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Abstract 

 

Underwater photogrammetry is challenged by image degradation caused by water absorption and scattering, which negatively impacts 

feature detection and 3D reconstruction quality. This study aims to evaluate the effectiveness of a Feedforward Neural Network-based 

colour correction method designed to enhance underwater image quality, thereby improving feature matching and subsequent 3D 

reconstruction processes. The proposed approach leverages deep learning to correct colour distortions without relying on physical 

models of underwater light propagation. Evaluation was performed using established feature detection algorithms, such as SIFT and 

SURF, applied to multiple underwater datasets capturing diverse imaging conditions. The goal is to determine whether neural network-

based colour correction can increase the number of valid feature correspondences, improve sparse and dense point cloud generation, 

and ultimately support more accurate and robust 3D reconstructions. By integrating this correction method within a photogrammetric 

workflow, the study investigates the potential benefits and limitations of data-driven colour enhancement in underwater environments. 

The findings are intended to inform future development of hybrid approaches that combine physical modelling with deep learning, 

aiming to optimize both visual clarity and geometric fidelity in underwater mapping and documentation. This work contributes to 

advancing underwater photogrammetry by addressing critical challenges related to image quality and reconstruction accuracy, with 

implications for archaeological surveys, marine research, and underwater infrastructure inspection. 

 

 

1. Introduction 

Underwater (UW) images often exhibit radiometric 

inconsistencies due to the optical properties of water. As light 

travels through a water body, its intensity diminishes, leading to 

colour degradation. This absorption intensity varies depending 

on wavelength, depth, the distance between the camera and the 

subject, and the physical and environmental conditions of the 

water at a specific location and time. Fields such as underwater 

archaeology and marine biology rely on accurately coloured 

images that reflect real-world objects. This need has driven 

research into automatic and semi-automatic colour correction 

techniques, which are commonly applied during the pre- or post-

processing phases of photogrammetric workflows. 

 

One major challenge in UW imaging is the unnatural blue-green 

tint seen in underwater photographs. This phenomenon arises 

from several factors unique to aquatic environments, which are 

not encountered in air. As light passes through water, it 

experiences substantial attenuation, causing its intensity to 

weaken exponentially with distance (Jaffe, 1990). Moreover, this 

attenuation depends on frequency, red light fades significantly 

faster than blue light, and backscattering of blue and green further 

alters the perceived colour of objects depending on their distance 

from both the camera and the light source (Bryson et al., 2016). 

To counteract these issues, various studies have proposed 

computational approaches to restore the ‘true’ colours in UW 

images (Akkaynak and Treibitz, 2019; Bryson et al., 2016). 

 

For underwater surveys, having access to both radiometric details 

and high-resolution 3D data is essential for interpreting 

information about the surveyed environment (Menna et al., 

2018). The development of fully automated photogrammetric 

software has significantly enhanced underwater documentation 

and reconstruction, leveraging Structure from Motion (SfM) and 

Multi-View Stereo (MVS) techniques. These innovations have 

contributed to advancements in disciplines such as underwater 

archaeology and marine biology. Modern photogrammetry 

allows experts to track and document changes in UW sites with 

high precision, ensuring continuous and up-to-date monitoring. 

 

Our previous work introduces a Self-Adaptive Colour 

Restoration pipeline designed for restoring true colours in 

archival underwater imagery (Vlachos and Skarlatos, 2024). The 

methodology integrates Structure from Motion (SfM) and Multi-

View Stereo (MVS) techniques to derive depth maps and sparse 

point clouds. A manually guided selection of well-lit “ground 

truth” RGB values is used to train a Feedforward Neural Network 

(FNN), which learns to model colour degradation as a function 

of Camera-to-Object Distance. Optimized using Adam 

optimizer, the trained network predicts and restores colour 

without requiring environmental or spectral data. The approach 

is particularly suited for datasets captured with single-camera, 

strobe-equipped setups, ensuring geometric consistency. By 

leveraging SfM for identifying reliable colour references, the 

pipeline effectively reverses underwater colour attenuation, 

enhancing image feature matching and 3D reconstruction. 

Results from diverse sites, including Mazotos and Nissia, 

demonstrate the pipeline’s robustness, providing a practical 

solution for improving the visualization and documentation of 

underwater archaeological sites.  

