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Abstract

Assessing the health of individual spruce trees in forests is critical for early detection of bark beetle infestations and effective
forest management. This study presents a novel methodology that leverages multi-view uncrewed aerial vehicle (UAV) imagery to
improve tree health classification at the individual tree level. High-resolution images were collected over a spruce-dominated forest
and processed to extract multiple perspectives of each tree crown. Compared to the typical case of using one orthophoto per tree,
our process yielded on average 31 images per tree crown. Deep learning models, including VGG16 and a simple CNN, were trained
to classify trees as healthy, infested, dead, or non-spruce. Results demonstrate that incorporating multi-view images increased
classification accuracy, particularly for the challenging infested and non-spruce categories, compared to traditional orthophoto-
based approaches. The best-performing model achieved an overall accuracy of 0.94 and a macro Fl-score of 0.85, with notable

improvements in detecting infested trees.

1. Introduction

In uncrewed aerial vehicle (UAV) photogrammetry, image data-
sets are captured with high forward and side overlaps to enable
robust image orientation and support accurate 3D modeling and
surface reconstruction. Usually, when analysing UAV remote
sensing datasets, processed products like point clouds or or-
thophotos are utilised. However, the raw high-resolution UAV
images represent a substantial volume of data that is often not
utilised in analysis tasks. Using the raw images might be be-
neficial, especially for deep learning (DL) methods that benefit
from large amounts of data.

In the context of forest monitoring, high-resolution UAV im-
age datasets enable detailed and precise analysis of forests at
the individual tree level. Using orthorectified images provides
only a single nadir perspective of each tree crown, limiting the
view to one image per tree. On the other hand, we could use
images of the tree crown from each image it is visible in, giving
typically tens of perspectives per tree from different directions.
The objective of this study was to develop a novel methodology
to utilize multi-view images of individual trees from aerial im-
ages, and to study how utilising the multiview images helps in
a tree health classification machine learning (ML) task.

This work focuses on detecting individual spruces in a spruce
dominated forest, with an emphasis of identifying trees infected
by the European spruce bark-beetle (I. typographus). Detected
spruces are classified as healthy, infested, or dead, while non-
spruce trees make up a fourth class. Bark beetles are a major
forest pest and Europe has seen a surge of bark-beetle caused
damage in the last decades (Patacca et al., 2023). The visible
signs of a bark beetle infestation are sawdust-like powder at the
base of the tree, entrance holes at the lower part of the trunk,
bark shedding at the higher parts of the trunk, and changes in
crown colour (Barta et al., 2022). The earliest signs, sawdust
and entrance holes, are small and close to the ground, and thus

not visible in aerial photos. Analysis of orthophotos can only
detect coloration symptoms that affect the top of the tree crown.
Perspective photos have the advantage that they can show col-
ouration changes at the lower parts of the tree crown.

While this study uses multi-view perspective images to detect
bark beetle symptoms, the approach might be valuable in other
tasks as well. For example, the shape of the tree crown from
an oblique view may be relevant for tree species classification
or the assessment of tree quality, such as identifying anomalies
due to nutrient deficiencies or snow damages.

2. Materials and Methods
2.1 Data gathering

The study area was located in the Helsinki Central Park and
it was of size of 300 m x 220 m. The dataset was captured
using the DJI Zenmuse P1 RGB camera onboard DJI Matrice
300RTK quadcopter drone on 27.9.2023. The images were
taken at an altitude 97 metres above ground from the nadir
angle. Spruce trees in the area were on average 30 m tall, so
the flying altitude was 67 metres above the forest canopy. The
study area was divided into training, validation and test areas,
shown in The area included a total of 1609 trees
from classes healthy (903), infested (25), dead (192) and non-
spruce (489). additionally shows how the trees were
distributed among the training, validation and test splits.

2.2 Photogrammetric processing

Photogrammetric processing was used to generate a 3D model
of the study area based on UAV images. This processing
produced a point cloud representing the 3D geometry of the
area, which was further converted into a digital surface model
(DSM), which shows the canopy height of the forest, and a di-
gital ortho map (DOM). The processing also yielded the precise
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Figure 1. Orthoimage of the study area divided to train, validation and test areas. The areas were split in such a way that the number of
infected trees would be sufficiently high in both the train and test areas.

