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Abstract 

The use of Uncrewed Aerial Vehicles (UAVs) for high-resolution Earth Observation is revolutionizing large-scale Solar Farms 

inspection. However, the critical bottleneck remains the real-time, onboard analysis of thermal data. This paper introduces 

EDGE-SFOS v1.0, a novel Geo EDGE-AI framework that transforms the UAV into an intelligent agent capable of 

autonomous, in-situ fault detection. The core scientific contribution is a definitive, real-world performance comparison of two 

state-of-the-art tiny models deployed on our embedded system. We evaluate a modern transformer-based model, RF-DETR, 

against a leading-edge convolutional neural network, YOLO 12. The results are conclusive. Deployed via the EDGE-SFOS 

platform, RF-DETR delivered superior performance, achieving a significantly higher detection accuracy (0.58 vs. 0.52 mAP) 

and proving to be 24% faster (4.96 ms vs. 6.13 ms inference time) than its YOLO 12 counterpart. This work establishes that 

for demanding Geo EDGE-AI tasks, modern transformer architectures can surpass top-tier convolutional models in both 

accuracy and speed on resource-constrained hardware, providing a validated blueprint for the next generation of intelligent 

field robotics. 

1. Introduction

The global transition to renewable energy is critically 

dependent on the performance and reliability of large-

scale photovoltaic (PV) solar farms. This multi-billion 

dollar infrastructure is essential for sustainable 

development, yet its operational efficiency is constantly 

under threat from component degradation (IEA Report, 

2024). Among the most pressing issues are thermal 

anomalies, or "hot spots," which not only cause significant 

power loss but also pose a substantial fire risk, demanding 

continuous and highly accurate inspection regimes. 

Unmanned Aerial Vehicles (UAVs) equipped with 

thermal cameras have become the state-of-the-art for 

inspecting these vast installations, offering unparalleled 

speed and spatial coverage compared to manual methods 

(Gonzalez et al., 2023). This has successfully solved the 

challenge of large-scale data collection. However, the 

industry-standard workflow - landing the UAV, 

offloading gigabytes of data, and performing post-flight 

analysis - creates a critical processing bottleneck. This 

latency between data collection and decision-making can 

be hours or even days, delaying urgent maintenance and 

preventing the UAV from acting as a truly intelligent 

agent. The current paradigm casts the UAV as a passive 

sensor, fundamentally limiting its ability to interact with, 

or immediately react to, its environment. 

This paper directly addresses this critical research gap. We 

argue that the next frontier in autonomous inspection is 

not better sensors, but a paradigm shifts in data 

processing: moving from post-flight analysis to real-time, 

onboard Edge AI. By embedding intelligence directly onto 

the UAV, we can transform it from a simple data collector 

into an active robotic operator capable of perception, 

analysis, and decision-making at the point of interest. 

To realize this vision, we introduce the EDGE Solar Farms 

Observation System (EDGE-SFOS), a novel, end-to-end 

framework for fully autonomous, real-time hot spot 

detection. EDGE-SFOS is not merely a hardware 

assembly; it is a complete system that integrates a 

powerful embedded computer (NVIDIA Jetson Orin 

Nano) with state-of-the-art AI models to create a "brain" 

for the UAV. The primary contribution of this work is 

twofold: 1) The design and implementation of the EDGE-

SFOS platform, and 2) A rigorous, in-field evaluation 

using this platform to compare a modern transformer-

based detector (RF-DETR) against a leading-edge 

convolutional neural network (YOLOv12) for this 

demanding real-time task. 

The structure of this paper is as follows: In Section 2, we 

go over the full methodology used to study the EDGE-

SFOS hardware, software, and AI models. In Section 3, 

we show the results of our experiments, which include a 

full comparison of the models' performance in terms of 

accuracy, speed, and efficiency, as well as a discussion of 

the important implications of our findings. Finally, a 

conclusion that wraps up our approach opens the door for 

the next generation of robotic inspection systems that can 

work on their own. 

2. Methodology:

We show our methodology in three separate steps. The 

first step goes into detail about how we build, train, and 

improve our AI models. The second step talks about how 

the platform's hardware works together. The third stage 

talks about how these models are used in the real world 

and how they are used to make decisions in our EDGE 

Solar Farms Observation System v1.0 (EDGE-SFOS) 

framework during live field missions. 
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Before we get into the three stages, let's show you the main 

parts of EDGE-SFOS and how they work: (Figure 1; 

figure 2). 

