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Abstract

Neural Radiance Fields (NeRFs) synthesize novel views based on images acquired from different camera positions to represent
3D scenes. However, since they assume linear light paths, they are unsuitable for underwater environments where refraction
causes nonlinear ray trajectories, resulting in blurred scene reconstructions due to the absence of physical light path modeling.
Developments, such as NeRFrac, try to explicitly model refractive surfaces by incorporating Snell’s law into NeRF frameworks.
Nevertheless, the predominant objective within the computer vision community, the generation of high-quality renderings, assessed
through metrics, e.g. including the Peak Signal-to-Noise Ratio (PSNR) persists. However, the main task in photogrammetric and
geospatial applications is geometric reconstruction in the form of 3D point clouds. Therefore, this work investigates the possibilities
of extracting 3D point clouds from refraction-aware NeRF implementations, specifically evaluating the NeRFrac codebase with the
use of nine images.

1. Introduction

Geometric reconstruction of underwater environments is essen-
tial for various applications, including bathymetric surveying,
ecological monitoring, underwater archaeology, and infrastruc-
ture inspection. Traditional photogrammetric approaches of-
ten struggle in such scenarios due to the complex interaction
of light with water, particularly refraction at the water-air in-
terface. This phenomenon causes non-linearities in the paths
of light rays, making standard linear photogrammetric models
inadequate for geometric reconstructions.

In recent years, Neural Radiance Fields (NeRFs) Mildenhall et
al. (2020) have revolutionized the field of 3D reconstruction by
synthesizing novel views using neural representations. How-
ever, standard NeRF implementations inherently assume lin-
ear ray trajectories, rendering them unsuitable for underwater
scenes, where refraction at interfaces causes notable distortions
and blurring in reconstructed images and geometries.

To overcome these limitations, recent advances have intro-
duced refraction-aware NeRF frameworks such as NeRFrac
Zhan et al. (2023), which explicitly incorporate physical mod-
els like Snell’s law to compute accurate refractive ray traject-
ories. While these models try to enhance rendering quality,
the primary evaluation metrics used within the computer vision
community, such as the Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM), focus predominantly on
perceptual and radiometric rather than geometric accuracy. In
contrast, disciplines like photogrammetry and remote sensing
place a higher value on geometric outputs, such as geometric-
ally correct and dense 3D point clouds.

Our current research aims to bridge the gap between visually
appealing renderings and geometrically correct 3D reconstruc-
tions from NeRF scenes. Specifically, this paper investigates

the extraction process of 3D point clouds from refraction-aware
NeRF implementations, using NeRFrac as a case study. Our
developments target the challenges caused by underwater pho-
togrammetric conditions, making substantial progress towards
practical applications in bathymetric mapping.

1.1 BathyNeRF Research Project

This research was carried out within the scope of the
BathyNeRF project, a joint transnational research initiative that
focuses on the development of neural NeRF-based methods for
reconstructing underwater topography and submerged vegeta-
tion from aerial UAV imagery. The central objective of the
project is to extend existing NeRF algorithms towards accur-
ate refraction-aware 3D reconstruction in shallow aquatic en-
vironments, addressing challenges related to multimedia light
propagation and complex water-surface dynamics.

In this context, the refractive NeRFrac framework Zhan et al.
(2023) was adopted and extended to better handle refractive ef-
fects specific to UAV-based bathymetric photogrammetry.

In the first experimental studies, Guenthner et al. (2025) shows
the general applicability of NeRFrac for UAV-based bathymet-
ric reconstruction under field conditions. Our research fo-
cuses on evaluating the 3D reconstruction of submerged topo-
graphy using masked water regions and refractive ray modeling,
based on UAV imagery collected at the Pielach River test site
(Mandlburger et al., 2025b). The study illustrated that explicit
refraction modeling significantly improves the geometric con-
sistency of the reconstructed underwater scene when compared
to classical non-refractive approaches.

In addition to these experiments, Schulte et al. (2025) developed
a simulation-based validation framework to systematically in-
vestigate the performance of geometric reconstruction under
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controlled conditions. Using synthetically generated underwa-
ter scenes, they analyzed the sensitivity of a standard NeRF
model to different acquisition geometries, water depths, and re-
fractive indices. This simulation approach allowed a targeted
evaluation of reconstruction errors and highlighted the benefits
of physically-based refraction modeling for stable geometry re-
covery, particularly in shallow water conditions.

