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Abstract

Emergent behavior in swarming and self-organizing systems can be systematically studied. This paper proposes to draw on excisting
conceptual frameworks from the social sciences to do so. To this end, the article proposes a theoretical framework that treats
local agent behaviors as “policies” (a concept borrowed from social sciences) and uses insights from policy analysis and systems
analysis (established practices in social sciences) — such as feedback loops, institutional constraints, and emergent norms — to inform
the design of robotic swarms (specifically: homogeneous swarms of autonomous platforms operating in 2D with communication
constraints). To illustrate this, two canonical tasks, Area Exploration and Area Coverage, are used as case studies. By examining
these tasks through a social science lens, we illustrate how mechanism design principles, phase transitions, and decentralized
coordination strategies contribute to robust emergent dynamics. This has its practical limitations and we discuss these as well.

1. Introduction

The study of emergent behavior — how large-scale patterns arise
from local interactions — has been studied across disciplines

ranging from ecology and sociology to robotics (Holland, 1995).

We foresee that cooperative collectives composed of drones or
UGVs will soon be deployed as swarms, where simple agents
following basic rules (Beckers et al., 2000) can produce com-
plex, adaptive group dynamics (Bonabeau et al., 1999). In this
novel field, designing and modelling swarm behaviors is draw-
ing on biology (e.g., insect colonies; Dussutour et al. 2004) and
using heuristic approaches. We propose that conceptual frame-
works from the social sciences, especially policy analysis and
systems analysis, offer a rich and underutilized source of insight
for understanding and engineering swarm dynamics.

We know that simple local protocols (e.g. neighboring agents
following basic interaction rules (Schelling, 1971)), can enable
individual agents to cooperate based solely on local information
without any centralized control (Beckers et al., 2000). These
interactions are continually shaped by feedback signals (such
as reward or reinforcement cues that inform agents about the
success of their actions; Sutton and Barto 1998), allowing each
agent to adjust and refine their behavior over time. Through
repeated local interactions and ongoing adaptation (driven by
feedback), coherent emergent conventions eventually form at
the group level such as e.g., the emergence of consistent social
norms or coordination schemes solely from repeated (individual
and decentralized) interactions (Young, 1993).

This combination of local rule-following and feedback-driven
adaptation enables multi-agent systems to achieve organized,
global outcomes; and to do so from the bottom up.
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The idea that macro (system-level) outcomes depend on micro
(device-level) interactions is found in the work by e.g., (Hol-
land, 1995) and (Miller and Page, 2007). Complex global beha-
viors emerge seemingly spontaneously from the interactions of
relatively simple, adaptive agents. They highlight the concept
of emergence (Johnson, 2002) and (Minati and Pessa, 2006),
where macroscopic outcomes arise without central control and
in the absence of explicit global goals. Key theoretical insights
include mechanisms such as feedback loops, adaptation, and
self-organization: agents continually adjust their behavior based
on local information, often guided by simple rules or heuristics.
Through this the entire system can converge toward robust and
sometimes surprising global patterns, which Holland referred
to as some hidden order (Holland, 1995). Basically, individual
interactions lead to system-level phenomena through dynamic
mechanisms such as tipping points and equilibria.

Ostrom’s institutional governance framework, termed govern-
ing the commons (Ostrom, 1990), investigates how groups of
individuals can self-organize to manage shared resources in the
absence of a central authority: micro-level behaviors, guided
by locally defined institutional rules (such as clearly defined re-
source boundaries, monitoring compliance, and graduated sanc-
tions), can yield robust macro-level governance structures. Her
theories stress collective action, social norms, and institutional
arrangements, which act as explicit or implicit contracts guid-
ing the behaviors of individuals. Through such rules one can
foster cooperation, prevent free-riding, and encourage sustain-
able resource use. She showed how institutions shape incentives
and, through these, drive emergent social outcomes. Ostrom’s
framework is rooted in empirical studies of real-world collect-
ive action problems, it highlights the importance of rule compli-
ance, local adaptability, and community-level decision-making.
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The key difference lies in the emphasis: Holland and Miller
focus more broadly on decentralized adaptive interactions and
emergent complexity without necessarily embedding explicit
rules or formal institutions while Ostrom explicitly addresses
how particular institutional arrangements, rules deliberately de-
vised by participants, facilitate desired collective outcomes.

The work of (Holland, 1995) and (Miller and Page, 2007) con-
siders how complex propeties emerge naturally from simple in-
teractions (often based on natural laws) while (Ostrom, 1990)
looks at how human-designed institutional rules and social norms
can give rise to stable social group behaviours.