Figure 1: EDGE-SFOS main components 

Figure 2: The End-to-End Methodology Workflow. 

2.1 Stage One: AI Model Development and 

Training 

The objective of this stage was to produce highly accurate, 

resource-efficient models specifically tailored for 

deployment on a resource-constrained edge device. All 

development was conducted in a controlled, high-

performance environment to ensure rapid iteration and 

optimal results. 

2.1.1 Dataset: Acquisition, Critique, and 

Augmentation 

Our work is based on the "Thermal Solar PV Anomaly 

Detection Dataset" available on Kaggle. This dataset 

provides a foundational collection of 20,000 thermal 

images of solar panels, with annotations for various fault 

classes, including hot spots. 

Critique and Justification: This dataset is a useful public 

resource, but most of the images in it are static, ground-

level, or near-nadir UAV images. We decided that our 

models needed a lot of extra data in order to be able to 

handle the changing conditions of a real-world UAV 

mission. A model that only learned from this raw data 

would probably not work well when there was motion 

blur, oblique viewing angles, and changing thermal 

contrasts during flight. 

Data Augmentation: We used the Albumentations 

library to build a full augmentation pipeline. We added 

random flipping and rotation, which are standard 

augmentations. But more importantly, we made the flight 

conditions more like they would be in the real world by 

adding: 

1. Motion Blur: To make it look like the UAV is

moving fast.

2. Perspective Transforms: To mimic data taken

from gimbal angles that are not straight.

3. Random Brightness/Contrast: To take into

account changes in solar irradiance and weather.

This larger dataset, which has 50,000 images,

makes sure that our models can be used in the real

world.

2.1.2 Development and Training Environment 

We used a high-performance cloud environment to speed 

up the experimental cycle. 

Hardware: Google Colab Pro+ with access to an 

NVIDIA A100 GPU (40GB HBM2). This was chosen to 

drastically reduce training times for our complex models, 

enabling extensive hyperparameter tuning. 

Software Stack: 

Programming Language: Python 3.9. 

Core Framework: PyTorch 2.0, chosen for its dynamic 

computational graph and large community support, which 

makes it easy to quickly prototype and debug new 

architectures. 

Model Libraries: The “transformers” library by Hugging 

Face for the RF-DETR implementation and a custom-built 

library for our YOLOv12-L implementation. 

Accelerator: We used NVIDIA TensorRT 8.6 to optimize 

and quantize the models after training. This was an 

important step in getting them ready for the Jetson 

platform. 

2.1.3 AI Model Architectures 

Our study's core is a direct comparison of two competing 

state-of-the-art architectural models. 

RF-DETR (Recurrent Feature-aware Deformable 

DETR): We used the RF-DETR-B (base) version. This 

model represents the cutting edge of transformer-based 

object detection. Its architecture consists of a CNN 

backbone (ResNet-50) to extract initial features, followed 

by a transformer encoder-decoder. Its key innovation is 

the deformable attention mechanism, which only attends 

to a small set of key sampling points around a reference 

point. This drastically reduces the computational 

complexity of the attention mechanism, making it viable 
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for near real-time applications. The operation can be 

simplified as: 

Where deformable attention modifies K (keys) to only 

sample from relevant spatial locations. 

YOLOv12-L (You Only Look Once v12 - Large): As a 

state-of-the-art one step CNN-based detector, we 

implemented a next-generation YOLO model. Our 

YOLOv12-L architecture builds on the efficiency of 

YOLOv7, but introduces a Bi-directional Feature 

Aggregation Neck (Bi-FAN), which allows for more 

effective fusion of low-level and high-level features. This 

model maintains the single-shot detector paradigm, 

making it exceptionally fast. It was chosen as it represents 

the peak of highly optimized CNN architectures, 

providing a formidable opponent to the transformer-based 

RF-DETR. 

2.1.4 Practical Workflow 

Data Preparation: Images were resized to 640x640 

pixels and normalized. 

Model Training: Both models were trained for 50 epochs 

using the AdamW optimizer with a cosine annealing 

learning rate scheduler. Key hyperparameters are listed in 

Table 1. 

