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Abstract

3D reconstructions in underwater environments face significant challenges due to poor image quality, caused by blurring, reduced
contrast, color distortion, and inadequate lighting. This study investigates the impact of various image enhancement techniques
on underwater 3D reconstruction, focusing on Contrast Limited Adaptive Histogram Equalization (CLAHE), RGB Histogram
Stretching (RGHS), and a combined approach integrating RGB stretching with CLAHE. Three real-world underwater datasets were
analyzed to assess the effectiveness of these methods in improving the accuracy and completeness of reconstructed 3D models.
Notably, the RGB-CLAHE combination achieved the most substantial improvements, increasing reconstructed points by 7.60%,
detected features by 7.56%, and reconstructed features by 12.94% on average across the datasets. However, the enhancement meth-
ods did not improve performance in certain cases, underscoring the need for a robust evaluation methodology to determine the most
suitable technique for each dataset. These findings support the design and development of adaptive evaluation frameworks alongside
advanced enhancement strategies, enabling more accurate and detailed analysis of submerged environments. Such approaches have
the potential to benefit a wide range of scientific and industrial applications, including marine research, underwater archaeology,
and inspection tasks.

1. Introduction

3D reconstruction of underwater sites has become an increas-
ingly important tool in fields such as maritime archaeology,
marine biology, and environmental monitoring. In recent years,
there has been a growing trend toward using photogrammetry-
based methods, driven by the accessibility of high-resolution
imaging equipment and open-source software solutions. How-
ever, underwater imaging remains inherently challenging due
to factors like light attenuation, color distortion, scattering,
and turbidity, all of which compromise image clarity and, con-
sequently, the quality of the resulting 3D models. As a result,
a significant research focus has emerged around pre-processing
techniques, particularly image enhancement methods to mitig-
ate these issues and improve reconstruction outcomes. Another
notable trend is the shift toward automating parts of the recon-
struction pipeline and integrating machine learning to optimize
feature matching and depth estimation. The primary objective
is to produce a 3D model that accurately represents the real-
world object, capturing its geometry and details as faithfully as
possible.

To complement the core photogrammetric workflow, several
methods have been developed to enhance the quality and reli-
ability of underwater 3D reconstructions. These include image
preprocessing techniques such as histogram equalization (Yin
et al. (2025)), dehazing ( Goyal et al. (2024)), and contrast en-
hancement (van Nijnatten et al. (2024)), which aim to restore
visual features lost due to poor underwater visibility. In addi-
tion, improvements in camera calibration (Yang et al. (2024)),
artificial lighting (Zhou et al. (2024)), and structured acquisi-
tion strategies, such as predefined diver trajectories or the use
of reference grids help reduce inconsistencies in image capture.
There is also a growing interest in integrating navigation and
positioning systems, such as micro geodesic networks or in-
ertial measurement units (IMUs) (Vrochidis et al. (2021)), to

provide spatial accuracy and support scale-aware reconstruc-
tions. These auxiliary approaches collectively address many of
the challenges posed by underwater environments and are be-
coming standard components of modern underwater survey and
modeling workflows.

Despite their advantages, the secondary methods used to sup-
port underwater 3D reconstruction are not without limitations.
Image enhancement techniques, while effective in improving
visual clarity, can introduce artifacts or alter key features, po-
tentially leading to inaccurate reconstructions or distorted geo-
metries. Similarly, methods like contrast stretching or dehaz-
ing may improve human visual perception but negatively affect
the performance of feature-matching algorithms if not properly
calibrated. Structured acquisition strategies require strict adher-
ence during fieldwork, which is often difficult to achieve in dy-
namic underwater environments influenced by currents, visib-
ility changes, and diver movement. Moreover, positioning sys-
tems such as geodesic networks and IMUs, though beneficial
for spatial accuracy, add complexity, cost, and logistical con-
straints to underwater survey missions. These challenges high-
light the need for adaptable and well-balanced preprocessing
approaches that enhance image quality without compromising
the integrity of the 3D reconstruction process.