Common to all of them is the insight that macro-level outcomes
depend fundamentally on micro-level interactions. Whether
these system level behaviours are framed as system robustness,
resilience, or effective governance simply depends on the lense
through which we look at the system. Both fields have con-
tributed to the understanding of emergence and collective be-
haviours and we argue that, so far, Computer Scientists work-
ing with robotic collectives (swarms) have largely ignored the
works by prominent practitioners in the Social Sciences.

1.1 Scope, overview and contributions

In this paper, we develop a theoretical framework grounded in
these cross-disciplinary connections. We treat each agent’s con-
troller or behavior rule as a “policy” in the social sense (§2.1),
subject to evaluation and possible adaptation. We then use con-
cepts such as feedback loops (§2.2), institutional constraints
(§2.3), emergent norms (§2.4), mechanism design (§2.5), phase
transitions (§2.6) and robustness (§2.7) to link the agents’
policies to the collective outcome.

Two concrete swarm missions illustrate the approach: (1) area
exploration (minimizing time to detect a target, cf. §3.1) and
(2) area coverage (minimizing the average time since each re-
gion was last visited, cf. §3.2). These common tasks nicely
illustrate the contrast between either focusing on a one-time
collective achievement or engaging in an ongoing collaborat-
ive effort. We will use this to highlight how different policies
and coordination mechanisms are needed.

Our analysis draws on established ideas from complexity sci-
ence and robotics while emphasizing original connections to
social theory. We discuss how intentional mechanism design at
the agent level can induce robust self-organization at the system
level, including managing phase transitions in swarm behavior
and ensuring resilience to disturbances.

2. Conceptual Framework: Policies and Emergent
Mechanisms

We start by discussing the idea underlying the framework, which
is to see the behaviors of agents as determined by policies sim-
ilar to how the actions of an individual in society are governed
by strategies or rules. This already makes the connection between
social sciences and swarm engineering that we see clear. When
looking at this from a system’s perspective a swarm (of either
robots of humans in a society) is a complex adaptive system as
described by (Holland, 1995) (Miller and Page, 2007). In this
systems, the interactions between the individual agents, paired
with the individual agent’s ability to act in response to the per-
ceived actions of others, can give rise to emergent phenomena
(for example, the efficient exploration of an area).

Our goal is to asses whether approaches to complex system con-
trol from social sciences can be applied to swarm engineering.

2.1 Agents as policy implementers

In social sciences there is the concept of a policy, referring
either to a set of rules or some benefits or incentives designed to
influence the behavior of individuals. This is akin to the control
mechanism (often an algorithm) in robotic swarms that control
the actions of the individual agent. For example, the rule “move
to the nearest region that has not been visited recently” could
be such a policy. Policy analysis is a practice in social sciences
which can be translated to the engineering of swarms as a tool
to predict the outcomes of such rules and the changes therein.
General policies can be tuned to impact the agents by e.g., chan-
ging the parameter that determines the extend to which an agent
interprets the word recent in the rule stated above.

By formulating agent behaviors as policies, we enable the use of
policy analysis tools to predict and evaluate swarm outcomes.
Each agent’s policy can be tuned as if it were a lever in an insti-
tutional design problem: we can ask how changes to the policy
parameters (e.g., how strongly an agent avoids recently visited
areas) affect collective performance measures.

2.2 Feedback loops and system dynamics

A fundamental aspect of both, swarms as well as social systems
is the feedback loop. The agents’ability to react to changes in
their environment (and thus to the actions of their peers) is in-
tegral to the concept of self-organization and emergence. Feed-
back can come as positive (in which case it serves to reinforce
some rule or policy) or negative (to balance out the system): in
a swarm, an example for a positive feedback is an event that
triggers a rule to attract others to a location while seeking dis-
tance from others due to overcrowding is an example of negat-
ive feedback. examples can be applied to each: natural swarms
such as ants, human societies as well as robotic collectives.

We can include feedback mechanisms by design: by ensuring
that a specific event triggers a broadcast to attract nearby peers
(positive, e.g., (Saffre et al., 2022a)) or by emitting a stress sig-
nal that correlates with the perceived overcrowding around an
agent and which repulses nearby agents (negative, e.g., (Saf-
fre et al., 2023)). When both, positive and negative feedback
are used in interconnected mechanisms (Hildmann et al., 2019)
then the resulting swarm behaviors can be designed to alternate
or occur only when the situation and the environment require it.

2.3 Institutional constraints and rules of engagement

In social sciences, institutions are seen as a set of shared rules or
constraints to govern interactions. According to (Ostrom, 1990)
such institutions are a driving factor in societal self-organization.
This also translates directly to swarm engineering: we may
want to impose such institutional constraints to guide and fa-
cilitate operational aspects such as the need to navigate in the
same environment (and therefore have a need for some sort of
obstacle avoidance protocol). A straight forward example is
the side of the road on which we drive. Ultimately it does not
matter whether this is the left or the right, as long as everyone
adopts the same as their default. In a society well-designed (or
evolved) rules can improve overall efficiency and prevent col-
lective failures and the hope is that these results can be trans-
ferred to swarm engineering.
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The impact that can be achieved through the monitoring of com-
pliance or by finding a way to sanction the behavior of agents
that deviate from the norm (Ostrom, 1990) can form the basis of
a design principle, where it is used to enforce a specific group
behavior or property. Analogous mechanisms in swarms could
be used to self-regulate e.g., the consumption of resources.

