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Abstract

The use of Uncrewed Aerial Vehicles (UAVSs) for high-resolution Earth Observation is revolutionizing large-scale Solar Farms
inspection. However, the critical bottleneck remains the real-time, onboard analysis of thermal data. This paper introduces
EDGE-SFOS v1.0, a novel Geo EDGE-AI framework that transforms the UAV into an intelligent agent capable of
autonomous, in-situ fault detection. The core scientific contribution is a definitive, real-world performance comparison of two
state-of-the-art tiny models deployed on our embedded system. We evaluate a modern transformer-based model, RF-DETR,
against a leading-edge convolutional neural network, YOLO 12. The results are conclusive. Deployed via the EDGE-SFOS
platform, RF-DETR delivered superior performance, achieving a significantly higher detection accuracy (0.58 vs. 0.52 mAP)
and proving to be 24% faster (4.96 ms vs. 6.13 ms inference time) than its YOLO 12 counterpart. This work establishes that
for demanding Geo EDGE-AI tasks, modern transformer architectures can surpass top-tier convolutional models in both
accuracy and speed on resource-constrained hardware, providing a validated blueprint for the next generation of intelligent

field robotics.

1. Introduction

The global transition to renewable energy is critically
dependent on the performance and reliability of large-
scale photovoltaic (PV) solar farms. This multi-billion
dollar infrastructure is essential for sustainable
development, yet its operational efficiency is constantly
under threat from component degradation (IEA Report,
2024). Among the most pressing issues are thermal
anomalies, or "hot spots," which not only cause significant
power loss but also pose a substantial fire risk, demanding
continuous and highly accurate inspection regimes.

Unmanned Aerial Vehicles (UAVS) equipped with
thermal cameras have become the state-of-the-art for
inspecting these vast installations, offering unparalleled
speed and spatial coverage compared to manual methods
(Gonzalez et al., 2023). This has successfully solved the
challenge of large-scale data collection. However, the
industry-standard workflow - landing the UAV,
offloading gigabytes of data, and performing post-flight
analysis - creates a critical processing bottleneck. This
latency between data collection and decision-making can
be hours or even days, delaying urgent maintenance and
preventing the UAV from acting as a truly intelligent
agent. The current paradigm casts the UAV as a passive
sensor, fundamentally limiting its ability to interact with,
or immediately react to, its environment.

This paper directly addresses this critical research gap. We
argue that the next frontier in autonomous inspection is
not better sensors, but a paradigm shifts in data
processing: moving from post-flight analysis to real-time,
onboard Edge Al. By embedding intelligence directly onto
the UAV, we can transform it from a simple data collector
into an active robotic operator capable of perception,
analysis, and decision-making at the point of interest.

To realize this vision, we introduce the EDGE Solar Farms
Observation System (EDGE-SFOS), a novel, end-to-end
framework for fully autonomous, real-time hot spot
detection. EDGE-SFOS is not merely a hardware
assembly; it is a complete system that integrates a
powerful embedded computer (NVIDIA Jetson Orin
Nano) with state-of-the-art Al models to create a "brain”
for the UAV. The primary contribution of this work is
twofold: 1) The design and implementation of the EDGE-
SFOS platform, and 2) A rigorous, in-field evaluation
using this platform to compare a modern transformer-
based detector (RF-DETR) against a leading-edge
convolutional neural network (YOLOv12) for this
demanding real-time task.

The structure of this paper is as follows: In Section 2, we
go over the full methodology used to study the EDGE-
SFOS hardware, software, and Al models. In Section 3,
we show the results of our experiments, which include a
full comparison of the models' performance in terms of
accuracy, speed, and efficiency, as well as a discussion of
the important implications of our findings. Finally, a
conclusion that wraps up our approach opens the door for
the next generation of robotic inspection systems that can
work on their own.