Healthy Infested Dead Non- | Total
Split Spruce
Train 495 11 107 389 1002
Val. 72 3 16 37 128
Test 336 11 69 63 479
Total 903 25 192 489 1609

Table 1. Summary of dataset splits.

camera positions and orientations of the images, as well as the
camera distortion parameters. Datasets were processed using
Agisoft Metashape Professional photogrammetric software.

2.3 Tree detection

In this study, we used two methods to locate the tree bases.
The training and test datasets were created using tree locations
from the reference tree database with individual tree inform-
ation generated from the national 5 points/m LiDAR dataset
(Metsékanta, [Hyyppa et al., 2024). The tree crown diameter
was estimated based on the trunk diameter estimate of the data
and trees were assumed to be circular. The reference tree loca-
tions in the test set were partially manually cleaned.

For a fully automatic tree detection method, we use bounding
boxes obtained by the detection ML model YOLOv11(Redmon|
let al., 2016). The bounding boxes were converted to ellipses
with the same width and height as the bounding box, because
an ellipse represents the tree shape more naturally and ap-
pears more consistent from multiple viewing angles than a rigid
north-east-aligned rectangle. The ML detection method uses
only the DOM as input. The YOLO11m model, pretrained on
the COCO dataset, was fine-tuned for the one-class tree detec-

tion task on our test set for 200 epochs with default parameter
values.

The ML tree detection method is presented here in order to
show that a fully automatic pipeline from UAV images to multi-
view detection is feasible. However, the subsequent segmenta-
tion and classification tasks utilise only the reference tree loca-
tions. This is to maximize the size and quality of datasets used
for classification, which is the focus of this study. Even though
the ML tree detection results are satisfactory (see section @,
it misses some trees, and missing even a few trees in the crucial
infected class makes evaluation uncertain, since there are only
25 of them in the dataset.

2.4 Individual tree multi-view image extraction

To preprocess UAV data for single-tree multi-view analysis, it
is necessary to identify each tree in each image. To achieve
this, the 3D geometries of the trees were approximated and
then projected to the original images. The projected geomet-
ries provided image segments for each individual tree in every
image it appears in. An example of the results of the projection
and segmentation are shown in|[Figure 2

To approximate the 3D shapes of trees we utilized a digital ter-
rain model (DTM), a digital surface model (DSM), and a DOM
of the area. The tree bases were detected as polygons in the
DOM. The z-coordinate of the base was determined from the
DTM and the height of the top was determined from the DSM.
The DSM and DOM were obtained by photogrammetric pro-
cessing, while the DTM is based on the national lidar survey.
In our approximation trees were assumed to have the geometry
of an upright prism with an elliptical base, although any other
convex shape could have been used as the base.

Projection of a point from a 3D scene to the 2D image plane of
a camera is possible given the extrinsic and intrinsic parameters
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Figure 2. An example of the projetion results for one image.
Original image (top), segmentation based on projected cylinders
(middle), and cut-out images of individual trees (bottom).

of the camera (Forstner and Wrobel, 2016, chap. 12.1). The
camera parameters were obtained during the photogrammetric
processing, and were thus available in our analysis. The pro-
jection of a scene point x, = (s, ys, 2s) to the corresponding
point in the camera coordinate system X. = (Zc, Ye, Zc) Uses
the collinearity equation (Forstner and Wrobel, 2016, chap.|

12.1.3.1).

Given the projection equations for a single point, projecting the
upright prisms representing trees is simply a matter of project-
ing enough points of the prism for a sufficient resolution. In
practice, we approximated the base and top ellipses with 16
equally spaced points each and projected those. The convex
hull of the 32 projected points gives the image segment of the
prism.

The tree image segments will overlap as some of the trees oc-
clude others behind them. Which tree is in front can be de-
termined based on the horizontal distance from the ground nadir
point of the camera to the tree. This works in the special case of
the simple upright geometry of trees. For more complex geo-
metries the overlaps might need to be resolved by a more soph-
isticated technique like ray casting. Segments with area less
than 25% of the mean of all segment areas were deemed too
small to contain useful information and filtered out.

