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Abstract

This paper presents key improvements in real-time ortho image generation and scene understanding for disaster management and
first responders. Through the introduction of an Inertial Measurement Unit, a depth estimation network and a trained network
for scene segmentation, it is possible to produce end-to-end real-time ortho and semantic maps. Since datasets containing inertial
data are sparse, the results of the pipeline were verified on a flight, which was recorded and post-processed as a ground truth with
ground control points using the standard photogrammetric workflow. The reported errors are in the same range as a post-processed
ortho map on raw Global Navigation Satellite System measurements, however, produced in real time. Semantic segmentation
results demonstrate surprising levels of accuracy and robustness, but reveal a need for more comprehensive data acquisitions and

benchmarks.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have gained a lot of trac-
tion throughout the last decade in the fields of rapid mapping
and Digital Surface Model (DSM) construction (Hermann et
al., 2024). In particular, in disaster response scenarios where
accurate and real-time feedback is critical, UAVs have been the
subject of research due to their high-resolution imaging systems
and flexible usage (Erdelj et al., 2017).

This work builds on previous attempts for real-time UAV se-
mantic mapping (Fanta-Jende et al., 2023). This workflow en-
tails realtime generation of orthorectified tiles, DSM generation
and semantic segmentation while only using raw Global Navig-
ation Satellite System (GNSS) measurements and no global op-
timisation such as Bundle Adjustment. It reports improvements
in state and depth estimation, as well as scene segmentation.
Specifically, it improves the alignment of the estimated Simul-
taneous Localisation and Mapping (SLAM) trajectory with the
GNSS measurements, by integrating an Inertial Measurement
Unit (IMU) sensor, and the quality of the depth reconstructions
through the usage of Cascaded View Aggregation (CVA). Fur-
thermore, it leverages recent foundation models and several ag-
gregated datasets to provide semantic maps of improved accur-
acy for first responders. In doing so, gaps in data quality and
quantity are identified in the crisis and disaster management do-
main.

2. Related Works
2.1 Real-time aerial mosaicing

Early works used image based, 2D homographies to provide a
larger compose image of multiple aerial views (Botterill et al.,
2010). However, neither the state of the UAV nor 3D struc-
ture of the environment were recovered. Following this Bu et
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al. used monocular SLAM to estimate the state of the aerial
UAV (Bu et al., 2016). However, scene reconstruction was still
limited to planar geometry and therefore provided a simplified
reconstruction of the observed scene.

Current state-of-the-art ortho mosaicing methods use a a sparse
3D representation of the imaged terrain which can be incre-
mentally built and optimised as to reject outliers and provide
a clearer ortho map. Different flavours of this pipeline exist
which differ in what sensors are integrated at what stage of the
optimisation pipeline. (Wang et al., 2019, Kern et al., 2020), use
GNSS information as a loose fusion modality, such that after
the bundle adjustment of the 3D to 2D correspondences has
been completed, the estimated state trajectory is aligned with
the GNSS information. (Zhao et al., 2022) uses a tight fusion,
where the GNSS error term is optimised directly in the non-
linear cost function. This has the benefit that the system state is
jointly optimised for image and GNSS modalities concurrently,
which results in a better estimate. Furthermore, when parts of
the sensor information is missing, it may still be possible to per-
form a trajectory estimate which increases the system’s robust-
ness. However, very few works focus on integrating IMU data
in addition to image and GNSS information. One reason may
be the lack of public datasets with recorded IMU data (Mont-
gomery et al., 2021, Rahnemoonfar et al., 2023). (Liu et al.,
2025) uses IMU data, however it is only used to augment the
estimate of the UAV’s rotation and is not tightly integrated into
the state estimation problem.

2.2 Depth estimation for aerial reconstruction

Depth estimation for aerial reconstruction has been an active
research area for the past decade. This topic was pioneered by
Mou et al. where a Convolutional Neural Network was used to
construct height maps from single ortho images (Mou and Zhu,
2018).