2.4 Emergent norms and conventions

In addition to clearly stated formal rules there are often also
unwritten rules in societies. These rules do not exist from the
beginning and are thought to emerge over time and due to the
existing formal rules. These emergent norms arise through re-
peated interactions in a group (Axelrod, 1986). In social groups
this also helps to overcome the individual quirks a single spe-
cific agent may exhibit. While such individual traits are largely
absent from robotic swarms (where systems of the same class
and type can often be considered to be identical) they can still
develop such conventions. An easy example for this is the self-
organizing of a swarm to provide coverage over an area. This
can be achieved by enabling the platforms to partition the area
among themselves, effectively creating territories but doing so
without central coordination. A norm here could be to avoid
trespassing on some other agent’s territory, which at system
level improves efficiency of the swarm by reducing redundancy.

There are models for this emergence of norms (Axelrod, 1986)
in the literature and we can use them to design system where

specific conventions are encouraged. This can be achieved through

some degree of learning, for example when agents have some
memory and can remember the outcome of previous actions or
interactions. When including this memory in the decision mak-
ing process a well designed system can be gently guided to-
wards adopting rules that seem to work, resulting in a swarm
wide norm that no individual agent planned (and indeed, no in-
dividual agent may be aware of as such).

2.5 Linking micro to macro: the mechanism design lense

In the field of economics, the theory of mechanism design fo-
cuses on the design of rules (i.e., the mechanisms) that aim
to achieve system level outcomes by governing the individual
agents’ actions. The underlying assumption is that the agents
are acting rational, meaning that their decision process can be
modeled using some notion of rationality. From these, the de-
sired collective outcomes can be constructed (Hurwicz and Re-
iter, 2006). In human society the rational is often that one will
chose an action that leads to preferable outcomes, where what
is preferred is rather subjective (but can be modeled at societal
level). Robots do not have subjective preferences as such but
they do have clearly programmed policies and rules and they
do normally have an objective function to assess the state of the
environment as well as their own. Nevertheless, we can design
the rules governing the local interaction with others (the mech-
anism) to converge the swarm behavior (the emergent outcome)
towards some desired property.

For example, we can drive the resource / task allocation within
a swarm by including some capacity based weighting in the de-
cision process. In (Hildmann et al., 2012) the re-allocation of
clients to servers is stochastic but the probabilities are weighted
to reflect the capacity of the agents participating in the exchange
/ the competition. An important property of this is the extent to
which the resulting solution is stable and at equilibrium.

By designing an appropriate (local) notion of utility or pref-
erence each agent can be steered to (locally) optimize their
own performance but through that achieve some (global) near-
optimum and optimize system performance. This is similar to
how (Hurwicz and Reiter, 2006) designs incentives in order to
ensure that the (game-theoretic) Nash equilibria falls in what
the social optimum / socially preferred optimum is.

2.6 Phase transitions and critical points

A phase transition happens when a small change in the para-
meters of a system pushes the system past some (imaginary)
threshold, resulting in a qualitative change in behavior. The
seemingly coordinated attack on a single target or location by
an army of ants or in packs of mammals the seemingly sudden
decision to flee are good examples. (Schelling, 1978)’s example
is the sudden onset of cooperation in a social setting.

Robotic swarms also undergo transitions: reducing the commu-
nication range of drones in a swarm will likely lead to mono-
tonous performance reduction until at one point the swarm falls
apart and seizes to operate as a whole. From this example its
easy to see that understanding such critical points and the para-
meters that lead to phase transitions can be extremely import-
ant. We therefore suggest and recommend analyzing the be-
haviors of swarms as functions of specific parameters (such as
e.g., agent density, the aforementioned communication range,
noise levels) to identify the tipping points. Around these points
(in parameter space) small changes in parameter values can lead
to fundamentally different system outcomes and behaviors.

In Schelling’s model (Schelling, 1978) a slight increase in intol-
erance results in complete segregation. Armed with the know-
ledge of this as well as the insight into the parameter values
that trigger this, we can then set out to either design policies
that avoid this (parameter space) altogether or leverage them
for emergency behavior in extreme circumstances. We can use
insights from statistical physics or from network sciences from
social modeling to design a mechanism that e.g., intentionally
triggers the swarm to engage in defensive operations.

