. This demon-

strates the software’s efficient implementation, as it must com-

pute up to 3.2 billion primary rays per image at a resolution of

1024 × 768 with a maximum of 4096 samples per pixel.

4. Scene generation

In this Section, we describe the point cloud generation using

MVS (see Section 4.1) and NeRFs (see Section 4.2).

4.1 MVS point cloud generation

In order to compute a dense 3D point cloud from the rendered

images, the SfM workflow was first executed in Agisoft

Metashape to extract tie points that serve as the initialization

for the subsequent MVS processing. Since the true values of

the cameras’ exterior orientation parameters are known a pri-

ori, their respective weights in the bundle adjustment were set

to very high values to prevent any deviation. As a result, the es-

timated camera positions deviate by no more than 1 µm in the

no-water scene and 0.1 mm in the underwater scene from the

imported reference values. Likewise, the usual in-situ calibra-

tion, where the focal length, principal point, and distortion para-

meters are refined, was omitted, because no optical aberrations

were simulated and the nominal camera model is to be propag-

ated unchanged. Although future investigations could incorpor-

ate lens aberrations (e.g., chromatic and spherical aberration,

sensor curvature, and various distortion effects (CANON INC.,

2006)) in Blender to further enhance realism, we deliberately

opted to exclude these effects in order to isolate the influence

of water refraction. Upon completion of the SfM step, dense

point clouds were generated via MVS algorithms. However,

due to the limited number of low-resolution images, only about

six million points were reconstructed in both scenarios. Fur-

thermore, because the area of interest was cropped to its cent-

ral region, we also exported points derived from as few as two

overlapping depth maps to maximize detail at the expense of an

increased risk of erroneous 3D coordinate estimates.

4.2 NeRF point cloud generation

Since underwater scenes frequently violate the photogrammet-

ric assumptions required for robust MVS reconstruction, the

datasets were additionally processed using a NeRF-based ap-

proach, which has been shown to yield superior results in such

environments (Remondino et al., 2023). NeRFs are particularly

beneficial for capturing sub-pixel structures and dynamic ele-

ments, such as moving vegetation or water surfaces, during data

acquisition. To process and train the NeRFs, we employed the

modular PyTorch framework Nerfstudio (Tancik et al., 2023),

which natively imports the camera poses and intrinsic para-

meters exported from Agisoft Metashape after bundle adjust-

ment. This ensures that both MVS and NeRF reconstructions

share identical georeferencing and camera calibration, facilit-

ating direct comparison. Nerfstudio further provides modu-

lar NeRF components, a real-time WebGL viewer for visual
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inspection, and a built-in point cloud export utility. For net-

work training, we selected the default Nerfacto model, which

integrates advances from MipNeRF360 (Barron et al., 2022),

NeRF–– (Wang et al., 2021), Instant-NGP (Müller et al., 2022),

NeRF-W (Martin-Brualla et al., 2021) and Ref-NeRF (Verbin

et al., 2022) and simultaneously performs a pose refinement of

all camera positions. Both the model without and with a water

body were trained for 30000 iterations. After this, point clouds

were exported in the global (world) coordinate frame with 50

million points and a statistical outlier removal (SOR) threshold

of 2.0.

We evaluated view synthesis quality on water and no-water

datasets using three image-based metrics: PSNR for pixel ac-

curacy, SSIM for structural similarity, and LPIPS for perceptual

consistency. Each synthesized NeRF view was compared to its

corresponding Blender ground-truth image.

5. Evaluation

To validate the reconstruction accuracy of the point clouds, we

employed a C2M comparison implemented in CloudCompare,

using the original combined reference mesh of the scene against

the four derived point clouds (MVS with and without water and

NeRF with and without water). For each point of the recon-

structed point cloud, C2M computes the closest distance to a

triangle in the reference mesh. All datasets, including the ref-

erence mesh and the exported point clouds, were clipped to the

core area (75 × 75 m2). The NeRF point clouds had initially

been exported with 50 million points. To enable a fair com-

parison with MVS, they were subsampled to a ground sampling

distance of 5 cm for the no-water scene and 6.5 cm for the water

scene, resulting in approximately 2.5 million points for all four

point clouds. After subsampling, a noise filter was applied to

the NeRF-derived point cloud containing water. This filter oper-

ates as a low-pass filter by fitting a local plane around each point

and removing points that lie beyond a relative distance of 2 σ

from the plane. Although the point cloud was already filtered

with an SOR-filter in the Nerfstudio export, the noise filter fur-

ther improves the quality of the point cloud. This additional

filtering was not necessary for the other three point clouds. Ad-

ditionally, the NeRF point clouds required a vertical (z-axis)