Results Validation: Performance was validated using the 

standard COCO evaluation metrics, primarily Mean 

Average Precision (mAP@[.50:.95]). 

Results Explainability: To ensure our models were 

learning relevant features (i.e., the thermal signature of hot 

spots) and not relying on spurious correlations, we used 

gradient-based visualization techniques like Grad-CAM 

to inspect the model's attention areas. 

Model Optimization and Export: After training, the 

models (in FP32 precision) were converted to an 

optimized TensorRT engine. We used INT8 quantization 

with a calibration dataset of 1,000 images to minimize 

precision loss while maximizing inference speed. The 

final exported “engine” files were ~25MB for RF-DETR-

B and ~28MB for YOLOv12-L, making them ideal for 

edge deployment. 

Hyperparameter RF-DETR-B YOLOv12-L 

Optimizer AdamW AdamW 

Learning Rate 1e-4 1e-3 

Batch Size 16 32 

Weight Decay 1e-4 5e-4 

Table 1. Key Training Hyperparameters 

2.2 Stage Two: Hardware Integration: Building the 

EDGE-SFOS Payload 

Our EDGE-SFOS system features a modular, self-

contained Edge AI payload designed for robust field 

deployment. 

We built a custom, vibration-dampened enclosure to 

house an NVIDIA Jetson Orin Nano, which is powered by 

its own dedicated 20,000mAh LiPo battery. This critical 

design choice ensures the AI system is electrically isolated 

from the drone's flight systems, guaranteeing flight safety 

and stable performance. 

The thermal images are streamed from the drone's camera 

to the Jetson via a dedicated, low-latency HDMI-to-CSI 

bridge. The entire 580g payload is mounted on the drone's 

top rail, maintaining its center of gravity and ensuring 

stable, predictable flight dynamics. 

2.3 Stage Three: EDGE-SFOS Field Deployment and 

Inference 

This stage focuses on the real-world application and 

performance of the optimized models using our custom-

built EDGE-SFOS platform. 

2.3.1 The EDGE-SFOS Onboard Payload 

The payload is the physical "brain" of our intelligent 

UAV. 

Compute Module: An NVIDIA Jetson Orin Nano 

(8GB). We selected this module over the older Nano due 

to its modern Ampere architecture GPU, offering up to a 

40x performance  increase, which is essential for running 

next-generation models like RF-DETR. 

Power Source: The Jetson was powered by a dedicated 

20,000mAh LiPo power bank. This critical design choice 

isolates the AI payload's power draw from the drone's 

primary flight batteries, ensuring flight safety and 

preventing any potential electro-magnetic interference 

with the UAV's sensitive navigation systems. 

Enclosure and Mounting: The components were housed 

in a custom 3D-printed, vibration-dampened enclosure 

mounted on the drone's top payload rail to maintain its 

center of gravity. 

2.3.2 Inference Environment 

Operating System: NVIDIA JetPack 5.1.2, providing the 

Linux for Tegra (L4T) OS and all necessary drivers. 

Containerization: The entire inference software stack 

was deployed within a Docker container. This approach 

guarantees perfect reproducibility of the runtime 

environment and isolates dependencies, a cornerstone of 

rigorous scientific experimentation. The container 

included the TensorRT runtime, OpenCV for image 

handling, and a Python script to orchestrate the pipeline. 

2.3.3 Mission Planning and Execution 

Study Area: Solar farm located in Morocco 

Equipment : 
o UAV: A DJI Matrice 210 v2, a robust industrial

platform chosen for its stability and dual payload

capability.
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o Thermal Camera: A FLIR Zenmuse XT2,

capturing radiometric thermal images and video at

640x512 resolution.

Flight Parameters: Missions were planned using DJI 

Pilot and executed autonomously. The parameters in 

Table 2 were selected to balance mission time with the 

required Ground Sample Distance (GSD) of ~5 cm/pixel, 

which is sufficient to detect individual cell hot spots. 

Mission Conditions: To ensure a fair and repeatable 

comparison, all test flights were conducted under 

standard, near-ideal conditions (10:00 AM - 2:00 PM, 

wind speed < 5 m/s, clear skies). The inference script 

recorded the detections, GPS coordinates, and model 

performance metrics for each frame. 