Both studies demonstrate the fundamental potential of
refraction-aware NeRF frameworks for bathymetric mapping
and provide valuable insights into the capabilities and current
limitations of the NeRFrac approach under real-world and sim-
ulated conditions.

In this paper, we complement this by enabling the export of the
implicit geometry within a refractive NeRF as a 3D point cloud.
This opens pathways towards downstream analyses that rely on
this data representation, such as biomass estimation, water sur-
face and water bed modeling, and the reconstruction of sub-
merged objects. Furthermore, we investigate a training strategy
that limits training data solely to submerged areas, ensuring a
consistent refractive field can be learned, and the reconstruc-
tion of non-submerged areas does not hinder the modeling of
refractive effects.

2. Related Work

Optical 3D underwater mapping has traditionally relied on act-
ive and passive remote sensing methods (Mandlburger, 2022).
Active approaches such as airborne LiDAR bathymetry (ALB)
enable accurate 3D point cloud generation, even for semi-
transparent underwater surfaces, thanks to multi-return capab-
ilities of laser systems Shan and Toth (2018). Passive methods
like Structure-from-Motion (SfM) and Dense Image Matching
(DIM) depend on image orientation and dense correspondences
but are challenged by refractive distortions at the air-water in-
terface Förstner and Wrobel (2016); Mandlburger (2019).

In recent years, Deep Learning (DL) techniques, and particu-
larly Neural Radiance Fields (NeRFs), have emerged as prom-
ising methods for reconstructing complex 3D scenes Mildenhall
et al. (2020). Unlike traditional active (e.g., LiDAR) or pass-
ive (e.g., photogrammetric) remote sensing methods, NeRFs do
not directly measure depth or disparity. Instead, they rely on
passive multi-view imagery and represent scenes as continu-
ous volumetric functions that map spatial position and view-
ing direction to color and opacity. By sampling points along
camera rays and applying volumetric rendering, NeRFs syn-
thesize novel photorealistic views with high consistency across
perspectives. These models inherently build on the passive
sensing principle of image-based reconstruction but leverage
learned priors and implicit scene representations to infer geo-
metry and appearance. Their effectiveness, however, still de-
pends on well-registered multi-view image data sets, typically
acquired by passive sensor systems such as UAV-borne cam-
eras. These acquisition platforms are often used in large-scale
or high-resolution surveys, where the number of captured im-
ages and their variability in geometry and appearance present
significant computational and modeling challenges for NeRF
frameworks.

To cope with these demands, the original NeRF approach has
been extended to improve efficiency and robustness. Mip-
NeRF Barron et al. (2021) introduced a multiscale represent-
ation based on conical frustums, allowing for better handling

of scale variations, improved anti-aliasing, and faster training.
Mip-NeRF merges coarse and fine sampling stages into a single
model, significantly improving efficiency while preserving geo-
metric detail. NeRF-W Martin-Brualla et al. (2021) extends
NeRF to handle uncontrolled image collections with varying
lighting, exposure, and transient occlusions. This is achieved
by augmenting the model with additional latent variables that
explain per-image appearance variations. Although NeRF-W
improves robustness under uncontrolled acquisition, geometric
accuracy may still degrade in poorly observed regions or under
unfavorable camera pose distributions.

Beyond these, several specialized NeRF variants aim to ad-
dress scaling and scene complexity. BungeeNeRF Xiangli et al.
(2022) combines multi-scale imagery, such as satellite and UAV
data, using a hierarchical network structure to enable city-scale
scene rendering. Despite promising qualitative results, such
large-scale variants often lack explicit mechanisms to control
geometric accuracy, particularly in highly refractive or under-
water environments. In the context of underwater photogram-
metry, most NeRF models implicitly assume simple scene geo-
metries with near-spherical camera distributions, which are not
achievable in UAV-based bathymetric surveys where primarily
straight flight lines with nadir and oblique views are available.
These limitations are further amplified when imaging through
air-water interfaces, where light rays are refracted, leading to
nonlinear ray paths that are not modeled in conventional NeRF
frameworks.

Recent work on modeling refraction in NeRFs has made pro-
gress, but also revealed key limitations. LB-NeRF Fujitomi et
al. (2022) uses deformable neural fields to approximate refract-
ive effects but lacks a physically grounded refraction model.
Ref-NeRF Verbin et al. (2022) improves appearance modeling
for reflective surfaces but does not explicitly address refraction.
Ref²-NeRF Kim et al. (2024) incorporates secondary reflections
but only models refractive effects implicitly, limiting its geo-
metric accuracy in complex underwater scenarios.