2.7 Robustness and self-repair

Swarms and collectives, be they human, animal or robotic, can
be expected to live in a noisy world, full of uncertainties, im-
purities and disturbances. Societies mitigate the impact of such
disturbances by sticking to broadly stated rules and through in-
dividuals adapting their behaviors. This provides resilience and
allows societies to persist through tumultuous times.

We would like to make the robotic swarms robust and resilient
as well. This means to design the rules governing the agents
to be redundant (this is to allow multiple mechanisms to guide
specific aspects, so that if one fails another can kick in). For
example, agents can be programmed to identify and detect fail-
ure in their peers (by maintaining a memory of when one last
saw a peer or by corroborating information through other chan-
nels) and then adjust their policies to bring about, at system
level, a behavior that mitigates the issue. Examples are a swarm
that extends its coverage (by decreasing local density / by in-
creasing the preferred distance between individual agents) to
re-connect to a lost swarm member. In a society this happens
when someone briefly takes up the tasks of someone else to
“keep the show running”. This can happen decentralized and
without central triggers. The ability to self-repair is akin to the
robustness of social-ecological collectives (Ostrom, 1990).
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We propose to test swarm policies under various settings and
scenarios where the swarm will fail. This is akin to the policy
stress-testing when designing laws and policies. Only robust
behaviors will continue to emerge (at the system level) des-
pite some individual agents failing (at agent level). We there-
fore combine the agent-level policy design with system-level
mechanism analysis. We use feedback loops, institutional con-
straints, and norms to design systems and anticipate on phase
transitions to engineer swarm behaviors in robotic systems.

3. Emergent design for exploration vs. coverage

A swarm’s required emergent behavior can differ significantly
between missions. We compare two commonly studied scen-
arios: (1) one-time area exploration, cf. in Section 3.1, where
the goal is to detect targets or map an unknown environment as
quickly as possible, and (2) persistent area coverage, cf. Sec-
tion 3.2, where the goal is to continually visit every region so
that no location goes unobserved for long. While these tasks
sound similar (both involve spatial distribution of agents), they
pose different demands on coordination and thus benefit from
different agent-level policies. Using our framework, we treat
each scenario as a case study in designing local policies (and
the implied social mechanisms) for the desired global outcome.

3.1 Area exploration: minimizing detection time

In area exploration, a team of robots must collectively explore
an unknown or uncertain space to find a target. The perform-
ance is often measured by the detection time — how quickly at
least one agent finds the target. This is analogous to a group of
individuals searching for a critical item or survivor in a disaster
area. The emergent objective is a rapid, exhaustive search.

Therefore, we want to maximize the rate of exploration (rapid)
and at the same time ensure that this extends to all locations
(exhaustive). By doing so we decrease the time to detection. A
simple, but sub-optimal, strategy is to let the agent’s perform a
random walk. Given enough time, this will eventually find the
target but it will do so with a large amount of redundancy (loc-
ations visited more than once) (Burgard et al., 2005). Agents
should coordinate their actions and generally avoid overlap in
their search areas. One simple rule to achieve this would be :
“if you sense another agent nearby, move away to spread out”.
This rule is found in animal groups (Couzin et al., 2005) where
it causes a group to distribute somewhat evenly over an area.
We already mentioned something like this as an example of a
negative feedback loop in Section 2.2.

Another insight is that restricting communication is likely to
have a deteriorating effect on the swarm performance. In most
cases, the ability to share information is beneficial but realist-
ically we cannot expect communication to be infinite and per-
vasive (Husain et al., 2022). It is therefore advisable to design
policies that can continue to function under contested commu-
nication and that operate mainly (or entirely) on locally avail-
able information. The frontier exploration heuristic (Burgard
et al., 2005) is an example for this: agents move towards the
nearest boundary (where visited locations meet unvisited loca-
tions), thereby creating a swarm that expands outwards to rap-
idly explore a region of space. If we enable agents to share
their maps with other agents in their proximity this process can
be achieved entirely decentralized: the resulting emergent be-
havior is coordinated expansion without central control.

In addition to rapidly exploring an area we might also want to
exploit our performance, i.e., to do something once we found
the target. This is a good example of a positive feedback, be-
cause agents should communicate when a target is found (and
where) and thereby recruit other agents to this location. The
benefit in doing so is the shortening of the time until the other
agents become aware of the target (in other words, we save the
time they would otherwise spend looking for a target in all the
wrong places).

A variation of this scenario is where the target is already detec-
ted but not yet confirmed as to do so requires multiple agents to
cooperate (let’s say because their individual sensor arrays are
by themselves not sufficient to penetrate the target’s electronic
shielding). In this variation there is a temporary need to attract
local peers (akin to the rapid response in social system to trhe
shout “help”) but once the issue is resolved the other agents
can return to their previous tasks. This temporary phase trans-
ition would be driven by a positive feedback (the detection of
the target by a nearby, and thus within communication range,
agent) but this would be short lived as it would soon be offset
by a negative feedback when the issue is resolved. Once there
is no identification task available the density of the agents ex-
ceeds their preferred value and they disperse again, resulting in
a second phase transition.