offset of +18.9 cm, a shift that has been observed in prior invest-

igations (Winiwarter et al., 2025) and whose origin, potentially

stemming from additional pose refinement in Nerfstudio or dif-

ferences in the interpretation of the camera parameters between

Nerfstudio and Metashape, remains an open question. Unlike

most studies in this field, no further registration (e.g. using ICP

(Besl and McKay, 1992)) was necessary, since all point clouds

share the same coordinate reference system.

The C2M distances serve as the foundation for the complete-

ness metric. Building on the framework of Seitz et al. (2006),

completeness was defined as the proportion of ground-truth

points G that fall within a user-specified tolerance d of the re-

constructed surface R. The threshold d is selected to encompass

acceptable reconstruction errors, ensuring that noisier recon-

structions naturally yield lower completeness scores. For d we

used the value of 0.2 m suggested by Hermann et al. (2024) for

aerial scenes, which in our case lies significantly above the GSD

of the point clouds. Because completeness should be primarily

evaluated for the ship, the reference mesh was cropped to its

central 25 × 30 m2 region and uniformly sampled with 15 mil-

lion surface points Gp to ensure a substantially higher point

count than in any reconstructed cloud R. For each of the four Ri

point clouds, we then computed the Cloud-to-Cloud distances

for every reference point in Gpi to its nearest neighbor in Ri,

discarded all points whose distance exceeded the tolerance d,

and defined completeness as the ratio of the remaining points

Gp<d to the total number of reference points Gp.

6. Results and discussion

In the following, the results of the scenes with water and

without water are presented. In Section 6.1, the results of the

2D analyses are presented; Section 6.2 details the outcomes of

the 3D evaluation with C2M; and Section 6.3 reports the find-

ings of the completeness evaluation.

6.1 2D evaluation metrics

The results of the 2D image evaluation are summarized in

Table 3. Contrary to expectations, both PSNR and SSIM

are higher for the water dataset than for the no-water dataset,

whereas only the LPIPS score is better for the no-water case.

These findings suggest that, despite refraction effects, the water

images yielded ostensibly superior training performance. Ac-

cordingly, caution is warranted when solely using these image-

based metrics in a geodetic context, as they appear to correl-

ate poorly with the reconstruction quality of the underlying

geometry. However, the relevance of this conclusion in real-

world conditions is limited, since natural water bodies never

exhibit perfectly smooth, particle-free surfaces, and because

Nerfacto’s pose-refinement step may partially absorb or com-

pensate for refraction effects. A more reliable assessment is

therefore provided by the C2M comparison presented in the

next section.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓

No-water 23.34 0.52 0.11
Water 24.52 0.53 0.17

Table 3. Results of view-synthesis quality metrics for no-water

and water datasets.

6.2 3D evaluation metrics

To quantify the overall reconstruction accuracy of the four point

clouds, C2M distances are calculated. Table 4 reports the mean

and standard deviation (Std) of the C2M distances after exclud-

ing the outermost 10% of samples to prevent a high influence of

outliers. In the no-water scene, both methods achieve excellent

agreement with the reference mesh. As shown in Table 4, the

MVS point cloud attains a mean deviation of less than 1 mm and

a standard deviation below 1 cm, well under the planned GSD

of 3 cm, while the NeRF point cloud, after applying the vertical

shift, yields a comparable mean error (3 cm) but a larger scatter

(Std of 6 cm). Expected accuracies are typically 0.5 - 1 pixel

(1.5 - 3 cm) in position and 2 - 3 pixels (6 - 9 cm) in height

for nadir images (Luhmann, 2023). In both cases, the point

clouds lie within these accuracy thresholds, and the distance-

histograms closely follow a Gaussian profile with a mean close

to zero, indicating that residual errors are dominated by random

noise rather than systematic effects.