This study addresses the persistent challenge of balancing im-
age enhancement with reconstruction accuracy in underwater
photogrammetry, a problem that is often overlooked in existing
literature. While previous research has explored enhancement
techniques individually, there is a lack of systematic evaluations
that measure their impact on actual 3D reconstruction out-
comes, particularly across diverse real-world underwater con-
ditions. The novelty of this work lies in its reconstruction-
centered comparative framework, which moves beyond percep-
tual or visual assessments to evaluate how enhancement directly
influences 3D model quality. Key contributions of this study in-
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clude:

• A systematic, metric-driven evaluation of multiple en-
hancement methods, focusing on their effect on the accur-
acy and completeness of 3D reconstructions;

• The use of three heterogeneous underwater datasets, each
representing distinct environmental conditions, to assess
generalizability;

• The integration of qualitative and quantitative assess-
ments, including visual inspection of point clouds and re-
construction metrics to measure impact;

• A reproducible pipeline based on OpenSfM that demon-
strates the practical implications of preprocessing on real-
world underwater imagery;

The remainder of this paper is organized as follows. An over-
view of the related research is provided in Section 2, while
Section 3 includes details about the evaluation 3D reconstruc-
tion methodology. Section 4 contains the experimental evalu-
ation, and Section 5 provides the conclusions alongside future
improvements and limitations.

2. Related Works

Underwater image acquisition presents unique challenges due
to the physical properties of the aquatic environment, such as
light attenuation (Li et al. (2024)), scattering, and absorption,
which lead to significant image degradation. These phenom-
ena cause common issues, including reduced visibility, blur-
ring, and severe color distortions (Wang et al. (2024)), particu-
larly the loss of red wavelengths, resulting in low-contrast and
visually inconsistent images. Such degradations directly hinder
the performance of computer vision tasks, especially 3D recon-
struction (Pan et al. (2025)), where accurate feature detection,
depth estimation, and texture mapping are crucial. The incon-
sistent illumination and lack of reliable visual cues in underwa-
ter imagery make traditional reconstruction techniques less ef-
fective, necessitating specialized approaches to enhance image
quality and maintain robustness in these adverse conditions.

Underwater image enhancement methods aim to improve visual
quality by correcting color and contrast distortions caused by
light absorption and scattering Zhang et al. (2022). Histogram-
based techniques like CLAHE (Mehdizadeh et al. (2023)) ef-
ficiently redistribute pixel intensities to balance image con-
trast, making them suitable for real-time use. For example,
RGHS (Huang et al. (2018)) combines adaptive contrast and
color correction in RGB and Lab spaces to enhance shallow-
water images with reduced noise. Fusion-based methods (Song
and Wang (2021)) integrate multiple enhancement strategies
such as contrast adjustment, color correction, and dehazing for
more robust results. Retinex-based approaches mimic human
visual perception (Zhang et al. (2017)) by separating illumina-
tion from reflectance, effectively restoring natural colors under
varying lighting conditions.

Underwater 3D reconstruction is a challenging yet essential
task for a variety of applications, from marine biology to
underwater archaeology Di Angelo et al. (2022). Common
approaches include Structure-from-Motion (SfM) Yakar and
Dogan (2019) and stereo vision Tian et al. (2022), both of which
rely on capturing multiple images or video frames to estimate

the 3D structure of a scene. Vrochidis et al. (2025) enhanced
3D reconstruction in challenging underwater environments by
utilizing intelligent colormap selection, thereby improving the
performance of OpenSfM in such conditions. Similarly, Di-
mara et al. (2024) explored the integration of mixed reality and
3D modeling for cultural heritage preservation, showing how
these techniques can be applied to above-water and underwater
scenarios, improving accuracy and detail in reconstructions. In
addition, tools such as OpenMVS Li et al. (2020) and Open-
MVG Li et al. (2022) have been utilized in many underwa-
ter 3D reconstruction tasks, offering open-source solutions for
multiview stereo reconstruction, with improvements focused on
noise reduction and depth estimation in murky underwater en-
vironments. These efforts contribute to the advancement of the
reliability and precision of underwater 3D modeling despite in-
herent visual challenges.