With care we can also provide robustness to this to avoid over
reaction or to come running for a false alarm. For example,
more than one notice of detection could be required to converge
on the location, or agents could weigh their willingness to be
recruited by e.g., the number of already recruited other agents.
The cost of this would be the response time but this is a trade-off
that can be evaluated and designed. This also has parallels with
social sciences: emergent group attention (“help”) and signal
filtering (two alarms needed before the agent reacts) are found
om social information sharing networks.

The idea to apply this to robotic swarm research is not entirely
new of course: Burgard et al. (Burgard et al., 2005) demon-
strated coordinated multi-robot exploration through letting the
agents pick their targets and search regions, i.e., some sort of
implicit negotiation for tasks. When looking at this through the
policy lense we include in the agent’s objective function that
it prefers to explore currently unknown locations and that it is
penalized for revisiting locations that are already known. En-
abling individual agents to optimize to their preferences, the
entire swarm improves their detect and identify performance.

For exploration tasks the recommended agent policies are:

1. Dispersion and division of labor: avoid duplicating other
agents’ coverage areas (an emergent norm of dispersing).

2. Information sharing: whenever possible, communicate
discoveries or map updates to peers (an institutional rule
enabling collective knowledge).

3. Responsive clustering on detection: use feedback to ad-
apt behavior when a likely target is found — agents con-
verge on locations (a positive feedback akin to an alarm
response), but use checks to avoid misinformation.

Under these policies, the swarm exhibits emergent behavior that
closely matches the desired outcome: broad initial coverage
with rapid focus on true targets. The performance approaches
that of an optimal, centralized, system (Burgard et al., 2005) but
is really achieved through decentralized, robust means.
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3.2 Area coverage: minimizing revisit time

Area coverage involves patrolling or monitoring a region in-
definitely, such that the time since any point was last visited
by an agent is minimized (or bounded). This is crucial for
e.g., information surveillance and reconnaissance (ISR), envir-
onmental monitoring, and security patrols. Unlike exploration,
coverage has no termination criteria that ends the process; it
is about persistent attention to an area, and that as uniformly
as possible. The emergent objective is a sustained pattern that
optimally distributes visits over space and time.

Whatever the strategy chosen, it must ensure that a member of
the swarm visits each location with a reasonable frequency to
ensure a high performance quality (i.e., minimizing the time
since the the last visit to any location) while avoiding visiting
locations recently visited by a peer (i.e., avoiding redundancy
and inefficiencies). A simple version of such a strategy some-
how partitions the area in individual territories, and assigns each
on as the responsibility for a specific swarm member. This ap-
proach, which is found in e.g., bees partitioning the area around
the hives in sectors, makes it easy to avoid redundancies. A
simplistic rule that could be designed to govern this territorial
behavior could be “if you encounter another agent’s recent path
or marker, turn away”, which is similar to using the stigmergy
mechanism where e.g., pheromones are used to indicate a path
was recently traveled can be used to influence the movement
of other swarm members (Bonabeau et al., 1999). Combined
with some memory of where one was and where one would
like to travel again, this can already lead to some partitioning of
the area and result in individual agents patrolling their territory,
following their own traces and avoiding those of their peers. In
a way, this could be visualized as fagging the environment to
continuously claim one’s beat.

Among the approaches used to partition areas are Voronoi tes-
sellations (Okabe et al., 2000) which essentially compute op-
timal partitions (Cortés et al., 2004) of an area subject to prop-
erties or capabilities of the individual areas / resources allocated
to the area. The way this is achieved is not by computing the
optimal division lines but instead by constructing sub-optimal
ones and then iteratively amending them based on some intric-
ate interplay between only bordering regions. For example, if
two bordering areas differ greatly in size then the one that is
larger is likely to allow the shift of the border slightly inside
its territory, thereby moving a small bit towards equalizing the
areas in the two bordering territories. The outcome, as shown
by (Cortés et al., 2004), is efficient coverage. Furthermore, by
the nature of the approach, this outcome is dynamic and will be
continuously updated and improved which means that if out-
side factors result in changes to the overall problem (e.g., fewer
swarm members, a smaller or larger area, etc) the swarm will
continue to improve the (now sub-optimal) solution until it is
optimal again. In our example we could calculate a perform-
ance value for each territory (to represent the average time it
has been since any location has been visited) and use those to
amend the borders: the territory with the higher value (and thus
worse performance) is reduced with parts being taken over by
an agent with a better performing territory.