In this context, NeRFrac ? represents a physically motivated ad-
vancement by explicitly integrating Snell’s law into the NeRF
rendering pipeline. By modeling refractive ray bending at air-
water interfaces, NeRFrac enables physically correct ray paths
and improves geometric reconstruction in submerged environ-
ments. This physics-based approach is essential for achieving
accurate 3D mapping in bathymetric applications where refrac-
tion plays a dominant role.

3. Methods

In the following, we make use of a refraction-aware NeRF and
investigate the applicability of physically-based refraction mod-
eling for UAV-based bathymetric 3D reconstruction and geo-
metry extraction. The approach extends the standard NeRF
framework by explicitly accounting for refraction of light rays
at the air-water interface using Snell’s law. To this end, NeR-
Frac introduces a two-stage ray model, where primary rays are
first traced to an estimated water surface, refracted, and then
enter the underwater scene with an updated direction vector.

3.1 Refractive Modeling

The refraction-aware NeRF pipeline involves a two-stage pro-
cess to model refracted rays. Initially, viewing rays are traced
from the camera to a virtual refractive surface. This surface is
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determined by a refractive field. The offset network then com-
putes water depth corrections to these intersection points, ef-
fectively relocating the initial sampling positions of the rays to
reflect physical refraction phenomena.

Subsequently, secondary rays originate from these corrected
positions along directions determined by Snell’s law, guided
by estimated normals of the refractive surface. These refrac-
ted rays sample the geometry of the underwater scene.

3.2 Masking of water area

To mitigate the ambiguities introduced by refraction effects and
to enhance the network’s capability to reconstruct underwater
geometry, we implemented a targeted training strategy focused
on water-covered areas. For this purpose, binary masks were
created to delineate regions containing water from other irrel-
evant parts of the scene.

The masks were generated manually using QGIS 3.40 QGIS
Development Team (2025). Polygons were drawn that approx-
imate the water-covered regions within the scene. These binary
masks (with values 0 and 1) were then rasterized and down-
sampled to the same resolution as the training images to match
the input data dimensions.

During training, these masks were used for ray selection. Only
rays that intersect water regions were selected for the loss calcu-
lation and hence optimization. This selective sampling ensures
that the NeRFrac model primarily learns refractive geometries
and ignores areas without water (Figure 1), which do not ex-
hibit significant refractive effects. The masking approach thus
increases the stability of the model and may allow for more fo-
cused optimization of the refracted geometry below the water
surface.

Figure 1. RGB image with water mask (overlain in white
transparent).

3.3 3D reconstruction

To extract explicit 3D geometric information from the trained
NeRFrac model, a customized point cloud export procedure
was implemented, as illustrated in Figure 2. The goal of this
procedure is to convert the implicit volumetric scene represent-
ation, stored in the neural network weights, into discrete 3D
point sets while respecting the physically-based refractive ray
paths estimated during training.

The point cloud generation consists of the following steps,
which are schematically summarized in Figure 2:

3.3.1 Multi-view ray sampling: For point cloud genera-
tion, dense sets of rays are sampled across multiple camera
poses to ensure broad coverage of the reconstructed scene. For
each camera view, a quasi-uniform 2D grid of sampling loca-
tions is defined across the image plane. At each selected grid
location, rays are cast through the scene according to the cam-
era’s intrinsic and extrinsic parameters.

To improve the stability of local surface normal estimation,
which is required for correct refraction modeling, not only
single rays are considered, but small local neighborhoods of
rays are sampled simultaneously. Concretely, 3 × 3 patches of
adjacent pixels are used, such that each central ray is accompan-
ied by eight neighboring rays. This local redundancy allows for
the estimation of local surface orientation in subsequent pro-
cessing stages.