Several studies have shown that image enhancement can sig-
nificantly impact the accuracy of 3D reconstruction by im-
proving feature visibility, detection, and matching (Hou and
Ye (2022)).Mangeruga et al. (2018) conducted a comprehens-
ive benchmarking of five state-of-the-art underwater image en-
hancement methods using diverse datasets with varying depth,
turbidity, and lighting conditions. Preprocessing steps such as
contrast correction, dehazing, and color balancing often lead
to more consistent and complete reconstructions, especially in
visually degraded environments like underwater scenes (Es-
pinosa et al. (2023)). However, there is still a noticeable lack
of comprehensive evaluations that compare the effectiveness of
various enhancement techniques on real underwater datasets.
This limits our understanding of which methods are most be-
neficial and highlights the need for systematic benchmarking in
realistic underwater conditions.

Although several works have proposed image enhancement
techniques to support underwater 3D reconstruction, most stud-
ies focus narrowly on individual methods or specific environ-
ments without conducting broad, comparative evaluations. For
instance, some research demonstrates improvements in feature
matching and reconstruction accuracy using enhanced images,
but these are often limited to controlled or synthetic datasets,
which do not fully reflect the challenges of real underwater
scenes. In addition, there is a lack of standardized bench-
marks and consistent quantitative evaluation across different
enhancement pipelines and reconstruction frameworks. Many
approaches also fail to assess performance under varying con-
ditions such as depth, turbidity, and lighting. These gaps high-
light the need for a more comprehensive study that systemat-
ically evaluates multiple enhancement methods in real-world
underwater datasets. The proposed work addresses this by ana-
lyzing how different enhancement techniques affect the quality
and accuracy of 3D reconstructions, providing insight into their
practical value for real underwater imaging scenarios.

3. Methodology

The proposed methodology follows a structured pipeline de-
signed to assess the impact of image enhancement on under-
water 3D reconstruction. It begins with the acquisition of raw
underwater images, which typically suffer from distortions such
as low contrast, blurring, and color cast due to water scattering
and absorption. These images are first processed using a vari-
ety of enhancement techniques aimed at improving visibility
and color balance. The enhanced images are then subjected to
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feature detection algorithms, which identify keypoints neces-
sary for constructing 3D models. Using these detected features,
3D reconstruction is performed through OpenSfM (Vrochidis
et al. (2025)). Finally, the output reconstructions are quantitat-
ively and qualitatively evaluated using metrics that assess visual
quality, completeness, and geometric accuracy, allowing for a
comprehensive analysis of how enhancement influences recon-
struction performance. For better understanding, a schematic
overview of the entire pipeline is provided in Figure 1.

Methodology

UNDERWATER
IMAGES

ENHANCEMENT
TECHNIQUES

3D 
RECONSTRUCTION

EVALUATION
METRICS

FEATURE 
DETECTION

Figure 1. Architecture of the enhancement-assisted 3D
reconstruction approach

3.1 Image Enhancement Techniques

Image enhancement plays a pivotal role in underwater imaging
by improving the visibility of details that are often obscured due
to the challenging conditions of the underwater environment.
Preprocessing techniques enhance the overall quality of the im-
ages, bringing out hidden features and correcting distortions
such as color imbalance, low contrast, and blur. The primary
objective is to generate a clearer and more accurate represent-
ation of the underwater scene. As the first step in the meth-
odology, image enhancement aids in increasing the consistency
and quality of keypoint matches between images, thereby im-
proving the subsequent stages of feature detection and 3D re-
construction.

CLAHE (Mehdizadeh et al. (2023)) is a popular image en-
hancement technique designed to improve the contrast of an
image, especially in regions with low visibility, without over-
amplifying noise. Unlike traditional histogram equalization,
which globally adjusts contrast, CLAHE works locally by di-
viding the image into small tiles and performing histogram
equalization on each tile. This localized approach prevents
over-enhancement in homogeneous regions and ensures that
details in darker or brighter regions are visible. The contrast
limiting parameter C is used to clip the histogram and prevent
excessive contrast enhancement, while the size of the tiles de-
termines the level of local contrast adjustment. The CLAHE
formula is given by:

New intensity =
(I − min intensity)

(max intensity − min intensity)
× (L− 1),

(1)

where I is the original intensity of the pixel, min intensity and
max intensity are the minimum and maximum intensities in the

local tile, and L is the total number of possible intensity levels.
For CLAHE, the local histograms are clipped based on a pre-
defined limit C, and the clipped histograms are redistributed
to adjust the contrast while avoiding over-enhancement. This
method is particularly useful in underwater images, where light
attenuation and scattering often result in uneven lighting and
poor contrast.