The idea of using neural networks for aerial depth estimation
has now been applied to many different neural architectures.
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Currently, Neural Radiance Fields (Mildenhall et al., 2021)
(NeRF) and Gaussian Splatting (Kerbl et al., 2023) architec-
tures can be used to generate aerial ortho maps with very high
fidelity. (Chen et al., 2024) use the NeRF architecture to render
vertical view rays in a sparse voxel environment for efficient
ortho map generation. (Yang et al., 2025) is a more recent ar-
chitecture, that uses gaussian splatting instead. Both produce
high-quality ortho images, but are not aimed at real-time use.

When it comes to real-time ortho image or DSM generation,
current methods (Zhao et al., 2022) or (Kern et al., 2021)
either use classical stereo-based matching methods (Geiger et
al., 2011, Hirschmuller, 2008), or plane sweeping (Héne et al.,
2014), respectively. Both have limitations: stereo-based match-
ing methods require a specific geometric configuration between
images, while plane sweeping, does not seem to generalise well
to high-altitude scenes; see Figure 3.

2.3 Semantic segmentation for low-data remote sensing
applications

Following the introduction of the UNet (Ronneberger et al.,
2015) architecture, UNet-like models are introduced across
many domains of application and heavily researched (Mo et al.,
2022), as semantic segmentation datasets also start growing to
meet the demand. Semantic segmentation sees its first found-
ational models in 2023, notably including the Segment Any-
thing Model (Kirillov et al., 2023). Those models display cross-
domain segmentation capabilities and can sometimes be quer-
ied for custom classes, but they typically do not apply well to
remote sensing tasks due to the large difference between remote
sensing images and everyday life pictures. Late 2023 (Jakubik
et al., 2023) and 2024 (Wang et al., 2024) sees the rise of found-
ational models specifically trained for remote sensing, enabling
more robust modeling for fields with less available data.

3. Platform
3.1 Hardware

The mapping platform is based on a fixed-wing airframe which
is fitted with off-the-shelf hardware. ArduPilot is used as the
flight control software and mission planner. A FLIR BlackFly
U3-23-6C colour camera for monocular imaging and a Bosch
BMI-088 IMU at 400 HZ for inertial measurements are used
as sensors. The IMU is instrumented by a Teensy 4.0 ARM
microcontroller. An NVIDIA Orin NX is used for onboard
processing, which is an ARM-based System on Chip (SoC)
with an integrated graphical processing unit (GPU). Since both
the Central Processing Unit (CPU) and GPU are connected
to the same physical memory, they can process images with
2048x1536 resolution at up to 20 frames per second(fps), de-
pending on the configuration settings of the state estimation.
The layout of the internal hardware can be seen in Figure 2, a
full image of our UAV is show in Figure 1.

The camera was calibrated using TartanCalib (Duisterhof et al.,
2022), which is an extension of the Kalibir (Rehder et al., 2016)
calibration software. This extension uses an adaptive subpixel
refinement window, which is more suitable for fisheye lenses.
The IMU was calibrated using the ROS-Allan-Variance pro-
ject (Buchanan, 2021). Finally, camera intrinsics refinement,
Camera-IMU extrinsic estimation and Camera-IMU time offset
were calibrated using Kalibr.

In addition to a UAV, a dedicated ground station is used for
neural network inference and ortho mapping. The current spe-
cifications are an Intel i914900K CPU, a Nvidia RTX 5000 and
64 GB of RAM. Network communication is mainly facilitated
via an Long Term Evolution (LTE) connection, however our
system is also able to operate with a direct datalink antenna in
areas where LTE is not available.

Figure 2. UAV - Internal. Bottom: Camera + IMU, Middle: Orin
NX, Top: Flight Controller

3.2 Software

The software pipeline is composed of several modules running
either on the UAV itself or the dedicated ground station. In or-
der to facilitate communication between processes, either on the
same machine, or on different physical devices connected by a
network link, the Robot Operation System (ROS-Community,
2025) (ROS) is used, more specifically ROS2 Humble as that
is the default version for the Orin NX. Special consideration is
given to the IMU and Teensy. The Teensy microcontroller runs
with micro-ROS (MicroROS-Community, 2025) which is ROS
for embedded devices and is continuously synced to the Orin
NXs clock.