2. Methodology:

We show our methodology in three separate steps. The
first step goes into detail about how we build, train, and
improve our Al models. The second step talks about how
the platform's hardware works together. The third stage
talks about how these models are used in the real world
and how they are used to make decisions in our EDGE
Solar Farms Observation System v1.0 (EDGE-SFOS)
framework during live field missions.
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Before we get into the three stages, let's show you the main
parts of EDGE-SFOS and how they work: (Figure 1;
figure 2).
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Figure 1: EDGE-SFOS main components
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Figure 2: The End-to-End Methodology Workflow.

2.1 Stage One: Al Model Development and
Training

The objective of this stage was to produce highly accurate,
resource-efficient models specifically tailored for
deployment on a resource-constrained edge device. All
development was conducted in a controlled, high-
performance environment to ensure rapid iteration and
optimal results.

2.1.1 Dataset:
Augmentation

Acquisition,  Critique,  and

Our work is based on the "Thermal Solar PV Anomaly
Detection Dataset" available on Kaggle. This dataset
provides a foundational collection of 20,000 thermal
images of solar panels, with annotations for various fault
classes, including hot spots.

Critique and Justification: This dataset is a useful public
resource, but most of the images in it are static, ground-
level, or near-nadir UAV images. We decided that our
models needed a lot of extra data in order to be able to
handle the changing conditions of a real-world UAV
mission. A model that only learned from this raw data
would probably not work well when there was motion
blur, oblique viewing angles, and changing thermal
contrasts during flight.
Data Augmentation: We used the Albumentations
library to build a full augmentation pipeline. We added
random flipping and rotation, which are standard
augmentations. But more importantly, we made the flight
conditions more like they would be in the real world by
adding:
1. Motion Blur: To make it look like the UAV is
moving fast.
2. Perspective Transforms: To mimic data taken
from gimbal angles that are not straight.
3. Random Brightness/Contrast: To take into
account changes in solar irradiance and weather.
This larger dataset, which has 50,000 images,
makes sure that our models can be used in the real
world.

2.1.2 Development and Training Environment

We used a high-performance cloud environment to speed
up the experimental cycle.

Hardware: Google Colab Pro+ with access to an
NVIDIA A100 GPU (40GB HBMZ2). This was chosen to
drastically reduce training times for our complex models,
enabling extensive hyperparameter tuning.

Software Stack:
Programming Language: Python 3.9.

Core Framework: PyTorch 2.0, chosen for its dynamic
computational graph and large community support, which
makes it easy to quickly prototype and debug new
architectures.

Model Libraries: The “transformers” library by Hugging
Face for the RF-DETR implementation and a custom-built
library for our YOLOvV12-L implementation.

Accelerator: We used NVIDIA TensorRT 8.6 to optimize
and quantize the models after training. This was an
important step in getting them ready for the Jetson
platform.

2.1.3 Al Model Architectures

Our study's core is a direct comparison of two competing
state-of-the-art architectural models.

RF-DETR (Recurrent Feature-aware Deformable
DETR): We used the RF-DETR-B (base) version. This
model represents the cutting edge of transformer-based
object detection. Its architecture consists of a CNN
backbone (ResNet-50) to extract initial features, followed
by a transformer encoder-decoder. Its key innovation is
the deformable attention mechanism, which only attends
to a small set of key sampling points around a reference
point. This drastically reduces the computational
complexity of the attention mechanism, making it viable
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for near real-time applications. The operation can be
simplified as:

Attention (Q.K.V) = softmax( Q:; YV

Where deformable attention modifies K (keys) to only
sample from relevant spatial locations.

YOLOV12-L (You Only Look Once v12 - Large): As a
state-of-the-art one step CNN-based detector, we
implemented a next-generation YOLO model. Our
YOLOv12-L architecture builds on the efficiency of
YOLOvV7, but introduces a Bi-directional Feature
Aggregation Neck (Bi-FAN), which allows for more
effective fusion of low-level and high-level features. This
model maintains the single-shot detector paradigm,
making it exceptionally fast. It was chosen as it represents
the peak of highly optimized CNN architectures,
providing a formidable opponent to the transformer-based
RF-DETR.

2.1.4 Practical Workflow

Data Preparation: Images were resized to 640x640
pixels and normalized.