This policy is effectively a gradient ascent performed on a util-
ity function (which ensures coverage uniformity), which inter-
estingly can be derived from a global objective. This again
shows the power of local utility design (compare this to the
mechanism design for area exploration task).

In contrast to the area exploration, for the coverage problem, the
swarm communication is not about one member announcing to
the swarm that the one-time event of having found the target
has occurred (where it is of importance to ensure this message
is passed to the entire swarm as fast as possible) but about in-
forming the (localized) swarm about each agent’s state. For
example, the coverage swarm should be robust against mem-
bers dropping out, be it for natural reasons (battery depleted)
or due to outside influence (something is interfering with the
agent). The emphasis of the communication here is on ensuring
that the relevant information is kept up to date at least locally,
meaning that agents are aware of the state of their immediate
neighbors. Consider an institutional rule in the swarm: “broad-
cast your intent to vacate your current sector if you must leave
it (e.g., due to low battery) so that neighbors can adjust” .

This rule ensures robustness: if the task at hand is perimeter
security then any patrol that cannot cover their shift must recruit
others to help, ideally before this becomes an issue. If this is not
possible (the agent fails without warning), or if communications
are unreliable, the system can be made robust by well chosen
defaults such as including in the agents’ policies that they have
a tendency to patrol slightly beyond their territory boundaries
to create areas of overlap. If an agent is missing these areas
will extend until the missing agent’s territory is covered again.
This is akin to the checks and balances in social systems where
overlapping responsibilities can mitigate individual failures.

In this use case, an example of an emerging norm for the swarm
is a timing convention: if agents slightly trespass on each other’s
territory, it is beneficial to do so when the other agent is not
there (as the performance is calculated over the “time since the
last visit” to a location it is beneficial to stagger the agent’s ar-
rival in any location). Agents that meet frequently could follow
a simple protocol to de-synchronize to avoid future collisions,
effectively falling into an out-of-phase patrolling rhythm. This
simple process could be implemented through a single simple
rule: “if you encounter another agent regularly, slightly adjust
your pace or route timing”, much like the way fireflies syn-
chronize (Strogatz, 2003) over time.

From a mechanism design viewpoint, the area coverage prob-
lem can be seen as a repetition of the area explore task, with
repeated allocation of task to visit a specific location over time.
This can be designed as a distributed optimization task: each
agent works towards minimizing the time (for any location in
its vicinity) that this location has not been visited. This local
goal aligns with the global objective of minimizing worst-case
coverage lag. Distributed patrolling algorithms in the literature
are frequently based on cyclic paths or graph traversal. These
algorithms enable near-optimal coverage, achieved with only
local coordination, by designing each robot to react and adapt
to their peers’ presence and to share the workload with them.

In practice, implementing these ideas could look as follows:

e Agents drop virtual markers with timestamps as they move.
They follow a policy: “prefer to move toward areas with
older timestamps (not visited recently) and avoid areas
with very fresh timestamps”. This naturally causes some
areas to fall out of favor (negative feedback: the more an
area is visited, the less attractive it becomes for a while).

o If an agent does not detect any marker from a neighbor in
a long time, the probability that this neighbor is inactive
increases and the agent slowly enlarges their patrol region
to compensate (institutional rule for robustness).
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e Conversely, if agents start to overlap heavily (finding each
other’s markers frequently), this starts to feel crowded .
A possible adaptation is to either relocate or re-time the
patrol (a spontaneous reallocation of effort). This could be
driven by a rule: when a threshold of encountering other
agents is reached the agent shifts its focus to an altogether
new region which is currently not covered well at all.

Through these local rules, the swarm can self-organize into an
effective persistent surveillance pattern. In our studies (e.g.,
Saffre et al. 2025, 2024, 2022a, 2022b) we have found that de-
centralized patrolling can be implemented efficiently and, under
the right conditions, can outperform pre-scripted deployment
pattern. In addition, our work has shown that such approaches
can be resilient to agent failure or changes in the environment.

3.3 Comparative insights

The exploration and coverage scenarios illustrate how different
(possibly opposing) emergent behaviors can be brought about
by tailored and engineered policies for the agents implemented
within appropriate social mechanisms:

e Exploration benefited from policies enforcing spatial dis-
persion and rapid information propagation (to achieve a
one-time convergence on a target), effectively balancing
positive and negative feedback to avoid both, premature

clustering / aggregation and wandering (exploring) too long.

e Coverage benefited from policies encouraging spatial par-
titioning and routine formation (for monitoring), relying
heavily on negative feedback (to prevent redundancy) and
slow but steady adaptation to changes (for robustness).