3.3.2 Refractive ray calculation: Each sampled ray is pro-
cessed by the trained NeRFrac model. The model first predicts
the refractive surface intersection point, i.e., the location where
the incoming ray intersects the water surface, corrected by the
learned surface offset field. Based on the estimated surface nor-
mal at this intersection point, the refracted ray direction is com-
puted according to Snell’s law. This physically-based calcula-
tion accounts for the bending of light as it transitions from air
into water, producing refracted rays that subsequently penet-
rate into the submerged scene along physically plausible paths.
The accuracy of this refraction modeling critically depends on
the quality of the predicted surface geometry and, in particular,
the reliability of the estimated surface normals. Inaccuracies in
surface orientation can lead to erroneous refraction angles, and
thus degrade the geometric consistency of the reconstructed un-
derwater scene.

3.3.3 Volume sampling and weighting: Along each re-
fracted ray, 3D samples are distributed to probe the learned
volumetric scene representation. These samples correspond
to discrete 3D positions along the refracted ray path where
the neural network is queried for density (opacity) and color.
The sampling is performed in a hierarchical two-stage fashion:
first, a coarse stratified sampling distributes a fixed number of
samples evenly along the ray within a predefined near-far range.
In a second refinement stage, importance sampling is applied to
increase the sample density in regions of higher predicted opa-
city, focusing computational effort on areas likely to contain
objects.

Each sampled location yields an opacity value (alpha), which
indicates the likelihood of a surface to exist at that position
along the ray. Additionally, for every sample, the transmit-
tance, i.e., the accumulated opacity up to that point, is com-
puted. Combining opacity and transmittance gives a rendering
weight for each sample, which reflects its effective contribution
to the final rendered pixel color during neural volume render-
ing.

3.3.4 Weight-based filtering: Since not all sampled 3D
points contribute equally to the geometry of the scene, a fil-
tering step is applied to retain only the most relevant samples.
The rendering weights serve as a proxy for surface likelihood.
Points with low rendering weight, i.e., located in transparent or
empty regions, are discarded. Filtering can be performed either
by applying an absolute threshold to the weight values or by re-
taining only a specified top-k% fraction of the highest-weighted
samples. This selection ensures that primarily surface-relevant
3D points enter the exported point cloud.
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3.3.5 Export and coordinate back-transformation: The
retained 3D points are initially expressed in the normalized co-
ordinate system used during NeRFrac training. In principle,
these coordinates can be transformed back into the original
world coordinate system by reversing the normalization op-
erations applied during LLFF-style data preparation, includ-
ing scene recentering, uniform scaling, and rotational align-
ment. However, the accuracy and consistency of this back-
transformation remain uncertain at the current stage. Further
work is required to fully validate and, if necessary, refine the
transformation pipeline to ensure metric consistency and enable
a reliable comparison with external photogrammetric reference
data.

3.3.6 Current limitation: Since the NeRFrac model oper-
ates in a normalized scene space, the density, scale, and com-
pleteness of the extracted point cloud can be influenced by
factors such as the number of training views, their spatial distri-
bution, and the depth range covered during training. Addition-
ally, the selection of sampling density, filtering thresholds, and
batch sizes during extraction directly affect point cloud resolu-
tion and noise characteristics. As the export pipeline remains
subject to ongoing development, no comprehensive parameter
sensitivity analysis has yet been completed.

Figure 2. 3D reconstruction workflow

4. Experimental Setup

To evaluate the performance of the refractive NeRF approach,
experiments were conducted on real UAV-based data sets ac-
quired over the Pielach River at the Neubacher Au site in Lower
Austria. Data acquisition was carried out in October 2024 under
favorable environmental conditions, which ensured high water
clarity and good visibility of the submerged topography.

The images were collected using a DJI Zenmuse P1 cam-
era providing 45-megapixel resolution and a DJI M350 RTK

multicopter. Flight planning was designed to capture a wide
range of viewing geometries in the study area. In addition
to nadir flights, multiple oblique flight lines were performed
to introduce angular diversity into the data set. The acquisi-
tion combined near-nadir and oblique viewing directions, cov-
ering forward-, backward-, left- and right-oriented perspectives.
This was achieved using the Smart Oblique Mode functionality
of the UAV system in combination with additional manually
planned flight patterns. The complete flight configuration is
visualized in Figure 3, which shows the distribution of camera
positions and view orientations across the site. Ground Con-
trol Points (GCPs), placed throughout the area and indicated
by purple crosses in the figure, were used to geo-reference and
assess the accuracy of the reconstruction. The course of the
Pielach River, which constitutes the primary target of bathy-
metric reconstruction, is highlighted in light blue.