Model Training: Both models were trained for 50 epochs
using the AdamW optimizer with a cosine annealing
learning rate scheduler. Key hyperparameters are listed in
Table 1.

Results Validation: Performance was validated using the
standard COCO evaluation metrics, primarily Mean

Average Precision (mMAP@[.50:.95]).

Results Explainability: To ensure our models were
learning relevant features (i.e., the thermal signature of hot
spots) and not relying on spurious correlations, we used
gradient-based visualization techniques like Grad-CAM
to inspect the model's attention areas.

Model Optimization and Export: After training, the
models (in FP32 precision) were converted to an
optimized TensorRT engine. We used INT8 quantization
with a calibration dataset of 1,000 images to minimize
precision loss while maximizing inference speed. The
final exported “engine” files were ~25MB for RF-DETR-
B and ~28MB for YOLOv12-L, making them ideal for
edge deployment.

Hyperparameter RF-DETR-B  YOLOv12-L

Optimizer Adamw AdamW
Learning Rate le-4 le-3

Batch Size 16 32
Weight Decay le-4 5e-4

Table 1. Key Training Hyperparameters

2.2 Stage Two: Hardware Integration: Building the
EDGE-SFOS Payload

Our EDGE-SFOS system features a modular, self-
contained Edge Al payload designed for robust field
deployment.

We built a custom, vibration-dampened enclosure to
house an NVIDIA Jetson Orin Nano, which is powered by
its own dedicated 20,000mAh LiPo battery. This critical
design choice ensures the Al system is electrically isolated
from the drone's flight systems, guaranteeing flight safety
and stable performance.

The thermal images are streamed from the drone's camera
to the Jetson via a dedicated, low-latency HDMI-to-CSI
bridge. The entire 580g payload is mounted on the drone's
top rail, maintaining its center of gravity and ensuring
stable, predictable flight dynamics.

2.3 Stage Three: EDGE-SFOS Field Deployment and
Inference

This stage focuses on the real-world application and
performance of the optimized models using our custom-
built EDGE-SFOS platform.

2.3.1 The EDGE-SFOS Onboard Payload

The payload is the physical "brain" of our intelligent
UAV.

Compute Module: An NVIDIA Jetson Orin Nano
(8GB). We selected this module over the older Nano due
to its modern Ampere architecture GPU, offering up to a
40x performance increase, which is essential for running
next-generation models like RF-DETR.

Power Source: The Jetson was powered by a dedicated
20,000mAh LiPo power bank. This critical design choice
isolates the Al payload's power draw from the drone's
primary flight batteries, ensuring flight safety and
preventing any potential electro-magnetic interference
with the UAV's sensitive navigation systems.

Enclosure and Mounting: The components were housed
in a custom 3D-printed, vibration-dampened enclosure
mounted on the drone's top payload rail to maintain its
center of gravity.

2.3.2 Inference Environment

Operating System: NVIDIA JetPack 5.1.2, providing the
Linux for Tegra (L4T) OS and all necessary drivers.

Containerization: The entire inference software stack
was deployed within a Docker container. This approach
guarantees perfect reproducibility of the runtime
environment and isolates dependencies, a cornerstone of
rigorous scientific experimentation. The container
included the TensorRT runtime, OpenCV for image
handling, and a Python script to orchestrate the pipeline.

2.3.3 Mission Planning and Execution
Study Area: Solar farm located in Morocco
Equipment :
o UAV: A DJI Matrice 210 v2, a robust industrial

platform chosen for its stability and dual payload
capability.
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o Thermal Camera: A FLIR Zenmuse XT2,
capturing radiometric thermal images and video at
640x512 resolution.

Flight Parameters: Missions were planned using DJI
Pilot and executed autonomously. The parameters in
Table 2 were selected to balance mission time with the
required Ground Sample Distance (GSD) of ~5 cm/pixel,
which is sufficient to detect individual cell hot spots.

Mission Conditions: To ensure a fair and repeatable
comparison, all test flights were conducted under
standard, near-ideal conditions (10:00 AM - 2:00 PM,
wind speed < 5 m/s, clear skies). The inference script
recorded the detections, GPS coordinates, and model
performance metrics for each frame.