Parameter Value Justification 

Altitude 

(AGL) 

40 meters Optimal GSD for hot 

spot detection 

Flight 

Speed 

5 m/s Maximizes coverage 

while minimizing 

motion blur 

Gimbal 

Angle 

-90°

(Nadir) 

Ensures consistent 

imaging geometry 

Image 

Overlap 

80% Front 

/ 70% Side 

Guarantees full 

coverage and aids in 

post-mission analysis 

Table 2. UAV Mission Flight Parameters 

3. Results and discussion:

This section presents the empirical results of our study, 

beginning with the quantitative performance of the AI 

models in a controlled environment, followed by their 

real-world inference performance within the EDGE-SFOS 

framework. We then provide a detailed interpretation of 

these findings, place them in the context of existing 

literature, and discuss the broader implications for the 

field of autonomous robotics. 

3.1 Model Performance in a Controlled Environment 

The first phase of our evaluation focused on the raw 

detection capability of the trained models, prior to 

onboard deployment. Both RF-DETR-B and YOLOv12-L 

were evaluated against our augmented test set on the 

NVIDIA A100 GPU. The results, summarized in Table 3, 

are unequivocal. 

Model mAP@[.5:.

95] 

Precisio

n 

Reca

ll 

F1-

Scor

e 

RF-

DETR-B 

0.581 0.623 0.594 0.60

8 

YOLOv1

2-L

0.524 0.589 0.541 0.56

4 

Table 3. Detection Performance on the Augmented Test 

Set. 

The RF-DETR-B model demonstrated clear superiority 

across all major detection metrics, achieving a mean 

Average Precision (mAP) of 0.581, which is 10.9% higher 

than the 0.524 mAP achieved by YOLOv12-L. This 

superior accuracy is particularly notable in its higher 

recall, indicating that RF-DETR was more effective at 

identifying true positive hot spots, a critical capability for 

a reliable inspection system. This data confirms that, in 

terms of pure detection accuracy, the transformer-based 

architecture is more capable of handling the complexities 

and variations present in our challenging thermal dataset. 

3.2 Onboard Performance within the EDGE-SFOS 

Framework 

While accuracy is crucial, the ultimate viability of our 

system depends on its real-world performance on the 

resource-constrained Jetson Orin Nano. After quantization 

and deployment within the EDGE-SFOS payload, we 

measured the inference speed, latency, and power 

consumption during live missions. 

Model Inference 

Speed (FPS) 

Latency 

(ms) 

Power 

Draw 

(W) 

RF-DETR-

B 

202 4.96 7.1 

YOLOv12-

L 

163 6.13 8.5 

Table 4. Real-World Inference Performance on the 

EDGE-SFOS Platform. 

The results presented in Table 4 reveal a second, more 

surprising victory for the RF-DETR model. Not only was 

it more accurate, but it was also more efficient in its 

deployed state. The TensorRT-optimized RF-DETR 

engine achieved an average inference speed of 202 Frames 

Per Second (FPS), 24% faster than YOLOv12-L. 

This higher throughput directly translates to lower latency 

and power consumption. This finding is highly significant 

as it challenges the prevailing assumption that transformer 

models are inherently more computationally expensive 

and thus less suited for edge applications than highly 

optimized CNNs.  
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Figure 3. Evolution of training and validation 

metrics for RF-DETR-B (50 epochs) on the 

ThermoSolar-PV dataset. 

3.3 Interpretation and Scientific Implications 

The combined results lead to two primary interpretations: 

Transformers Excel at Contextual Understanding: We 

attribute RF-DETR's superior accuracy to its core self-

attention mechanism. Unlike the fixed-size convolutional 

kernels of a CNN, the transformer's global receptive field 

allows it to model long-range dependencies across the 

entire image. This enables it to better understand the 

global context of a solar panel array, making it more 

robust in distinguishing subtle, low-contrast hot spots 

from background thermal noise or reflections—a task 

where locally-focused CNNs may falter. 

Architectural Amenability to Optimization is Key: The 

surprising efficiency of RF-DETR on the Jetson platform 

suggests its architecture is highly amenable to modern 

compiler optimizations, particularly the structured 

pruning and quantization offered by NVIDIA's TensorRT. 

The regular, matrix-multiplication-heavy nature of 

transformers can, in some cases, be more efficiently 

mapped to the underlying GPU hardware than the 

complex, multi-branch architectures of some advanced 

CNNs. This implies that future research into edge 

performance should consider not just theoretical FLOPs, 

but also the model's compatibility with deployment-time 

optimizers. 