Note that the role of communication is crucial: when looking
for a target, the “I found something” signal is of utmost im-
portance, it must be shared with the swarm as fast as possible.
However, the criticality of information changes when we com-
pare this to the coverage task: its still useful and improves over-
all efficiency but the task can be accomplished even when inter-
agent communication is (temporarily) denied. Patrolling can be
performed exclusively based on local markers. This is akin to
the difference between an emergency broadcast and an ongo-
ing operation where roles have been assigned in advance: the
former is crucial while the latter can continue despite a break-
down in communication. This shows us that designing institu-
tional constraints or norms must be a context-aware exercise.

Similarly, the two use-cases differ significantly in how reward
or utility are structured: for the exploration task the reward is
extremely asymmetric as all agents practically work towards
the singular goal of locating the target; on the other hand, the
coverage tasks uses uniformly distributed rewards (with a tem-
poral parameter) as visiting any location contributes to the over-
all performance. This is akin to the winner takes all stance in
economics (the agent finding the target wins), compared to an
ongoing service provision (equal payout for any location) for
the coverage task. This should not be surprising as the explor-
ation task will benefit from designing competitive mechanisms
into the agents’ policies, while for the coverage task we would
prefer to design mechanisms driving fairness and equality (load
balancing). Note that we anthropomorphise the agents to be
selfish or altruistic but this is to illustrate the framework only,
agents simply have a preference for one next move over another
without scheming to acquire an advantage ove their peers.

Ultimately, both tasks reinforce the central thesis: by conceiv-
ing agent behaviors as policies and employing social science
concepts (feedback, norms, etc.) in designing those policies,
we can achieve sophisticated emergent behaviors.

4. Discussion

The above framework and the two tasks we used indicate the
cross-disciplinary approach to swarm engineering we envision.
We will now discuss the benefits taking a page from the social
science book, as well as some limitations to this. We briefly
return to the concept of phase transitions because of their use
as switches between behaviors, discuss the importance of ro-
bustness and once again state our preference for decentralized
coordination in general. This manuscript is intended to start
conversations on the subjects, so please discuss.

4.1 Benefits of the social science analogy

We think that the social scientist’s view on behaviors of groups
holds many benefits for the upcoming swarm engineer. For
starters, Social Science has a head start, having investigated
this for more than a century, with prominent examples being
e.g., (Bon, 1895) (Group Psychology), (Durkheim, 1895) (So-
ciology) and (Freud, 1921) (Psychology). Secondly, it provides
tools and lenses through which to anticipate or understand emer-
gent outcomes in a richer and more complex manner as it essen-
tially provides a means to talk about aspects of engineering a
swarm. For example, unintended consequences (undesired and
unexpected emergent behaviors), which is a well-studied prob-
lem in policy interventions (Schelling, 1978). Sociology and
Economics have studied the notion of tipping points and power-
law distributions and often provided a mathematical foundation
for them. The use of notions such as a norm or an institution
might seem strange at first due to their perceived vagueness
(which engineers loath) but they do have (can have) a concrete
meaning in the area of multi-robot coordination.

While this might not give us the mathematical framework to
formally design emergence, this vocabulary can help to sys-
tematically think (and brainstorm) about designing a specific
swarm. In addition, this gives us the analytical tools such as
game theory, network analysis and system dynamics modelling
to study the policies (algorithms) we design. For example, we
can model the partitioning of an environment into territories as
a game, with equally sized territories representing an equilib-
rium. This model can then be used to prove optimality, identify
other equilibria or determine an equilibrium’s stability.

4.2 Limits and differences

Despite all the mentioned analogies, there are of course sig-
nificant differences between human social systems and robotic
swarms. Members of the former have diverse preferences, goals,
and the ability to consciously change strategies or even the rules
of the game; while in the latter they typically share identical
programming and have no independent agenda. Human de-
cision making (Ajzen, 1991) can be vastly more complex than
that of simple robotic platforms. This means some complex so-
cial mechanisms (like bargaining, deception, or coalition form-
ation) might not have direct relevance in a deterministic swarm
context. However, as autonomy and learning are introduced
(e.g., reinforcement learning agents that adapt their policies),
swarms might exhibit more agent-level “self-interest” or diver-
gent behaviors that need alignment. This would be akin to the
concepts of selfish routing in networks or free-riding in teams.
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Our framework is directly applicable when the swarm is ho-
mogeneous and cooperative (all agents work toward the same
global goal), because then the mechanism design can be sim-
plified. In heterogeneous or adversarial multi-agent systems,
additional game-theoretic considerations would come into play
beyond the scope of this work. Clearly the proposed framework
is a start, and more work is needed.