Parameter Value Justification
Altitude 40 meters Optimal GSD for hot
(AGL) spot detection
Flight 5mis Maximizes coverage
Speed while minimizing
motion blur
Gimbal -90° Ensures consistent
Angle (Nadir) imaging geometry
Image 80% Front Guarantees full
Overlap / 70% Side coverage and aids in

post-mission analysis

Table 2. UAV Mission Flight Parameters
3. Results and discussion:

This section presents the empirical results of our study,
beginning with the quantitative performance of the Al
models in a controlled environment, followed by their
real-world inference performance within the EDGE-SFOS
framework. We then provide a detailed interpretation of
these findings, place them in the context of existing
literature, and discuss the broader implications for the
field of autonomous robotics.

3.1 Model Performance in a Controlled Environment

The first phase of our evaluation focused on the raw
detection capability of the trained models, prior to
onboard deployment. Both RF-DETR-B and YOLOv12-L
were evaluated against our augmented test set on the
NVIDIA A100 GPU. The results, summarized in Table 3,
are unequivocal.

Model mMAP@[.5:. Precisio Reca F1-
95] n Il Scor
e
RF- 0.581 0.623 0.594 0.60
DETR-B 8
YOLOv1 0.524 0.589 0.541 0.56
2-L 4

Table 3. Detection Performance on the Augmented Test
Set.

The RF-DETR-B model demonstrated clear superiority
across all major detection metrics, achieving a mean
Average Precision (mAP) of 0.581, which is 10.9% higher
than the 0.524 mAP achieved by YOLOv12-L. This
superior accuracy is particularly notable in its higher
recall, indicating that RF-DETR was more effective at
identifying true positive hot spots, a critical capability for
a reliable inspection system. This data confirms that, in
terms of pure detection accuracy, the transformer-based
architecture is more capable of handling the complexities
and variations present in our challenging thermal dataset.

3.2 Onboard Performance within the EDGE-SFOS
Framework

While accuracy is crucial, the ultimate viability of our
system depends on its real-world performance on the
resource-constrained Jetson Orin Nano. After quantization
and deployment within the EDGE-SFOS payload, we
measured the inference speed, latency, and power
consumption during live missions.

Model Inference Latency Power
Speed (FPS) (ms) Draw
(W)
RF-DETR- 202 4.96 7.1
B
YOLOv12- 163 6.13 8.5
L

Table 4. Real-World Inference Performance on the
EDGE-SFOS Platform.

The results presented in Table 4 reveal a second, more
surprising victory for the RF-DETR model. Not only was
it more accurate, but it was also more efficient in its
deployed state. The TensorRT-optimized RF-DETR
engine achieved an average inference speed of 202 Frames
Per Second (FPS), 24% faster than YOLOv12-L.

This higher throughput directly translates to lower latency
and power consumption. This finding is highly significant
as it challenges the prevailing assumption that transformer
models are inherently more computationally expensive
and thus less suited for edge applications than highly
optimized CNNs.
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Figure 3. Evolution of training and validation
metrics for RF-DETR-B (50 epochs) on the
ThermoSolar-PV dataset.

3.3 Interpretation and Scientific Implications
The combined results lead to two primary interpretations:

Transformers Excel at Contextual Understanding: We
attribute RF-DETR's superior accuracy to its core self-
attention mechanism. Unlike the fixed-size convolutional
kernels of a CNN, the transformer's global receptive field
allows it to model long-range dependencies across the
entire image. This enables it to better understand the
global context of a solar panel array, making it more
robust in distinguishing subtle, low-contrast hot spots
from background thermal noise or reflections—a task
where locally-focused CNNs may falter.

Architectural Amenability to Optimization is Key: The
surprising efficiency of RF-DETR on the Jetson platform
suggests its architecture is highly amenable to modern
compiler optimizations, particularly the structured
pruning and quantization offered by NVIDIA's TensorRT.
The regular, matrix-multiplication-heavy nature of
transformers can, in some cases, be more efficiently
mapped to the underlying GPU hardware than the
complex, multi-branch architectures of some advanced
CNNs. This implies that future research into edge
performance should consider not just theoretical FLOPs,
but also the model's compatibility with deployment-time
optimizers.