Another popular method for enhancing underwater images is
the RGHS (Huang et al. (2018)). RGHS is designed to correct
the contrast and color distortion typically observed in under-
water images caused by light absorption and scattering. The
method works by first performing contrast correction in the
RGB color space, followed by a color correction step in the
CIE-Lab color space. The contrast correction is achieved by
equalizing the Green (G) and Blue (B) channels and then dy-
namically redistributing the histograms of each R-G-B chan-
nel based on the intensity distribution of the original image and
the wavelength attenuation of different colors underwater. This
process is guided by dynamic parameters that are adaptive to
the specific image content, which helps to enhance the contrast
without over-amplifying noise. The bilateral filter is often used
to smooth the image while preserving edges and important de-
tails. For color correction, the ‘L’ component (luminance) in the
CIE-Lab color space is stretched, while the ‘a’ and ‘b’ compon-
ents (representing color balance) are adjusted to achieve a nat-
ural appearance. The RGHS method is composed of two main
stages, which include contrast and color correction. In the first
stage, contrast is adjusted in the RGB color space using a for-
mula similar to Equation 1, which stretches the histogram based
on the intensity distribution and wavelength-dependent attenu-
ation of different color channels. In the second stage, color
correction is performed in the CIE-Lab color space using the
following formula:

Ox = IX ·
(
Φ

1−
∣∣∣ IC
128

∣∣∣)
, C ∈ {a, b}, (2)

where Ox and Ix denote the output and input pixel values, re-
spectively. IC represents the value of the ‘a’ or ‘b’ component
in the CIE-Lab color space, which is in the range of [-128, 127].
The constant Φ controls the degree of color adjustment. This
formulation adapts the correction based on the chromatic devi-
ation of each pixel, ensuring more balanced and natural color
enhancement across the image.

After evaluating individual preprocessing techniques, a fusion-
based approach combining RGB stretching (Ghani and Isa
(2015)) and CLAHE was explored for enhanced underwater im-
age enhancement. This combined method aims to leverage the
strengths of both techniques. RGB stretching improves global
contrast by expanding the histograms of the red, green, and
blue channels across the full intensity range, while CLAHE en-
hances local contrast and preserves fine details. In RGB stretch-
ing, each color channel is adjusted independently to compensate
for the unequal attenuation of light in water, which varies by
wavelength. For example, red fades first at around 5 meters,
followed by orange at 10 meters, yellow at 20 meters, green at
30 meters, and blue at approximately 60 meters. This physical
phenomenon results in color imbalance and loss of detail in un-
derwater imagery. By applying RGB stretching first, the global
contrast is improved, and then CLAHE further refines the im-
age by amplifying local features without introducing excessive
noise. The formula for RGB stretching is given below:
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Pout = (Pin − Imin) ·
(
Omax −Omin

Imax − Imin

)
+Omin, (3)

where Pin and Pout represent the input and output pixel values,
respectively. Imin and Imax are the minimum and maximum in-
tensity level values in the input image, while Omin and Omax

define the desired intensity range for the output image.

3.2 Reconstruction and Evaluation Process

OpenSfM is the open-source structure-from-motion (SfM) lib-
rary that was used for multi-view 3D reconstruction from im-
ages. It supports various camera models and utilizes robust
computer vision techniques to reconstruct sparse point clouds
and estimate camera poses. The reconstruction process be-
gins with feature detection, where OpenSfM employs the Scale-
Invariant Feature Transform (SIFT) to detect distinctive keypo-
ints in each image. These keypoints are invariant to scale and
rotation, allowing reliable matches across different viewpoints.
Descriptors are computed to uniquely characterize each detec-
ted keypoint. For instance, in the case of the SIFT algorithm,
the descriptor is constructed as follows:

d(x, y) = {f1(x, y), f2(x, y), . . . , fn(x, y)} (4)