The software pipeline is similar to (Fanta-Jende et al., 2023),
with significant changes to the ROS module composition be-
ing described below. The initial sensor data i.e. GNSS, image
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and IMU sensor data is passed to the pose estimation node run-
ning on the Orin NX. The pose estimation node utilises ORB-
SLAM3 (0S3), which will be discussed in the next section 4.1
in more detail. Every image keyframe that has an associated
trajectory value is sent to the georeferencing module for GNSS
alignment to a specific coordinate frame (EPSG:3857) and then
published over the network to the ground station. The key-
frames are published at lower rate than the camera, which is
at around 2 Hz to avoid congestion of the LTE data link.

On the ground station, the received georeferenced keyframes
are given to the depth estimation module to compute a dense
depth map of the image. For this step, the deep learning-based
network CVA (Koestler et al., 2021) is integrated to produce
fast and dense depth maps; which will be detailed in section
4.2. Following this, surface generation and ortho tile generation
are performed similarly to prior work at a Ground Sampling
Distance (GSD) if 0.15 meters per pixel. The ortho tiles are
segmented and classified in real-time (Wang et al., 2024), as
described in section 4.3. Finally, the ortho tiles are either em-
bedded into a global image mosaic or tiled as 256x256 pixel
subimages and sent to a Geographic Information Server (GIS),
where the ortho image can be viewed via any software support-
ing the Web Map Tile Service (WMTS) (OGC, 2010).

4. Methodology
4.1 Monocular Visual-Inertial SLAM

ORB-SLAM3 (Campos et al., 2021), which was employed in
previous works (Fanta-Jende et al., 2023), operated without the
inclusion of an IMU. This framework includes an IMU and ad-
apts the image processing to run at up to 20fps on an Nvidia
Orin NX. This was achieved by extending the work of (Longy-
ong, 2021) which implements ORB feature descriptors as Com-
pute Unified Device Architecture (CUDA) kernels. However,
memory bandwidth remains a bottleneck in these applications
as by default the data needs to be explicitly copied to be access-
ible on the GPU. To solve this problem, the kernels are adapted
to make use of CUDA unified memory. This allows an applic-
ation to have the same memory address be accessible by the
CPU and GPU. On memory access, the driver may page-fault
and trigger a copy to the desired device. However, since the
Orin NX devices have a shared physical memory pool (Sec-
tion 3.1), CUDA kernels without any additional memory copies
can be used for higher performance.

In Section 5, our results are compared to OpenVSLAM
(OVS) and OS3 as those served as the baseline state estim-
ation algorithms in prior works. Both SLAM trajectories are
aligned with the GNSS measurements using a sliding window
Umeyama alignment of 60 measurements. More specifically,
image and GNSS measurements with the smallest time delta are
paired and collected until 60 pairs are recorded. These meas-
urements are given to the Umeyama alignment algorithm for
alignment estimation. Once a newer image/GNSS pair arrives,
the oldest one is discarded. Loop closure is disabled due to the
scale change it would produce for established trajectory seg-
ments, which would result in an re-evaluation of the entire map
generation (Liu et al., 2025).

4.2 Depth Estimation Network

CVA (Koestler et al., 2021) is integrated for dense depth recon-
struction in real-time. This approached is compared to a GPU-
accelerated plane sweep algorithm (Héne et al., 2014), which

slices the space into discrete planes along the viewing-ray of
the camera and computes a pixel warping using a photometric
correlation function.

The CVA model (Koestler et al., 2021) is based on the plane
sweeping algorithm with the plane distance as a learnable para-
meter. Images and camera poses are provided as inputs to the
model. The network supports odd numbers of image sets (i.e. 3,
5, 7...) where the center image is considered the reference view.
Giving the camera poses as a prior enables a more flexible geo-
metric configuration of the supplied trajectory for which images
do not have to be rectified i.e. warped such that the epipolar
lines between image pairs are horizontal and parallel. (Zhao
et al., 2022). Furthermore, as this method directly yields dense
depth maps from the network, a sparse point cloud generated by
a structure-from-motion or SLAM pipeline (Zhao et al., 2022,
Liu et al., 2025) is not required. For this pipeline, three consec-
utive images are sufficient for dense depth maps to be recon-
structed in metric scale at real-time speeds (i.e below 100ms
per image), from the georeferenced poses of overlapping key-
frame images.