In addition to the UAV imagery, airborne laser bathymetry
(ALB) reference data was simultaneously acquired over the
same area. This data set provides an independent water depth
reference for the Pielach River and allows quantitative evalu-
ation of the NeRFrac-based bathymetric reconstructions. The
corresponding ALB-derived water depth map is presented in
Figure 4, which illustrates the variation in the topography of
the riverbed within the area of interest.

As a second independent reference, a dense multi-view stereo
(MVS) point cloud was generated from the full UAV data set
using standard photogrammetric processing workflows i.e., not
accounting for refraction effects at the water surface. This data
set serves as an additional reference for evaluating the geomet-
ric accuracy of the NeRFrac reconstructions. A representative
section of the generated MVS point cloud is shown in Fig-
ure 5, clearly visualizing both submerged and emergent struc-
tures along the riverbed and its adjacent gravel banks.

To systematically analyze the influence of image configuration
on reconstruction quality, several data set subsets with varying
image geometries were derived from the full acquisition. In
total, four configurations were defined, each containing nine
images: two configurations contain only nadir images with
varying baseline distances, while the other two include only ob-
lique images, again with differing baselines. These configura-
tions allow an isolated evaluation of the effect of both viewing
direction and acquisition geometry on NeRFrac’s reconstruc-
tion capabilities. The variants of the resulting data set are visu-
alized in Figure 6, which shows the spatial arrangement and the
baseline distances for each subset.

The entire data set, including reference and derived data
products, is based on the publicly available Pielach benchmark
data set Mandlburger et al. (2025a,b).

5. Results and Discussion

The following sections present and discuss the results obtained
from applying the refractive NeRF (NeRFrac) approach to UAV
imagery of shallow water environments. Specifically, we focus
on qualitative aspects of mask training, the visual quality of
2D renderings, and the geometric consistency of derived point
clouds.

5.1 Mask-based Training and 2D Rendering

The incorporation of binary water masks during training proved
essential to constrain the NeRFrac model’s focus on water-
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Figure 3. Flight configuration for the Pielach/Neubacher Au
study area in Lower Austria. Colored symbols represent

different viewing directions. Ground Control Points (GCPs) are
shown as purple crosses. The light blue area indicates the river

course of the Pielach. Used coordinate system:
ETRS89/UTM33N (EPSG: 25833)

covered regions. By explicitly guiding the training process to-
wards refractive regions, the masks allowed the model to better
represent the refraction effects encountered at the air-water in-
terface. Consequently, areas outside the mask were ignored,
substantially reducing irrelevant data and stabilizing the train-
ing process.

The results rendered illustrate the impact of mask-based train-
ing. Figure 7 (middle) shows the binary water mask image,
while Figure 7 (bottom) depicts the corresponding rendering
outcome. The distinct brownish appearance observed in the
rendered images is attributable to the model’s exclusive focus
on submerged, sediment-rich areas defined by the mask. This
results in a relatively homogeneous reflectance pattern, which
effectively highlights the underwater topography but lacks the
visual diversity present in above-water regions.

Importantly, the NeRF model was not provided with any train-
ing information outside of the masked water area. As a result,
regions beyond the Pielach river, such as vegetation or back-
ground structures, are only inferred by extrapolation. This ex-
plains the uniform or oversimplified appearance of these areas
in the output. Although the mask-guided approach improves the
physical plausibility of underwater refraction modeling, it in-
herently limits the range of scene features the model can learn.

Figure 4. Airborne laser bathymetry (ALB) derived water depth
map of the Pielach river used as reference data set for evaluating

bathymetric reconstruction accuracy. The red rectangle shows
the region of interest for the pointcloud export.

Figure 5. Reference multi-view stereo (MVS) point cloud
generated from the UAV image data. The data set includes both
submerged riverbed structures and dry gravel surfaces along the

shoreline.

5.2 Point Cloud Export

The extraction of 3D point clouds from the trained NeRFrac
model represents a key advantage of explicitly modeling re-
fractive effects within the reconstruction process. The NeR-
Frac framework allows sampling along physically plausible
refracted ray paths, which can be directly utilized to recon-
struct submerged geometries. Figure 8 shows a representative
NeRFrac-derived point cloud generated using the custom ex-
port procedure described previously. In this study, point cloud
extraction was performed on a model trained without the ap-
plication of water masks, as the export and verification proced-
ures for masked training configurations are still under develop-
ment and have not yet been properly validated. The current ex-
port pipeline therefore focuses exclusively on full-scene models
without prior masking.