In this context, d(x,y) represents the descriptor, where each
Fi(x, y) corresponds to the i-th feature value extracted from the
image at the keypoint located at (x,y). These feature descriptors
are compared across images to identify matching keypoints, al-
lowing the system to establish correspondences between differ-
ent viewpoints. For keypoints i and j detected in two separate
images, the descriptor matching process proceeds as follows:

M(i, j) = argmin
J

{∥Di −DJ∥} (5)

In this equation, M(i,j) represents the match between keypo-
ints i) and j, where Di and Dj are their respective feature
descriptors. The term ∥Di −Dj∥ denotes the Euclidean dis-
tance between these descriptors, and argmin identifies the key-
point j whose descriptor is most similar to that of keypoint i.
This descriptor-matching process is essential for constructing a
sparse point cloud, as it forms the basis for accurate geomet-
ric reconstruction. OpenSfM handles large-scale datasets ef-
fectively by applying robust outlier rejection techniques such
as Random Sample Consensus (RANSAC), which filters out
mismatches caused by noise, occlusion, or scene ambiguity.

Following the keypoint matching and outlier rejection,
OpenSfM proceeds to estimate the relative camera poses using
incremental structure-from-motion techniques. It refines these
poses through bundle adjustment, a global optimization process
that minimizes the reprojection error across all views. Once
the camera positions and orientations are accurately determ-
ined, the software performs triangulation to generate a sparse
3D point cloud from the matched features. The OpenSfM pro-
cess for 3D reconstruction is described in Algorithm 1.

In evaluating the quality and effectiveness of underwater 3D re-
construction without access to ground truth models, three key
metrics were selected: Detected Features (DF), Reconstructed
Features (RF), and Reconstructed Points (RP). DF represents

Algorithm 1 3D Reconstruction Pipeline Using OpenSfM
Require: A collection of overlapping 2D images
Ensure: A reconstructed 3D point cloud model

1: Extract local features (e.g., SIFT) from each image
2: Perform feature matching between image pairs to find point

correspondences
3: Use RANSAC to eliminate outliers and retain geometric-

ally consistent matches
4: Estimate camera poses incrementally using PnP and global

optimization
5: Triangulate matched keypoints to generate a sparse 3D

point cloud
6: Optionally apply multi-view stereo (MVS) to obtain a

dense reconstruction
7: Optimize the structure and motion through bundle adjust-

ment
8: Export the reconstructed model in a suitable 3D format

(e.g., .ply, .obj)
9: return Final 3D point cloud

the total number of image features detected by the feature ex-
traction algorithm, reflecting the richness of information avail-
able in the input images. RF measures how many of these fea-
tures were successfully matched and incorporated into the final
3D structure, indicating the effectiveness of both the feature-
matching and triangulation steps. RP refers to the total num-
ber of 3D points generated in the reconstruction, serving as an
indicator of the spatial completeness and density of the result-
ing model. These metrics were chosen because they provide
a quantifiable assessment of reconstruction quality in scenarios
where geometric accuracy cannot be directly measured due to
the absence of a reference 3D model, particularly in real-world
underwater environments.

To evaluate the impact of different enhancement methods on 3D
reconstruction, a comparative analysis was conducted by apply-
ing each preprocessing technique to the same set of underwater
images and then processing them through a consistent recon-
struction pipeline. Unprocessed images were used as a baseline
to assess the relative performance of each method. All recon-
struction experiments were performed using identical settings,
including fixed parameters for feature detection, matching, and
bundle adjustment to ensure fair comparisons. This controlled
setup allowed for a reliable assessment of how each enhance-
ment method affects the quality and completeness of the final
3D model.

4. Experimental Evaluation

The experimental evaluation provides a comprehensive over-
view of the datasets used, along with implementation details
to ensure the reproducibility of the experiments. Furthermore,
the section presents the results obtained from the conducted ex-
periments using quantitative metrics, including the number of
reconstructed points, detected features, and reconstructed fea-
tures. In addition to the numerical results, a detailed analysis
of the observed patterns across different datasets and prepro-
cessing strategies is offered. Particular attention is given to
both consistent trends and dataset-specific deviations, offering
insights into the strengths and limitations of each method under
varying conditions.