 

Expanding on this research, this paper will examine the effect of 

the Self-Adaptive Colour Restoration pipeline on feature 

extraction and matching processes, as well as its influence on the 

3D dense point cloud reconstruction of UW environments. 

Specifically, it will investigate whether applying colour 

correction enhances the accuracy and overall quality of these 
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subsequent stages, namely Structure from Motion and 3D 

reconstruction, when applied to the corrected datasets. 

 

2. Related Work 

Over the last decade, numerous techniques have been developed 

for both enhancing and restoring images, as well as for evaluating 

how such techniques influence 3D reconstruction processes. This 

section outlines key advancements in these areas and discusses 

their relevance to the current work. 

 

2.1 Image Enhancement and Restoration 

Researchers have extensively explored the optical characteristics 

of water, particularly its absorption and scattering behavior. 

Jerlov’s seminal classification in 1951 identified three main 

oceanic and five coastal water types (Jerlov et al., 1951). 

Building on this foundational work, subsequent studies sought to 

quantify the inherent optical properties of these water categories 

(Akkaynak et al., 2017; Solonenko and Mobley, 2015). 

 

Unlike conventional RGB-based colour correction methods, a 

model introduced in 2014 approached the problem through 

spectral analysis of aquatic optical properties (Blasinski et al., 

2014). Another model (Akkaynak et al., 2017) relied on real-

world aquatic data to categorize natural waters and pinpoint the 

RGB attenuation coefficients crucial for underwater (UW) 

imaging. This study revealed that oceanic wideband attenuation 

coefficients are relatively constrained and illustrated the 

complexity involved in transitioning from wavelength-specific 

attenuation β(λ) to broadband attenuation β(c), thereby 

challenging simplified image formation models. 

 

An early method for correcting colours in UW images using the 

lαβ colour space was detailed in (Bianco et al., 2015). This 

approach involved white balancing the chromatic elements and 

applying histogram-based luminance adjustments to improve 

contrast. The methodology performed effectively under certain 

assumptions, such as uniform scene illumination and the "grey 

world" condition, which generally hold in close-range, 

downward-viewing scenarios like seabed imaging or underwater 

photography under stable lighting. 

 

The work in (Bryson et al., 2013) introduced an automated 

correction approach for UW image colour inconsistencies 

captured from varied perspectives during 3D structure-from-

motion reconstructions. The aim was to document extensive 

marine ecosystems without disrupting them with colour charts. 

This was achieved through a colour constancy strategy based on 

a grey-world distribution, assuming scene geometry does not 

affect surface reflectance. Later, the same authors presented a 

novel image formation model designed specifically for a setup 

involving strobes and an autonomous UW vehicle (Bryson et al., 

2016). This allowed for accurate colour recovery tailored to the 

equipment configuration. 

 

Expanding on these efforts, the researchers in (Akkaynak and 

Treibitz, 2018) refined the UW image formation model by 

integrating empirical oceanographic data to more accurately 

represent the backscatter component. Their findings highlighted 

a discrepancy between the wideband coefficients of backscatter 

and those of direct transmission, contrary to prior assumptions. 

Consequently, they proposed a new model that accounted for this 

distinction and validated it through in situ testing. This updated 

model was later operationalized in (Akkaynak and Treibitz, 

2019) through the Sea-thru pipeline, which, while offering 

enhanced physical accuracy, introduced additional parameters 

that added complexity to its practical use. 

 

2.2 Influence on Underwater Photogrammetry and 3D 

Reconstruction 

In (Li et al., 2018), the researchers designed a multiterm loss 

function combining adversarial loss, cycle-consistency loss, and 

the Structural Similarity Index Measure (SSIM). Drawing 

inspiration from CycleGANs, they proposed a weakly supervised 

framework for UW image colour correction, aiming to simulate 

how the scene would appear outside of water. Their results not 

only enhanced visual quality but also improved image feature 

matching performance. 

 

A different strategy introduced in (Ancuti et al., 2012) involved 

a fusion-based enhancement method that utilized a single input 

image, integrating several popular filtering techniques. This 

approach was particularly effective in scenarios with dynamic 

underwater environments and significantly enhanced feature 

detection and matching capabilities. 

 

In another study (Mangeruga et al., 2018), five leading image 

enhancement techniques were applied to datasets collected from 

various underwater locations with differing depths, turbidity 

levels, and lighting conditions. The enhanced images were 

assessed using three evaluation strategies, one of which focused 

on their effect on dense 3D point cloud reconstruction outcomes. 