2.5 Image classification

The dataset of single-tree images was used to train supervised
DL models, which classify trees to four classes (healthy, infes-
ted, dead, non-spruce). The VGG16 (Simonyan and Zisserman,|

and a simple 2D convolutional neural network (CNN2D
as described in|Turkulainen et al., 2023) were used in this study.
The CNN was chosen as a simple model with few parameters,
but still suitable to the task. The VGG16 on the other hand is
a pretrained model with more layers and parameters. Specific-
ally, the model used was VGG16-BN with pretraining on the
ImageNet dataset. A visual transformer model

al., 2021) was also considered, but dropped due to poor per-
formance in preliminary runs.

The classification models were trained for 500 epochs, and
the weights that maximize accuracy on the validation set were
used. The models required hyperparameter tuning to avoid
overfitting. A hyperparameter optimisation based on random
sampling was used to select optimal hyperparameters for each
model. The training data was augmented with random rotations
and flips for all models. The models and the optimised hyper-
parameters are summarised in[Table 2] Each model was trained
5 times with different seeds, so that average performance could
be evaluated.

Since each tree appears in multiple images, the predictions for
one tree are aggregated to get the final prediction. Multiple
aggregation methods were tested, including choosing the most
commonly predicted class (mode), weighing the predictions
by confidence and taking the class with largest total weight
(weighted mode), and taking the prediction with highest con-
fidence.

2.6 Evaluation

To test whether using multi-view data gives better results than
using orthophotos, a DL model was trained also with the ortho-
photo dataset. The results of the orthophoto model were then
compared to the multi-view model results.

The models were evaluated on data from a held-out test portion
of the study area. Classification accuracy was evaluated with
overall accuracy (OA), precision, recall and F}-score. Out of
these OA takes into account all classes, while precision, recall
and F7-score are class specific. The averaged F}-score across
all four classes was also calculated (macro F}).

Overall accuracy was calculated as the fraction of correct pre-
dictions out of all predictions. The precision and recall met-
rics focus on different types of errors. Precision depends on
false positives, while recall depends on false negatives. Usually,
high recall can be achieved by sacrificing on precision and vice
versa, and the challenge is to do well on both at the same time.
The F1-score is the harmonic mean of precision and recall, and
is used as a compromise metric between the two. Given the
number of true positives (tp), false positives (fp), and false
negatives (fn), precision, recall and F;-score are calculated as
follows:

.. tp
precision = , (H
tp+ fp
tp
1l = , 2
reca, W+ fn 2)
2. precision - recall 3)

precision + recall -

All of the aforementioned metrics range from O to 1, where
higher is better. When reporting results we report percentage
points ranging from 0 to 100 for conciseness and readability.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-13-2025 | © Author(s) 2025. CC BY 4.0 License. 15



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10-12 September 2025, Espoo, Finland

View Model Parameters Batch size  Learning rate  Weight decay
Orthophoto  CNN ~ 200000 20 0.000002 0.002
Orthophoto  VGG16  ~ 134 million 20 0.0000006 0.02
Multi-view  CNN ~ 200000 48 0.000003 0.003
Multi-view  VGG16  ~ 134 million 44 0.0000001 0.003

Table 2. Classifier models listed with their number of trainable parameters and the optimised hyperparameters that were used in
training.

Figure 3. Detected trees (yellow) and reference trees (red) in the
test area.

3. Results and discussion
3.1 Tree detection results

The YOLOv11 based detection correctly located 460 trees in
the test area (true positives), missed 19 trees (false negatives),
and detected 111 extra trees (false positives). Based on this, the
detection can be said to have precision 80.6, recall 96.0 and an
Fi-score of 87.6. As can be seen in|Figure 3| most of the false
positives were due to duplicate detections of the same tree. This
happened especially often to the non-spruce trees that had lar-
ger crowns compared to spruces. The successful detections are
very similar to the reference detection, which means they would
produce similar projections in the multi-view image extraction
process.