4.1 Dataset

To ensure a robust and comprehensive analysis, three distinct
underwater image datasets were utilized in this study. While
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all datasets capture submerged environments, each represents
different underwater conditions, including variations in depth,
lighting, turbidity, and seabed composition. This diversity was
intentionally selected to evaluate the performance and adaptab-
ility of the applied methods across a range of realistic under-
water scenarios. By incorporating datasets from multiple un-
derwater settings, the study enhances the generalizability of the
findings and ensures their applicability to varied environmental
contexts.

Dataset A comprises 280 underwater images captured at a depth
of 30 meters. These images, along with those from a second
dataset, document an underwater artifact concentration. The
second dataset (Dataset B) consists of approximately 200 un-
derwater images captured at a site geographically close to that
of the first dataset. While both datasets share similar depth
and environmental conditions, Dataset B is distinguished by
its unique scene composition. This spatial configuration in-
troduces additional structural complexity and surface variation,
making it a valuable case for evaluating the robustness of pre-
processing techniques and 3D reconstruction algorithms.

In addition to the two real-world underwater datasets, a third
dataset (Dataset C) was employed to further assess the perform-
ance of various preprocessing methods under diverse environ-
mental conditions. The Mermaid Underwater Dataset (Avan-
they and Beaudoin, 2024) comprises underwater images cap-
tured at a depth of approximately 20 meters at the La Sirène
site in Saint-Raphaël, France, during the Submeeting 2022 un-
derwater robotics workshop. It consists of 321 underwater im-
ages and covers an area of roughly 150 m² with sub-millimeter
ground sampling distance (GSD) and features a variety of un-
derwater scenes, including a mermaid statue, a sandy plain with
scattered stones, and a rocky zone inhabited by marine life. Im-
ages were acquired by divers using a single camera under nat-
ural lighting conditions and are provided without any prepro-
cessing.

Figure 2 presents an overview of a dataset (Dataset C) used in
this study, showcasing representative input images alongside
their corresponding 3D reconstruction, generated without the
application of any preprocessing techniques. The reconstruc-
tion is visualized as a point cloud derived directly from the im-
age data. This visualization provides a qualitative comparison
of scene complexity and the fidelity of a 3D reconstruction.

Figure 2. Overview of Dataset C, one of the datasets utilized for
experimental validation.

4.2 Implementation details

The implementation specifications for this study included con-
figuring the parameter ϕ to a value of 1.3 for the RGHS method.

For the CLAHE method, the processing parameters consisted of
a rectangular grid with a tile size of (4, 4) and a clip limit set to
2. These hyperparameters were selected based on iterative tun-
ing and validation to achieve optimal visual enhancement and
reconstruction quality.

All experimental procedures were executed without issues us-
ing four CPU threads. The reconstruction pipeline was built
on OpenSfM, an open-source photogrammetry library primar-
ily optimized for CPU usage. Its SfM core relies on the Ceres
Solver for bundle adjustment and optimization, which does not
support GPU acceleration. Similarly, the depth map estimation
components in OpenSfM are also CPU-bound and are not de-
signed to leverage GPU hardware. As a result, OpenSfM oper-
ates entirely on the CPU without any GPU acceleration require-
ments.

All experiments were conducted on a workstation equipped
with an Intel i5-10600K CPU, 16 GB of RAM, and an NVIDIA
RTX 1660 GPU. Although a dedicated GPU was available, it
remained unused throughout the processing pipeline due to the
CPU-centric nature of the software. This setup highlights the
accessibility of the workflow, as it does not depend on high-end
GPU resources, making it feasible for deployment in environ-
ments with limited computational infrastructure.