 

3. Materials and Methods 

The primary datasets for this research were obtained from the 

Mazotos shipwreck, a 4th-century BC merchant vessel situated 

approximately 45 meters underwater off the southern coast of 

Cyprus (Demesticha, 2011; Demesticha et al., 2014). Data 

acquisition was conducted during three distinct excavation 

campaigns, each utilizing different camera systems to assess the 

method’s resilience to variations in environmental conditions and 

equipment. Specifically, images were collected using a Canon 

EOS 7D in 2018 and a Sony SLT-A57 in 2019, both outfitted 

with underwater housings and strobes to ensure quality imaging. 

 

Further data collection occurred in September 2024, during a 

field campaign organized by the Maritime Archaeological 

Research Laboratory (MARELab) at the University of Cyprus, 

contributing to the robustness of the evaluation framework. 

 

To examine the adaptability of the proposed methodology in a 

different underwater setting, an additional dataset was gathered 

in 2024 at a second archaeological site; an 18th-century 

shipwreck located near Nissia tou Protara in Famagusta Bay, 

Cyprus, resting at a depth of 28 meters. Known to divers since 

the 1980s and formally reported to the Department of Antiquities 

in 1992 (“Nissia Shipwreck - Multimedia Applications for 

Cypriot Maritime Cultural Heritage,” n.d.), the site has suffered 

from unregulated visits and looting. Systematic archaeological 

exploration began in 2014 under the direction of MARELab, 

supported by the Honor Frost Foundation, and has since included 

two major excavation campaigns: the first in 2017, which also 

hosted a field school in collaboration with the Nautical 

Archaeological Society, and the second in 2024, partially funded 

by the THETIDA project. 

 

A Nikon D610 camera was employed for image capture during 

the 2024 campaign. These excavation seasons revealed 

significant portions of the vessel’s wooden hull, along with 

cannons and various onboard artifacts. Throughout all phases of 
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work at the site, photogrammetric documentation has been 

integral; not only for detailed recording of archaeological 

material but also for site monitoring and the formulation of 

conservation strategies. 

 

Figures 1-3 showcase the original vs colour corrected images that 

resulted after the implementation of the Self-Adaptive Colour 

Calibration Pipeline. 

 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1: Training results on 4 images with Adam and RMSprop optimizers ((a–d) Original images, (e–h) Adam optimizer-based 

prediction results). Dataset A, Camera: Sony SLT-A57. Images acquired at the Mazotos shipwreck site. Credits: MARELab, 

© University of Cyprus. Photographer: Massimiliano Secci. 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 2:  Training results on 4 images with Adam and RMSprop optimizers ((a–d) Original images, (e–h) Adam optimizer-based 

prediction results). Dataset b, Camera: Canon EOS 7D. Images acquired at the Mazotos shipwreck site. Credits: MARELab, 

© University of Cyprus. Photographer: Andreas C. Kritiotis. 

 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 3: Training results on 5 images with Adam and RMSprop optimizers ((a–e) Original images, (f–j) Adam optimizer-based 

prediction results). Camera: Nikon D610. Images acquired at the Nissia shipwreck site. Credits: MARELab, © University 

of Cyprus. Photographer: Andonis Neophytou. 
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3.1 Network Architecture for Colour Restoration 

A Feedforward Neural Network (FNN) was chosen for its 

simplicity, computational efficiency, and ability to model both 

linear and non-linear relationships which is ideal for this 

relatively straightforward task (Aggarwal, n.d.; Géron, n.d.; 

Goodfellow et al., 2016; Müller and Guido, n.d.). Its 

straightforward design allows quick experimentation with 

different architectures and hyperparameters, balancing accuracy 

with resource use. 

 

The model was implemented in MATLAB, using a structured 

workflow: data were split into training (70%), validation (15%), 

and testing (15%) sets. Training used (Xtrain, Ytrain), validation 

with (Xval, Yval) helped tune parameters, and (Xtest, Ytest) was 

used for final evaluation. 

 

The network comprised an input layer with four neurons (R, G, 

B, CoD), two hidden layers with ten ReLU-activated neurons 

each, and an output layer predicting Rtrue, Gtrue, and Btrue 

values. This setup was designed to optimize performance with 

minimal computational overhead (Figure 4). 

 

 

Figure 4: Network architecture of FNN used for training. 