Another difference is that engineered systems allow us to expli-
citly implement or enforce rules, while in societies many rules
can only be incentivized. For example, we can hard-code col-
lision avoidance, whereas in human crowds one can only en-
courage avoiding collisions via cultural norms or signage. This
means our design space is actually larger (we have more direct
control), but also that some emergent phenomena in societies
(stemming from bounded rationality or non-compliance) might
not occur in swarms unless deliberately introduced. Therefore,
we must carefully choose which social mechanisms to emu-
late and which to bypass via direct engineering (hard-coding).
Often, the utility of emergent coordination is greatest in ap-
plications where central control is impossible (or at least very
costly), similar to social systems which rarely have central plan-
ners. This makes emergent order a necessity for both, the social
systems as well as the robotic swarms.

4.3 Phase transitions and design margins

We highlighted the concept of phase transitions in swarm beha-
vior. A swarm designer should account for critical thresholds in
agent connectivity (communication), population, or other para-
meters. If, for instance, the communication of a swarm is in-
creasingly reduced (e.g., through jamming) then there will a
point at which the swarm collapses and stop functioning as a
whole. A similar effect can be achieved by iteratively redu-
cing the swarm size (shooting down drones). By studying the
system we may be able to identify where these phase transitions
are located in the parameter space and then engineer safety trig-
gers that change the overall behavior (or even the task) of the
swarm whenever we get close to those identified regions in the
parameter space. Examples of possible responses are (a) the de-
ployment of additional drones, (b) the switch to environmental
markers or (c) decreasing the search area. In social sciences,
these strategies echo how communities ensure robustness by
slightly overprovisioning (a safety margin).

Social models of abrupt change (like Schelling’s segregation
or riot threshold models) also provide a warning because they
show us how varying a control parameter can lead to sudden
(and undesired) shifts. In swarm terms, that could mean a grace-
ful degradation suddenly turning into a breakdown. Recogniz-

ing this, designers might include backstops like mode-switching:

if the swarm detects it’s fragmenting (e.g., no communication
from many agents), agents could switch to a fallback behavior
such as returning to a rendezvous point. This is analogous to a
society having emergency protocols when normal coordination
fails (such as “in case of fire gather at the meeting point”).

4.4 Robustness and adaptation

We know that decentralization offers great potential for robust-
ness, and if the swarm is coordinated through local commu-
nication and kept in check by emerging norms then there is no
singular point of failure. That already helps. This robustness
can be observed in self-organizing social systems, such as mar-
kets or interest communities, both of which can easily bounce
back from shits in the environment, their members or supply.

In a distributed system, failure of a single agent (or even of a
few agents) does not automatically have to result in the failure
of the swarm, which can adapt with minimal performance loss.

Robustness also comes from adaptation: agent policies might
include heuristics to adjust to new conditions such as changing
the speed (coverage) or verifying the alarm (exploration). In
addition, agents can use machine learning approaches to fine-
tune their policies, much like in human societies the members
learn through repeated interaction with one another. The swarm
could learn, for example, that in a specific environment dis-
tance x is the optimal distance to keep to your neighbors. This
value might be extremely hard to determine analytically but
may emerge easily through trial and error. Using such learned
adaptation may aid swarm coordination and enable the swarm
to be successfully deployed in more diverse environments.

4.5 Decentralized coordination principles

Finally, we reflect on classic principles of decentralized co-
ordination that are reinforced by our approach. One principle
is stigmergy: indirect coordination (using the environment as a
shared memory). In coverage, leaving behind information for
others proved pouseful; this principle has broad applicability in
swarm robotics, from foraging to construction tasks (Bonabeau
et al., 1999). Stigmergy reduces the need for direct contact.

Another principle is consensus emergence: sometimes a swarm
needs to reach agreement on a single course (e.g., all agents
aligning their direction or timing). Distributed consensus al-
gorithms (like averaging, voter models, or majority rule) are
well-studied in control theory (Olfati-Saber et al., 2007) and
mirror processes of opinion dynamics in groups. Our frame-
work’s emphasis on norms is related: a norm is effectively a
consensus on a pattern of behavior. Ensuring consensus in a
swarm often requires certain connectivity conditions; this ties to
the above made point about ensuring communication networks
remain intact enough (or periodically connecting the swarm if
fully connected networks are impossible, maybe through mo-
bile agents that shuttle information).

A third principle is division of labor, which we saw emerging
in both tasks. In natural swarms and social insects, division of
labor can arise via response thresholds or simple specialization
rules. We similarly achieved partitioning of space (each agent
covering “their” part). Encouraging division of labor without
rigid assignment increases flexibility: if one agent is removed,
others will cover its role. This is desirable in military swarms
especially, where losses are expected.

Overall, the social science-inspired framework has the poten-
tial to help with the designing of a swarm as well as the ex-
plaining of its actions and behaviors. It allows us to articu-
late why a swarm did something in familiar terms, bridging the
gap between human understanding and machine behavior. As
autonomous swarms become more prevalent, such explanations
can help operators trust and effectively integrate these systems.
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