4.3 Results

First, visual examples of the applied enhancement methods
were made across all images. These visualizations serve to
qualitatively demonstrate the effects of each method, such as
CLAHE, RGHS, and RGB-CLAHE, on the underwater im-
agery. By comparing the original and enhanced images side
by side, the impact on contrast, brightness, and feature visib-
ility becomes more evident. These visual comparisons help
illustrate how each method modifies the input images, poten-
tially influencing feature detection and point cloud reconstruc-
tion in subsequent stages. Including different image samples
also highlights how the same enhancement technique may pro-
duce varying visual outcomes depending on the specific envir-
onmental conditions, such as depth, lighting, and water clar-
ity. This visual analysis complements the quantitative results
and supports the discussion on the suitability of different meth-
ods for varying underwater scenarios. These enhancements are
presented in Figure 3.

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Original

RGHS

CLAHE

RGB Stretching 
and CLAHE

Figure 3. Visualization of the enhancement methods.

For Dataset A, the unprocessed images generated a 3D model
consisting of 762,431 reconstructed points, 14,563 features,
and 6,156 reconstructed features. Applying CLAHE (Con-
trast Limited Adaptive Histogram Equalization) enhanced the
reconstruction, increasing the number of reconstructed points
by 9.65%, features by 18.96%, and reconstructed features by
14.25%. In contrast, the RGHS method did not yield improve-
ments over the unprocessed baseline. The combination of RGB
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stretching and CLAHE produced the best results, with improve-
ments of 10.97% in reconstructed points, 24.62% in features,
and 22.39% in reconstructed features. Among all tested prepro-
cessing techniques, this combination proved most effective for
enhancing 3D reconstruction.

Next, Dataset B was evaluated to determine whether it exhib-
ited similar characteristics to Dataset A. The trends observed
for Dataset B were comparable to those of Dataset A, which
can be attributed to their shared characteristics, such as depth
and water visibility. The unprocessed images produced a 3D
point cloud with 435,918 reconstructed points, 12,290 detec-
ted features, and 5,883 reconstructed features. After applying
CLAHE, these values increased by 2.40%, 2.25%, and 0.98%,
respectively. Once again, the RGHS method did not yield better
results than the unprocessed data. The best performance was
achieved by combining RGB stretching and CLAHE, which
significantly improved the reconstruction. This combination
demonstrated its effectiveness, especially for datasets with sim-
ilar characteristics and depth, such as Datasets A and B. Spe-
cifically, the reconstructed points increased by 7.70%, the de-
tected features by 7.74%, and the reconstructed features by
10.46%.

For the Mermaid dataset, different results were observed com-
pared to Datasets A and B. The unprocessed images produced
the best results, with 264,790 reconstructed points, 13,556 de-
tected features, and 2,991 reconstructed features. While apply-
ing CLAHE improved the results, it did not surpass the unpro-
cessed data. As in the previous datasets, the RGHS method
performed the worst, yielding inferior metrics. However, the
combination of RGB stretching and CLAHE produced the best
results among the enhancement methods, even though it resul-
ted in a decrease of -2.31% in reconstructed points, -10.94% in
detected features, and -2.01% in reconstructed features. This
drop can be attributed to the specific characteristics of the Mer-
maid dataset, which was captured in shallower depths compared
to the previous datasets and contained only one object for re-
construction. Datasets with a greater number of objects tend to
yield better results with enhancement techniques, as more fea-
tures are generated, allowing the enhancements to have a more
significant impact. Fewer objects, as seen here, limit the num-
ber of features, which in turn affects the enhancement effective-
ness.

Unfortunately, due to the absence of ground truth models for
these real-life underwater datasets, the metrics presented here
were the most reliable option for evaluating the efficiency of
the enhancement methods. To provide a generalized over-
view of the results, a summary table is included. The un-
processed images produced a total of 1,463,139 reconstructed
points, 40,409 detected features, and 15,030 reconstructed fea-
tures. The application of CLAHE resulted in improvements of
3.75%, 5.09%, and 4.38% for reconstructed points, detected
features, and reconstructed features, respectively. The RGHS
method, however, did not yield any noticeable improvements
compared to the unprocessed data. In contrast, the combination
of RGB stretching and CLAHE achieved the most significant
enhancements, increasing the reconstructed points by 7.60%,
the detected features by 7.56%, and the reconstructed features
by 12.94%. The results are presented in Table 1.