 

3.2  Dense Point Cloud generation and Image Feature 

matching 

After restoring the colours of the scene for both sites, a 3D 

reconstruction using the corrected images will be done in order 

to compare the performance of the colour corrected datasets 

versus the originals in regard to dense point cloud generation. 

Additionally, a comparison regarding the performance of image 

feature matching and SfM point extraction on the colour 

corrected images was done. 

 

3.2.1 Image Feature Matching & SfM Evaluation 

 

The algorithm’s initial evaluation focused on its ability to 

enhance image feature matching, an essential step in 

photogrammetry and 3D reconstruction. SIFT and SURF 

algorithms were applied to nine image pairs (three from each site: 

Mazotos and Nissia) to test performance under varying 

underwater conditions. 

 

The goal was to assess whether colour correction improved the 

number of valid feature correspondences. Both algorithms were 

tested with a 95% confidence level and a 0.5-pixel distance 

threshold. RANSAC was used to eliminate false matches and 

retain geometrically consistent pairs. 

 

The image feature matching experiment was conducted in 

MATLAB using its computer vision toolbox. The number of 

valid matches before and after colour correction was compared, 

with results, summarized in Table 1, demonstrating clear 

improvements in matching accuracy and density. 

 

An additional experiment was conducted to assess the impact of 

colour correction on the number of Structure-from-Motion (SfM) 

points generated in the sparse point cloud. The SfM 

reconstruction was performed using Agisoft Metashape v2.0.2, 

with the processing accuracy set to high. To ensure data quality, 

only points matched in at least three images were retained; points 

observed in just two images were excluded from the analysis. 

Table 2 presents the total number of valid sparse points for both 

the original and colour-corrected datasets. 

 

Image 

Pairs 

SURF SIFT 

# of 

valid 

matches 

original 

# of 

valid 

matches 

colour 

cor-

rected 

% im-

prove-

ment 

# of 

valid 

matches 

original 

# of 

valid 

matches 

colour 

cor-

rected 

% im-

prove-

ment 

P_A1 15 17 13% 430 467 9% 

P_A2 224 277 24% 1957 2086 7% 

P_A3 54 47 -13% 150 134 -11% 

P_B1 91 97 7% 673 754 12% 

P_B2 128 140 9% 766 966 26% 

P_B3 719 746 4% 324 378 17% 

P_C1 11697 13008 11% 18025 20350 13% 

P_C2 1426 1512 6% 4493 5262 17% 

P_C3 8321 8196 -2% 15197 13602 -10% 

Table 1: Statistics of SIFT & SURF image feature matching when 

applied on the original & colour corrected image 

pairs. 

 

Dense Cloud 
# of SfM 

points 

% gain / 

loss 

Dataset A (Mazotos 2018) 
Original 61002 

8% 
Adam CC 66167 

Dataset B (Mazotos 2019) 
Original 138337 

-9% 
Adam CC 125712 

Dataset C (Nissia 2024) 
Original 467326 

-5% 
Adam CC 443836 

Table 2: Number of total SfM points on the Original and Colour-

Corrected Datasets. 

 

The evaluation results, presented in Table 1, demonstrate the 

impact of the proposed colour correction algorithm on the 

performance of image feature matching using the SIFT and 

SURF descriptors. Overall, the application of the correction 

method led to an increased number of valid feature 

correspondences in the majority of the tested image pairs, 

confirming its effectiveness in enhancing image quality under 

underwater conditions. 

 

For the SURF algorithm, an improvement in feature matching 

was observed in 7 out of the 9 evaluated image pairs. The most 

substantial enhancement occurred in image pair P_A2, which 

exhibited a 24% increase in valid matches following colour 

correction. Similarly, SIFT demonstrated improvements in 7 out 

of 9 pairs, with the highest gain recorded in P_B2, where the 
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number of valid correspondences increased by 26%. These 

results suggest that the proposed correction method is particularly 

effective in improving image distinctiveness in scenarios where 

original underwater imagery may suffer from poor colour 

contrast or attenuation. 

 

Notably, a few image pairs showed a decline in performance after 

colour correction. In particular, both SURF and SIFT produced 

fewer valid matches for P_A3 and P_C3, with reductions as high 

as 13% and 11%, respectively. This indicates that in some cases, 

the correction process may inadvertently suppress critical image 

features or introduce visual artifacts that hinder effective 

descriptor matching. These exceptions highlight the importance 

of developing adaptive or context-aware correction strategies to 

ensure consistent performance across varying underwater scenes. 