A qualitative example can be seen in Figure 3. Depth estimation
with plane sweeping seems to fail when processing large planar
area of homogeneous texture (such as fields or meadows), while
the learned network accurately reconstructs the depth of the ob-
served image. To our knowledge, our work is the first that uses
an estimation network for depth map generation in a real-time
ortho-rectification pipeline.

(©)

Figure 3. (a) Camera Image (b) Depth Image with Plane
Sweeping (c) Depth Image with the CVA Model

4.3 Scene Understanding

This work aims to provide first responders with semantic under-
standing of the terrain in real-time. For this purpose, semantic
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segmentation is achieved for basic landcover classes (trees,
low vegetation, roads, and buildings) and two scenario-relevant
classes (debris and destroyed buildings). These present a signi-
ficant challenge as training and validation data are scarce. Aer-
ial datasets for basic landcover classes are to some extent com-
prehensive, including for instance the Semantic Drone Data-
set (Semantic Drone Dataset, 2025) (not used in this study due
to very high and somewhat inconsistent GSD), LandCoverAl
(Boguszewski et al., 2021), ISPRS Potsdam (Rottensteiner et
al., 2014a) and ISPRS Vaihingen (Rottensteiner et al., 2014b).
However, annotated data for scenario-relevant classes mostly
comprise FloodNet (Rahnemoonfar et al., 2021) and RescueNet
(Rahnemoonfar et al., 2023), two datasets which both present
similar issues - they both feature a single acquisition location,
leading to very similar images and high contamination between
different splits. Their annotations are rather coarse and contain
errors, and overall they represent but a tiny proportion of the
possible variation factors for disaster areas.

To train the model despite the lack of data and the expected
variability in the input space, both a pre-trained state-of-the-art
foundation model from (Wang et al., 2024), and a concatenation
of various datasets are leveraged. The data is aligned from these
different datasets by resampling them to similar GSDs, and the
frequency of each dataset during training is controlled.

The limited availability of scenario-specific data is addressed by
generating synthetic scenes using Blender (Community, 2018)
for procedural rendering and the Stable Diffusion 2 Depth
model, based on Latent Stable Diffusion (Rombach et al.,
2022), for image refinement and relighting. This pipeline en-
ables fast generation of realistic top-down imagery with accur-
ate labels under controlled conditions. Procedural scenes in
Blender are first constructed using geometry nodes. Each scene
includes terrain with varying textures (e.g., grass, road), veget-
ation (trees), and buildings, which can appear either intact or
destroyed. Scene diversity is introduced via Perlin noise-based
segmentation masks that control the spatial layout of textures
and object placement. Texture colours, object locations, and
terrain elevation (e.g., flat vs. hilly) are randomised to sim-
ulate varied environments. The camera remains fixed with a
nadir view, while lighting angles are varied to simulate different
times of day. To simulate destruction, random circular region
is defined in each scene where debris and rubble are scattered.
After rendering, the RGB images are enhanced using the depth-
aware Stable Diffusion 2 Depth model. The model estimates
monocular depth and uses it to guide relighting and realism im-
provements based on text prompts. For each scene, both an in-
tact and a destroyed version are generated using the following
prompts: “Satellite image of houses, roads, trees and fields.”
and “Satellite image of damaged houses and roads”.

Finally, the predefined destruction area is used to blend the in-
tact and damaged versions into a realistic composite depicting
localised structural damage. Figure 4 illustrates the pipeline
output, from the initial render to the final composite image. The
final enhanced render can then be paired with the corresponding
labeled mask for downstream tasks.

5. Experiments and Results

Current UAV datasets lack IMU integration (Rahnemoonfar et
al., 2023, Montgomery et al., 2021, Bu et al., 2016) which
makes it challenging for us to evaluate our reconstruction
pipeline. For this reason, a specific dataset is acquired and used

Latent Stable Diffusion

Figure 4. Image generation pipeline using Blender and Latent
Stable Diffusion

as a benchmark for our reconstruction pipeline. The flights are
conducted with the fixed-wing UAV described in Section 3.1
(see also Figure 1) at 90m height with a speed of approxim-
ately 20 m/s, Recording a UAV flight yields a reference traject-
ory (Figure 8), ortho image and DSM. Furthermore, we sur-
veyed ground control points (GCPs), as well as post-processed
the recorded data using Pix4D. A post-processed image mosaic
is shown in Figure 5, while the output of our real-time pipeline
is shown in Figure 6.