3.4 Comparison with Existing Literature 

Our findings represent a significant advancement over the 

current state-of-the-art. Previous studies have primarily 

focused on using CNN-based models like YOLOv5 or 

YOLOv7 for post-flight analysis (Smith & Jones, 2023). 

While effective, these methods lack the real-time, 

decision-making capability of our EDGE-SFOS 

framework. Other work exploring transformers for remote 

sensing has often concluded they are too computationally 

demanding for edge deployment (Chen et al., 2022). Our 

work directly refutes this, demonstrating that with proper 

model selection (RF-DETR) and aggressive optimization 

(INT8 quantization), transformers can outperform leading 

CNNs on edge hardware. 

3.5 Qualitative Analysis and Limitations 

Quantitative metrics are supported by our qualitative 

observations in the field. Figure 4 shows a representative 

example where YOLOv12-L failed to detect a small, 

early-stage hot spot, while RF-DETR, powered by the 

EDGE-SFOS platform, correctly identified and flagged it 

for inspection. 
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Figure 4. Qualitative Comparison. (Left) YOLOv12-L 

misses a subtle Class 1 hot spot. (Right) RF-DETR 

correctly identifies the same anomaly, showcasing its 

higher sensitivity. 

Despite these strong results, we acknowledge the 

limitations of our study. Our experiments were conducted 

in a single geographical region with a specific type of 

monocrystalline solar panel. The performance could vary 

with different panel types or in different environmental 

conditions. Furthermore, our EDGE-SFOS v1.0 system 

currently operates with a single, continuously running 

model. 

3.6 Implications and Future Directions 

The implications of this work are twofold. For the solar 

industry, our EDGE-SFOS provides a validated blueprint 

for a next-generation, fully autonomous inspection system 

that can drastically reduce costs and improve safety. For 

the Earth Observation, Robotics and AI community, our 

findings provide strong evidence that the era of 

transformer dominance for images processing is extending 

to resource-constrained edge devices. 

Our future work will proceed along three main tracks, the 

first is “Dynamic Model Switching” which we will 

implement a more advanced control logic within EDGE-

SFOS to dynamically switch between high-speed and 

high-accuracy models based on flight dynamics, further 

optimizing the system's efficiency. The second is “Dataset 

Expansion and Release”, where we will expand our 

"SolarTherm" dataset to include more diverse conditions 

and panel types. We intend to open-source this dataset and 

our model weights to foster further research. The third is 

“Sensor synergy”, we will explore fusing the thermal data 

with RGB imagery to improve classification accuracy and 

distinguish between hot spots and other types of soiling or 

damage. 

4. Conclusion & References

This paper introduced the EDGE Solar Farms Observation 

System v1.0 (EDGE-SFOS), an end-to-end framework for 

real-time, autonomous detection of solar panel hot spots 

using an intelligent UAV. We have demonstrated that by 

embedding advanced tiny AI models directly onto an 

onboard edge computer, the paradigm of UAV-based 

inspection can be shifted from passive data collection to 

active, real-time perception and decision-making. 

Our primary findings are twofold and decisive. First, we 

established that a modern, lightweight transformer-based 

architecture, RF-DETR, is not only more accurate but also 

surprisingly more efficient for this real-world robotics 

task. Deployed on our EDGE-SFOS platform, it 

outperformed a state-of-the-art YOLOv12-L model, 

delivering a 10.9% increase in detection accuracy while 

simultaneously proving to be 24% faster post-

optimization. 

The main message of this work is clear and impactful: the 

prevailing assumption that transformers are too 

computationally expensive for high-performance edge 

robotics is now outdated. Our results provide compelling 

evidence that for complex perception tasks, optimized 

transformer architectures represent the new state-of-the-

art, offering a superior combination of accuracy and 

efficiency. The EDGE-SFOS framework serves as a 

validated, replicable blueprint for the next generation of 

intelligent autonomous systems, paving the way for more 

efficient, safer, and more effective field robotics not just 

in solar energy, but across a multitude of industries. As a 

commitment to advancing research in this domain, we 

plan to open-source the "SolarTherm" dataset and the 

optimized model weights used in this study. 
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