The point distribution in Figure 8 reflects the refractive ray
paths traced through the water column and illustrates the initial
reconstruction capabilities of the NeRFrac model under these
conditions. Despite the overall promising results, several chal-
lenges still affect the geometric consistency and completeness
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Figure 6. Visualization of the four data set subsets used for
NeRFrac evaluation: nadir and oblique configurations with short

and extended baselines. The varying acquisition geometries
allow systematic evaluation of NeRFrac’s reconstruction

sensitivity with respect to image configuration.

of the NeRFrac-derived point clouds. In the current state, the
exported points remain in a normalized internal coordinate sys-
tem, which has not yet been transformed back into an external
geodetic reference system. As a consequence, the absolute pos-
ition and scale are not yet metrically consistent with the external
data products. Transformation into a global reference frame is
currently under development as part of the ongoing optimiza-
tion of the export pipeline. However, the extracted geometry
already shows characteristic terrain features, such as the dis-
tinct riverbank slope, which is clearly recognizable in the up-
per left region of Figure 8. This indicates that the NeRFrac
model successfully captures both submerged topography and
shoreline discontinuities based on refractive sampling, not only
in radiometric but also geometric terms.

For reference and comparison, Figure 5 presents the dense
MVS point cloud generated from the UAV images using con-
ventional photogrammetric workflows. This data set is fully
georeferenced and provides 3D information of both underwater
and terrestrial areas. In contrast to the NeRFrac-derived point
cloud, the MVS reconstruction is fully embedded in a global
coordinate system and serves as a benchmark for assessing the
geometric performance of the NeRFrac approach. However, the
MVS reconstruction lacks any consideration of refractive ef-
fects, which leads to underestimations of the water depth in the
extracted geometries.

The visual comparison of both point clouds highlights the
fundamental reconstruction capability of NeRFrac in refract-
ive media, while also revealing current limitations. Although
larger-scale topographic features are already well reconstruc-
ted, finer details and surface smoothness still show deviations
when compared to the MVS reference. Further developments
are therefore required, particularly concerning the refinement
of the back-transformation, the optimization of the filtering cri-
teria for point extraction, and the incorporation of external ref-
erence data to improve metric consistency.

In summary, the presented results demonstrate substantial po-
tential for refractive NeRF approaches in UAV-based optical
bathymetry, while also highlighting clear areas for methodolo-
gical advancement to achieve robust and operationally applic-
able bathymetric mapping solutions.

Figure 7. Comparison between the original UAV-derived image
(top), the binary water mask overlay (middle), and the NeRFrac

rendering output (bottom). The brownish appearance of the
rendered output is due to sediment-rich underwater regions

being exclusively considered during training.

6. Conclusion

This paper investigated the applicability and current limitations
of refraction-aware NeRF, using the NeRFrac framework, for
3D reconstruction from UAV imagery over shallow water. The
experiments show that incorporating explicit refraction mod-
eling with binary water masks helps to focus the network on
relevant underwater regions and allows for the extraction of 3D
point clouds.

At the current stage, the presented analysis is limited to qualit-
ative observations. Although initial 3D point clouds have been
extracted from the trained NeRFrac model, these data sets are
still represented in normalized internal coordinates and have
not yet been fully transformed into an external metric reference
frame. As a consequence, a quantitative geometric evaluation
of 3D accuracy remains open. The first quantitative 2D evalu-
ations of refractive NeRF reconstructions have been conducted
and are presented in Guenthner et al. (2025). The ongoing re-
search focuses on further developing the coordinate transform-
ation pipeline and establishing a robust framework for metric
3D evaluation against independent reference data.

Additional limitations remain regarding the underlying assump-
tions of static water surfaces, as well as the sensitivity of the re-
construction process to variations in image network geometry,
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Figure 8. BathyNeRF point cloud derived from NeRFrac export.
The data set remains in normalized coordinates; external

coordinate transformation is currently under development.
Larger terrain structures such as the riverbank are already

distinguishable.

sampling density, and filtering strategies. Currently, there are
no established guidelines for selecting optimal parameter con-
figurations.

More work is required to refine these methodological aspects,
improve metric accuracy, and systematically validate the ap-
proach in different aquatic environments. However, the results
demonstrate that refractive NeRF models offer considerable po-
tential for underwater photogrammetry and bathymetric map-
ping.
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