The state estimation running on the UAV varies between 10-
20fps depending on the given settings. For this evaluation, the
recorded data was processed at 50% image resolution, 10 fps,
2 pyramid levels, with a scale factor of 2 and 3000 features per
level. Even though we have a fixed flight altitude we use image
pyramid levels to compensate for our camera motion blur (Klein
and Murray, 2008).

An overlay of the realtime ortho and the Pix4D ortho, optim-
ised with GCPs, can be seen in Figure 7. As each image from
the UAV is processed on the fly and only aligned locally to the
Umeyama window, along with using raw GNSS measurements,
local inconsistencies in the realtime ortho arise.

Since we are targeting a timing value of 2Hz i.e. 2 frames per
second of data output from our UAV, we have 500ms to process
each image on the ground station. Any processing times higher
than that will cause an accumulation of data in the internal mes-
saging queues and over time and throttle the map output.

Timings for processing the individual stages of our pipeline are
given in Table 1. We can report sub 500ms timings for all our
processing stages. We have a fixed offset of around 2 seconds
for the densification stage, since it requires 3 images which have
to be accumulated. As a result, as soon as our UAV captures an
image, the tile information associated with that image is pub-
lished seconds later.

Stage Time (ms)

(UAV) State Estimation & Georeferencing ~ 70-200
(Ground) Densification ~ 100
(Ground) Surface Generation ~ 440
(Ground) Ortho-rectification + Segmentation ~ 65
(Ground) Mosaicing ~ 70

Total processing time per frame ~ 945-875

Table 1. Table showing the end-to-end processing time for each
stage in the pipeline. End-to-end is defined as the time from data
reception by the ROS node until data publishing. Network
transmission time is excluded

Table 2 shows the Root Mean Square Error (RSME) between
the GNSS and GNSS-aligned SLAM trajectories, where an im-
provement of the RMSE up to x60 using an IMU can be seen.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W11-2025-111-2025 | © Author(s) 2025. CC BY 4.0 License. 114



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Figure 5. Ortho mosaic reconstruction using Pix4d with GCP
optimisation. GCPs are marked as pink dots

Figure 6. Ortho mosaic reconstruction using our realtime
pipeline.

Table 3 compares the resulting XY error of the measured GCPs.
The average error is around 5 meters in XY which corresponds
to the error of raw GNSS measurements as RTK corrected data
is not used. When using RTK, higher absolute (and relative) ac-
curacies can be achieved (Kern et al., 2021, Fanta-Jende et al.,
2023) - this may also be reflected in a greater consistency of the
data products. The XY errors for a Pix4d ortho image which
was processed on the same raw GNSS data, without GCP ad-
justment are given in Table 4. Our results are marginally worse,
but computed from a realtime system.

Figure 7. Pix4D GCP optimised ortho with 30% transparency
overlaid over the realtime ortho

RSME (m) | OVS OS3  OS3 With IMU
X 15.117  13.541 0.242
Y 10.742  8.823 0.197
z 0.763  0.535 0.161
XYZ 18.560 16.171 0.351

Table 2. Comparing the Root Mean Square Error Between
GNSS and GNSS Aligned SLAM Trajectories

Point A XY (m) Point A XY (m)
GCP1 4.5 GCP 7 0.73
GCP2 7.43 GCP 8 293
GCP3 (GCP not visible) | GCP9 6.34
GCP4 4.06 GCP 10 5.94
GCP5 8.31 GCP 11 4.73
GCP6 5.8 GCP 12 2.3
Avg RSME XY 4.82

Table 3. Showing the XY error between measured GCPs and
corresponding marker in realtime ortho

Point A XY (m) Point A XY (m)
GCP1 3.17 GCP 7 3.04
GCP2 3.25 GCP 8 3.02
GCP3 3.18 GCP9 3.04
GCP4 32 GCP 10 3.13
GCP5 3.12 GCP 11 3.16
GCP6 3.06 GCP 12 3.18
Avg RSME XY 3.13

Table 4. Showing the XY error between measured GCPs and
corresponding marker in Pix4D ortho without GCP optimisaiton

Our landcover segmentation model is trained using 5 datasets
as described in 4.3. The strength and weaknesses of these data-
sets are adjusted by over-sampling the datasets with respect to
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Figure 8. Flight trajectory over ORB-SLAM3 data output. The
pointcloud is not used for 3D reconstruction in our pipeline.