In contrast, in the submerged water scenario, the variability of

the C2M distances increases markedly. Both MVS and NeRF
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Figure 4. Results of the C2M distances. The results of both methods for the scene without water are shown at the top and the results of

the scene with water are shown at the bottom. The histogram with the distances [m] is shown below each of the point clouds. The

color scales match in the histogram and point cloud, but differ between the two scenes.

exhibit standard deviations in the order of 35 cm, and their

mean deviations rise to approximately 1.1 m for MVS and

0.7 m for NeRF. Here, the distribution functions deviate sig-

nificantly from normality, pointing to systematic effects during

reconstruction. A closer inspection of Figure 4 reveals that re-

gions of the ship closest to the water surface exhibit smaller

discrepancies. This is consistent with Snell’s law of refraction,

whereby light rays bend toward the normal upon entering water.

As depth increases, the angular compression induced by refrac-

tion causes triangulated points to be displaced deeper than their

true positions, producing a depth-dependent bias.

In summary, at a water depth of 3.5 m, both reconstruction

workflows result in a systematic refractive bias of roughly 1 m,

which must be corrected to yield usable 3D data. Furthermore,

while MVS outperforms NeRF in the no-water experiment,

NeRF demonstrates a more Gaussian error distribution under-

water, suggesting its greater robustness to refraction-induced

distortions.

6.3 Completeness

As shown in Table 4, a consistent trend in completeness

emerges across both scenarios. In the no-water scene, MVS

achieves 15% higher completeness than in the water scene,

whereas NeRF exhibits a 5% difference. Moreover, NeRF point

clouds are substantially more complete than those from MVS,

by 9% in no-water and by 21% in water scene. This dispar-

ity is particularly evident in Figure 5. MVS fails to reconstruct

the masts and large portions of the ship’s deck in both environ-

ments, while NeRF successfully recovers the entire mast in the

no-water dataset and most of it in the water dataset. The deck is

accurately represented in both NeRF-cases, with only the thin

ropes of the mast remaining unresolved, which is not surpris-

ing, as as their thickness falls short of the planned GSD. In

summary, these results demonstrate that refraction effects and,

more importantly, the reconstruction method have a significant

impact on geometric fidelity. NeRF-based reconstruction shows

a clear advantage in this simulated, aerial data.

Dataset Mean [m] Std [m] Compl. [%]

MVS: No-water 0.0003 0.006 79.1
NeRF: No-water -0.030 0.058 88.1

MVS: Water 1.092 0.346 63.8
NeRF: Water 0.706 0.360 83.1

Table 4. Results of the mean and the standard deviation (Std)

[1 σ] of the C2M distances and the completeness evaluation for

no-water and water datasets. The mean values of the NeRF

datasets are not representative, as they were previously manually

shifted in height. For estimating the completeness, a distance

threshold of 0.2 m was used.
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Figure 5. Results of the completeness evaluation. The results of both methods for the scene without water are shown at the top and the

results of the scene with water are shown at the bottom. Blue indicates the regions that could be reconstructed within the threshold and

red shows regions that could not be reconstructed from the images.

7. Conclusion and Outlook

This study developed a framework to simulate 3D underwater

scenes. Camera positions were computed in Python and used in

Blender to render images. These were processed with MVS and

NeRF to generate and evaluate dense point clouds for geomet-

ric accuracy and completeness. The results demonstrate that

refraction at the air-water surface induces a systematic depth

bias of approximately 1 m at 3.5 m water depth, underscoring

the necessity of refraction correction for reliable underwater re-

construction. While MVS outperforms NeRF in the absence of

water, NeRF exhibit superior geometric accuracy and substan-

tially higher completeness in submerged conditions.

To further bridge the gap between synthetic experiments and

real-world UAV surveys, future work in the BathyNeRF re-

search project will focus on enhancing the realism of the sim-

ulation. Integration both static and dynamic water surfaces

caused by waves, modeling detailed camera and lens optical

properties and implementing physically based lighting with re-

flections at the water surface are the next steps. This will

provide a more realistic base for developing and benchmark-

ing novel underwater photogrammetric algorithms. Another

future approach would involve fusing above-water MVS, de-

rived point clouds, with below-water NeRF generated recon-

structions.
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