 

Despite these isolated cases of performance decline, the results 

consistently indicate that SIFT benefits more from the colour 

correction process compared to SURF, likely due to its higher 

sensitivity to improvements in image gradient and contrast. 

Overall, the proposed method contributes to more accurate and 

robust feature matching, supporting its integration into 

underwater photogrammetry and 3D reconstruction workflows. 

 

The impact of the proposed colour correction on the Structure-

from-Motion (SfM) sparse point clouds, summarized in Table 2, 

reflects trends consistent with the feature matching results 

obtained using SIFT and SURF. For Dataset A, corresponding to 

Mazotos 2018, the colour correction yielded an 8% increase in 

the number of valid SfM points, aligning well with the 

improvements observed in feature correspondence counts for this 

dataset. This suggests that enhanced feature matching quality 

directly contributes to denser and more reliable 3D 

reconstructions. 

 

Conversely, Datasets B and C showed a decrease in SfM points 

(-9% and -5%, respectively), paralleling the smaller or negative 

gains observed in feature matching for some image pairs. This 

outcome highlights that while colour correction generally 

improves feature detection, its benefits on 3D reconstruction 

density can vary depending on dataset-specific imaging 

conditions. Overall, the SfM results do not fully corroborate the 

notion that improved feature matching, particularly under 

challenging underwater conditions, tends to facilitate denser 

sparse reconstructions, but adaptive correction strategies may be 

required to maximize gains across diverse scenarios. 

 

3.2.2 Dense Cloud Evaluation  

 

To enable a meaningful comparison between dense point clouds, 

one dataset must serve as a reference. In this study, the original 

(uncorrected) dataset was designated as the baseline for 

evaluating the colour-corrected point clouds. For each test site, 

photogrammetric processing was carried out using Agisoft 

Metashape, and the block orientation along with the camera 

calibration parameters from the original dataset were applied to 

the colour-corrected images. This approach ensured that any 

differences in the resulting dense clouds were due solely to colour 

correction and not variations in alignment or calibration. 

 

To ensure accurate scaling of the 3D models, an underwater 

control point network was used to provide spatial reference 

during dense cloud generation. The resulting point clouds were 

then compared using CloudCompare, an open-source software 

tool designed for 3D point cloud analysis. 

 

The comparison process followed a methodology similar to that 

described in (Mangeruga et al., 2018; Vlachos et al., 2022). Three 

primary metrics were used to assess differences between the 

original and colour-corrected point clouds, with results 

summarized in Table 3 and illustrated in Figure 5: 

• Total Number of Points – A direct measure of the density 

and completeness of each point cloud. 

• Cloud-to-Cloud Distance (C2C) – Calculated as the nearest-

neighbour Euclidean distance between corresponding points 

in the two clouds, with the average distance μ computed as: 

•  

μ =
1

N
 ∑ 𝑥𝑖

𝑁

𝑖=1

                                     (1) 

 

Where 𝑥𝑖 is the distance for each matched point and  

N is the total number of points. 

• Surface Density – This metric reflects the local point 

distribution over a unit area. For each point, the number of 

neighbours 𝑁 within a search radius r is counted, and the 

surface density is given by: 

•  

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁

𝜋𝑟2
                             (2) 

 

This measure helps assess the structural integrity of the 

reconstructed surface, excluding noise from sparse or 

isolated points. 

• Roughness – Roughness quantifies local surface 

irregularities by measuring the deviation of each point from 

a best-fitting plane computed from its neighbours. Lower 

roughness values indicate a smoother, less noisy surface and 

thus better reconstruction quality. 

 

By applying these metrics, we assessed the impact of colour 

correction on the geometric accuracy and surface quality of the 

3D reconstructions. The use of consistent alignment parameters, 

objective comparison metrics, and a scaled control network 

ensured that the evaluation was both robust and reliable. 

 

Dense Cloud   

Mean C2C 

Abs Dist. 