The results indicate that the RGB-CLAHE combination yielded
the best performance in two out of the three datasets, demon-
strating its effectiveness in enhancing 3D reconstruction across

a variety of underwater environments. However, the third data-
set, the Mermaid dataset, showed different results, where the
unprocessed images produced the best outcome. This discrep-
ancy suggests that the effectiveness of enhancement methods is
highly dependent on the specific characteristics of each data-
set. Factors such as depth, object count, and scene complex-
ity can influence the performance of enhancement techniques,
highlighting the need for a tailored approach. Thus, it is cru-
cial to evaluate which enhancement method is most suited to
the characteristics of each dataset to optimize the reconstruc-
tion quality.

Table 1. 3D reconstruction results for each enhancement method
across datasets.

Method Dataset RP DF RF
Unprocessed A 762,431 14,563 6,156
CLAHE A 836,012 17,321 7,033
RGHS A 691,507 11,977 5,039
RGB–CLAHE A 846,060 18,149 7,535
Unprocessed B 435,918 12,290 5,883
CLAHE B 446,378 12,566 5,941
RGHS B 405,403 11,401 5,416
RGB–CLAHE B 469,433 13,240 6,498
Unprocessed C 264,790 13,556 2,991
CLAHE C 235,625 12,581 2,716
RGHS C 225,567 12,911 2,556
RGB–CLAHE C 258,693 12,078 2,931
Unprocessed Total 1,463,139 40,409 15,030
CLAHE Total 1,518,015 42,468 15,690
RGHS Total 1,322,477 36,289 13,011
RGB–CLAHE Total 1,574,186 43,467 16,964

Note: RP = Reconstructed Points, DF = Detected Features,

RF = Reconstructed Features.

5. Conclusion

In conclusion, this study evaluated the performance of various
enhancement methods, including CLAHE, RGHS, and fusion
of RGB and CLAHE, across three distinct underwater datasets.
The results demonstrated that the RGB-CLAHE combination
consistently produced the best 3D reconstruction outcomes, sig-
nificantly improving the number of reconstructed points, detec-
ted features, and reconstructed features in Datasets A and B.
This combination proved to be particularly effective in scen-
arios with greater depth, visibility, and a higher number of ob-
jects. In contrast, the Mermaid dataset, which had fewer objects
and was captured at shallower depths, showed a different trend,
where the unprocessed images achieved the best reconstruction
results. This highlights the importance of considering dataset-
specific characteristics when selecting an enhancement method.

While the RGB-CLAHE method showed promising results
overall, the discrepancies observed in Dataset C underscore the
need for further exploration into the factors that influence the
effectiveness of enhancement techniques. The performance of
these methods is highly dependent on various environmental
and dataset-specific factors, such as depth, object complexity,
and visibility. This paper contributes to this evolving landscape
by evaluating how different image enhancement techniques in-
fluence the accuracy and completeness of underwater 3D recon-
structions, providing valuable insights to inform more effective
and adaptable workflows for challenging marine environments.

Furthermore, while this study provided valuable insights into
the performance of enhancement methods, the absence of
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ground truth models for the real-life underwater datasets limited
the ability to directly validate the results. To overcome this lim-
itation, future research should aim to establish reliable ground
truth datasets for underwater scenes, enabling more accurate
evaluations of enhancement techniques. Additionally, further
investigation into other enhancement methods and their poten-
tial applications in underwater 3D reconstruction will be essen-
tial to refine and broaden the scope of available techniques.

Future work should focus on developing adaptive enhancement
strategies that can dynamically adjust to the unique characterist-
ics of each dataset. By doing so, it will be possible to optimize
the 3D reconstruction process and achieve more reliable results
across a broader range of underwater environments. Further-
more, the key factors that determine the most suitable enhance-
ment method for each dataset will be explored and analyzed.
Other enhancement methods will also be evaluated to assess
their effectiveness in improving 3D reconstruction. By gain-
ing a deeper understanding of these factors and expanding the
range of techniques considered, more targeted strategies can be
developed to optimize 3D reconstruction quality for various un-
derwater environments.
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