3.2 Multi-view image extraction results

Using the reference tree locations, each tree had on average 31
multi-view projections. The distribution of projection counts
among the trees is visualised in [Figure 4] This means utilising
multi-view data increased the amount of available data by an or-
der of magnitude. One tree in the test area had zero projections,
removing it from the dataset. However, this tree was inspected
and found to be a mistake in the reference tree locations — there
were two overlapping locations for the same tree. Apart from
the one outlier, all trees had at least 15 views. The quality of
the projections was varying. Some of the cut-out images barely
showed the tree crown, only showed the trunk of the tree, or in
the worst case, didn’t show the correct tree at all.

Distribution of projections per tree

Mean: 30.97 ]

Count

15 20 25 30 35 40 45
Number of projections

Figure 4. Histogram of the number of multi-view projections per
tree.
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View Model OA Macro I Class Precision Recall F
Healthy 94.9+0.5 97.2+0.5 96.1+0.1
Infested 48.9+5.8 41.8+5.0 44.6%2.1
CNN 91.7£0.2  76.8£0.6
Dead 88.2+2.5 92.8+0.0 90.4%1.3
Orthophoto Non-Spruce  83.4+2.1 69.8+£1.6 76.0+1.4
Healthy 94.4+0.8 96.0£1.0  95.2+0.7
VGG16 91.0+1.1 795425 Infested 52.1+£10.6  65.5+4.1  57.546.3
Dead 92.1£3.0 90.4+1.3 91.2+1.0
Non-Spruce  79.6+4.0 69.8+6.6  74.2+4.2
Healthy 95.5+0.1 97.1£0.5  96.3x0.2
CNN 033203 844413 Infested 53.4+6.2 80.0+4.1 64.0£5.6
Dead 91.6+1.3 88.4+0.0  90.0+0.6
.. Non-Spruce  95.1+1.6 80.6£0.7  87.3+0.9
Multi-view
Healthy 96.2+0.2 97.6:0.4  96.9+0.2
VGG16 94.0404  85.1+17 Infested 56.9+4.2  74.5+10.0 64.4%5.8
Dead 93.4+1.5 89.9+1.8  91.6+0.7
Non-Spruce  92.6+x1.4  82.9+1.7 87.4+1.4

Table 3. Classification accuracy metrics. Each model was trained five times with different seeds. The mean and standard deviation of
the five runs is reported for each metric. Higher is better for all shown metrics. The highest mean score in each metric is bolded.

3.3 Classification results

The accuracy metrics of trained classifiers are presented in
The displayed results only measure classification ac-
curacy, omitting error caused by the object detection step. Al-
though many ways of aggregating the multi-view predictions
were tested, the different aggregation methods yielded very
similar results. Thus, all results displayed are using the simplest
aggregation method (mode).

The table shows for each metric the mean and standard devi-
ation of five runs with different seeds. Because of the lim-
ited test set the standard deviations of the rare infected class
are sometimes quite high (up to 11 percentage points). Des-
pite the variance between runs, a clear ordering can be seen
in the macro Fi-scores. The VGG16 model is better than the
CNN model and the multi-view data is better than the ortho-
photo data. Furthermore, the improvement from incorporating
multi-view data was larger than the improvement from using a
better model. All models have a high overall accuracy (higher
than 90 percentage points), but a significantly lower macro F-
score. This is mainly due to the difficult but small infected class,
which doesn’t have much effect on overall accuracy, but has a
large effect on the macro F-score. The orthophoto-based CNN
performs very poorly on the infected class, but improves a lot
when multi-view data is used — the Fj-score jumps from 44.6
to 64.0 percentage points. Overall, the best classification results
were achieved using the multi-view VGG16, yielding F'-scores
of 96.9 for healthy, 64.4 for infested, 91.6 for dead, and 87.4 for
non-spruce trees.

3.4 Conclusions and further research

The multiview method provided promising results, significantly
improving the health classification of spruce trees in a study
area impacted by the bark beetle. The improvements were
the greatest for the challenging classes infested and non-spruce
trees. Our further research will focus on additional testing of
the method in different analysis tasks and environments.
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