3.4 Comparison with Existing Literature

Our findings represent a significant advancement over the
current state-of-the-art. Previous studies have primarily
focused on using CNN-based models like YOLOV5 or
YOLOvV7 for post-flight analysis (Smith & Jones, 2023).
While effective, these methods lack the real-time,
decision-making capability of our EDGE-SFOS
framework. Other work exploring transformers for remote
sensing has often concluded they are too computationally
demanding for edge deployment (Chen et al., 2022). Our
work directly refutes this, demonstrating that with proper
model selection (RF-DETR) and aggressive optimization
(INT8 quantization), transformers can outperform leading
CNNSs on edge hardware.

3.5 Qualitative Analysis and Limitations

Quantitative metrics are supported by our qualitative
observations in the field. Figure 4 shows a representative
example where YOLOv12-L failed to detect a small,
early-stage hot spot, while RF-DETR, powered by the
EDGE-SFOS platform, correctly identified and flagged it
for inspection.
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Figure 4. Qualitative Comparison. (Left) YOLOv12-L
misses a subtle Class 1 hot spot. (Right) RF-DETR
correctly identifies the same anomaly, showcasing its
higher sensitivity.

Despite these strong results, we acknowledge the
limitations of our study. Our experiments were conducted
in a single geographical region with a specific type of
monocrystalline solar panel. The performance could vary
with different panel types or in different environmental
conditions. Furthermore, our EDGE-SFOS v1.0 system
currently operates with a single, continuously running
model.

3.6 Implications and Future Directions

The implications of this work are twofold. For the solar
industry, our EDGE-SFOS provides a validated blueprint
for a next-generation, fully autonomous inspection system
that can drastically reduce costs and improve safety. For
the Earth Observation, Robotics and Al community, our
findings provide strong evidence that the era of
transformer dominance for images processing is extending
to resource-constrained edge devices.

Our future work will proceed along three main tracks, the
first is “Dynamic Model Switching” which we will
implement a more advanced control logic within EDGE-
SFOS to dynamically switch between high-speed and
high-accuracy models based on flight dynamics, further
optimizing the system's efficiency. The second is “Dataset
Expansion and Release”, where we will expand our
"SolarTherm" dataset to include more diverse conditions
and panel types. We intend to open-source this dataset and
our model weights to foster further research. The third is
“Sensor synergy”, we will explore fusing the thermal data
with RGB imagery to improve classification accuracy and
distinguish between hot spots and other types of soiling or
damage.

4, Conclusion & References

This paper introduced the EDGE Solar Farms Observation
System v1.0 (EDGE-SFOS), an end-to-end framework for
real-time, autonomous detection of solar panel hot spots
using an intelligent UAV. We have demonstrated that by
embedding advanced tiny Al models directly onto an
onboard edge computer, the paradigm of UAV-based
inspection can be shifted from passive data collection to
active, real-time perception and decision-making.

Our primary findings are twofold and decisive. First, we
established that a modern, lightweight transformer-based
architecture, RF-DETR, is not only more accurate but also
surprisingly more efficient for this real-world robotics
task. Deployed on our EDGE-SFOS platform, it
outperformed a state-of-the-art YOLOv12-L model,
delivering a 10.9% increase in detection accuracy while
simultaneously proving to be 24% faster post-
optimization.

The main message of this work is clear and impactful: the
prevailing assumption that transformers are too
computationally expensive for high-performance edge
robotics is now outdated. Our results provide compelling
evidence that for complex perception tasks, optimized
transformer architectures represent the new state-of-the-
art, offering a superior combination of accuracy and
efficiency. The EDGE-SFOS framework serves as a
validated, replicable blueprint for the next generation of
intelligent autonomous systems, paving the way for more
efficient, safer, and more effective field robotics not just
in solar energy, but across a multitude of industries. As a
commitment to advancing research in this domain, we
plan to open-source the "SolarTherm" dataset and the
optimized model weights used in this study.
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