(m) 

Mean 

Roughness 

(m) 

Mean 

Density 

# of MVS 

Points 

Dataset A 

(Mazotos 

2018) 

Original 

(A) 
---- 0.000121 5736188 42677999 

  
Adam 

CC (A) 
0.001390 0.000132 5384499 36328178 

Dataset B 

(Mazotos 

2019) 

Original 

(B) 
---- 0.000120 2339774 57158391 

Adam 

CC (B) 
0.001860 0.000131 2230842 48549936 

Dataset C 

(Nissia 2024) 

Original 

(C)   
---- 0.000100 1972502 71313201 

Adam 

CC (C)  
0.000544 0.000109 2000424 69405235 

Table 3: Metrics of Comparisons between the Original and 

Colour-Corrected 3D dense PCs of the three sites. 
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Figure 5: Visual representation of number of points, mean C2C 

absolute distances, roughness and surface density. 

 

The evaluation of dense point clouds (Table 3) revealed a 

nuanced impact of the colour correction method on 3D 

reconstruction quality. In Dataset A, where feature matching and 

sparse SfM results showed positive gains, the dense cloud from 

colour-corrected images maintained a comparable roughness 

(0.000132 m vs. 0.000121 m) but exhibited a reduction in both 

surface density and total MVS points (−6.1% and −14.9%, 

respectively). Similarly, Dataset B showed a decline in point 

density and MVS points following colour correction (−4.6% and 

−15.1%, respectively), consistent with its earlier drop in feature 

match performance. Interestingly, Dataset C showed a small 

increase in mean density despite a modest reduction in MVS 

points (−2.7%), along with the lowest mean C2C distance 

(0.000544 m), suggesting minimal geometric deviation from the 

original model. 

 

Overall, these results suggest that while the proposed colour 

correction method can support improved feature matching, its 

impact on dense cloud generation is irregular and depends on 

image content and environmental conditions. Small increases in 

roughness across all datasets (on the order of ~0.00001 m) 

indicate a slight increase in local surface noise post-correction. 

These findings highlight the importance of tuning colour 

correction techniques to preserve radiometric consistency while 

enhancing feature distinctiveness, especially in workflows where 

dense reconstruction accuracy is critical. 

 

4. Conclusions 

This study set out to assess the impact of a Self-Adaptive Colour 

Calibration pipeline implemented using a Feedforward Neural 

Network on the quality of underwater photogrammetric 

reconstructions. The central hypothesis was that enhancing 

image colour fidelity would lead to improved feature matching, 

increased sparse and dense point counts, and smoother, more 

complete 3D reconstructions. While the colour correction yielded 

notable improvements in feature detection, particularly for SIFT-

based matching, the expected gains in sparse and dense point 

cloud generation were not consistently realized. In some cases, 

the corrected datasets produced fewer SfM points, reduced dense 

cloud density, and slightly higher surface roughness, suggesting 

that improved radiometric quality does not always translate into 

improved geometric reconstruction. These findings are in 

consistence with other studies on the subject, where significant 

geometric improvement cannot be documented when using 

colour enhancement or restoration techniques. This might be 

contributed to the fact that the originally recorded information 

from the camera, cannot be computationally improved in a 

meaningful way for geometric reconstruction.  

 

These outcomes contrast with previous experiments where 

physically based correction models, grounded in underwater 

imaging physics, produced more consistent improvements 

throughout the photogrammetric workflow. The difference lies in 

how each method treats the image data. Physics-based 

approaches preserve the light propagation characteristics critical 

to depth estimation, while the neural network focuses on 

perceptual enhancement, potentially introducing inconsistencies 

in image gradients or local texture, which are essential for dense 

stereo matching. 

 

Nevertheless, it is important to emphasize the definite visual 

improvement achieved by the neural network-based correction. 

The enhanced colour balance, contrast, and clarity significantly 

increase human interpretability and make critical visual features, 

such as object boundaries, textures, and materials, more 

discernible. This holds particular value for environmental 

studies, marine biology and underwater archaeological 

documentation, interpretation, and public dissemination, cases 

where visual clarity often takes precedence. Even when 

geometric benefits are limited, the improved image quality can 

enhance the accuracy of manual annotations, aid expert analysis, 

and support educational and outreach objectives. 

 

Ultimately, these findings highlight the trade-offs between 

perceptual enhancement and photogrammetric precision. They 

also point toward the potential of hybrid models that combine the 

physical consistency of model-based corrections with the 

adaptability of neural networks. By doing so, future work may 

achieve both visually compelling and geometrically reliable 

reconstructions, which is an essential goal for high-quality 

underwater mapping and documentation. 
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