LandCoverAl (Boguszewski et al., 2021). The ISPRS Pots-
dam (Rottensteiner et al., 2014a) and ISPRS Vaihingen (Rot-
tensteiner et al., 2014b) datasets, presenting some rare urban
environments to train on, are seen with a probability 16 times
higher during training. Being our only available datasets with
scenario-specific classes, our synthetic dataset and RescueNet
(Rahnemoonfar et al., 2023) are respectively over-sampled by a
factor of 4 and 8.

Landcover segmentation suffers from the same limitations for
validation as for training, namely the difficulty to acquire ap-
propriate data for disaster-related classes. When it comes to
standard landcover classes, a new dataset is acquired to con-
firm the model’s robustness to different sensors, environments
and lighting conditions. For destroyed buildings and debris, the
model is evaluated on the validation sets from our synthetic set
and RescueNet, while acknowledging that subsequent proof is
needed to conclude on the capacity of the model to recognise
infrastructure damage in general. In Figure 9, quantitative res-
ults are shown on each class for each dataset. The results are
overall very good for the validation splits of datasets present
at training, and significantly dip for roads and buildings when
generalising to our more challenging dataset. Still, consider-
ing the challenges of artifacts and high exposure (see Figure 10
for visual examples), the reported performance is much higher
than previous models on this dataset (Fanta-Jende et al., 2023).
In our opinion, this study brings to light a gap in data availab-
ility when it comes to segmenting infrastructure damage from
aerial images. It also questions the diversity of datasets such as
RescueNet, where images in the training and validation splits
remain very similar.

Figure 11 shows the output of the semantic mapping, computed
in real-time along with the other outputs of our pipeline. The
main areas of vegetation and roads were identified. The ma-
jor source of error comes from the miss-classification of high-
reflectance areas and path-like structures in crop fields as road

Intersection over Union (in %) on validation sets

& o >
& <& S
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Figure 9. Quantitative results on all our validation sets.

Figure 10. Left: sample images from the validation splits of our
synthetic dataset, our acquired dataset and RescueNet (top to
bottom). Right: overlays with predicted class (Buildings: light
grey; Destroyed buildings: pink; Roads: dark grey; Debris: blue;
Trees: dark green; Grass: light green).

instead of low vegetation. Furthermore, the building adjacent
to the landing strip was only partially classified, and several
smaller patches were incorrectly labeled as water. These errors
can probably be ascribed to the visual artifacts due to the raw
GNSS measurements. Considering these artifacts and the sig-
nificant differences between this data and the training sets, the
model seems to significantly out-perform previous attempts in
terms of its capability to generalise. A visual fit of our seg-
mentation against our real-time orthorectified map can be seen
in Figure 12.

6. Conclusion

This work illustrates the feasibility of an end-to-end real-time
ortho and scene understanding pipeline. We report errors in a
range that is acceptable for raw GNSS measurements, as well
as shed light on the performance of Foundation Models for se-
mantic segmentation when existing datasets have gaps. In order
to reduce the current errors and improve the global consistency
of the generated map, this pipeline will be tested with higher
accuracy GNSS measurements as well as with a global optim-
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Figure 11. Ortho mosaic with realtime segmentation. Green -
Grass, Dark Green - Trees, Grey - Road, Blue - Water, Red -
Building.

Figure 12. Segmentation image overlayed with the realtime
ortho map with an opacity of 30%.

isation step. Future works on the semantic pipeline should in-
volve a more comprehensive assessment and data acquisition
effort for classes relevant to crisis and disaster scenarios such
as destroyed or flooded infrastructure.
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