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Abstract 
 
UAV-based bridge inspections offer significant advantages in efficiency and safety, yet they face a fundamental trade-off between 
achieving the low Ground Sample Distance (GSD) required for high-precision damage analysis and maintaining operational 
efficiency. Acquiring imagery fine enough to quantify fine cracks (e.g., < 0.3 mm width) necessitates close-range flights that increase 
flight time and data volume, thereby diminishing the core benefits of UAVs. This study proposes and validates a workflow that 
leverages Super-Resolution (SR) technology to enhance the accuracy of quantitative analysis from efficiently captured, low-
resolution orthomosaics. To achieve this, we first conducted a comparative analysis of four representative SR models (FSRCNN, 
SRGAN, Real-ESRGAN, and SwinIR) to identify the optimal architecture for bridge crack restoration. Second, the selected model 
was applied to a real-world facade orthomosaic (GSD ≈ 0.3 mm) generated from UAV imagery, followed by a quantitative 
comparison of crack length and width measurement accuracy before and after SR application. The results showed that Real-
ESRGAN delivered the best performance. Most notably, the application of SR dramatically reduced the average relative error in 
crack width measurement from a prohibitive 149.11% to a practical 10.03%, while also more than halving the error in length 
measurement from 4.80% to 1.93%. This study demonstrates that SR is not merely a visual enhancement technique but a practical 
solution that enables the acquisition of high-precision, quantitative data comparable to that of a detailed safety inspection, all from 
safe and efficient UAV operations. 
 
 

1. Introduction 

The maintenance and safety assessment of aging infrastructure, 
such as bridges, are critical for public safety. In recent years, 
inspections using Unmanned Aerial Vehicles (UAVs) have 
become a standard practice, offering significant advantages in 
efficiency and accessibility over traditional methods (KALIS, 
2022). However, a fundamental challenge remains: the trade-off 
between operational efficiency and measurement accuracy. To 
accurately detect and quantify structurally significant fine 
cracks (e.g., widths < 0.3 mm), a very low Ground Sample Dis-
tance (GSD) is required. Achieving this necessitates flying the 
UAV dangerously close to the structure, which drastically in-
creases the number of required images, flight time, and opera-
tional complexity, thereby undermining the primary benefits of 
using a UAV. 
 
To address this limitation, Super-Resolution (SR) technology 
has emerged as a promising solution. SR aims to computational-
ly reconstruct a high-resolution (HR) image from one or more 
low-resolution (LR) inputs, potentially bridging the gap be-
tween efficient data acquisition and high-precision analysis. 
While various deep learning-based SR models, including those 
based on CNNs, GANs, and Transformers, have been developed, 
their comparative performance on the specific task of enhancing 
bridge facade orthomosaics for quantitative crack analysis has 
not been thoroughly investigated. It remains unclear which ar-
chitectural approach is most suitable for restoring the unique 
textures of concrete cracks and how the application of SR quan-
titatively impacts the accuracy of crack measurements in a real-
world scenario. 
 
This study aims to systematically evaluate the effectiveness of 
SR technology for high-precision bridge crack analysis from 

UAV-captured orthomosaics. To achieve this, our research is 
structured into two main experiments. First, we conduct a com-
parative performance analysis of four representative SR models 
(FSRCNN, SRGAN, Real-ESRGAN, and SwinIR) to identify 
the optimal model for this task. Second, we apply the selected 
optimal model to a real-world, UAV-generated facade orthomo-
saic (GSD ≈ 0.3 mm) to create an SR-enhanced version (GSD ≈ 
0.1 mm). Finally, we perform a rigorous quantitative analysis 
by comparing crack segmentation results, as well as length and 
width measurements, between the original and the SR-enhanced 
orthomosaics against ground-truth data. This study provides a 
quantitative validation of SR as a practical tool to overcome the 
GSD limitations inherent in UAV-based inspections. 
 

2. Methodology 

The overall workflow of this study, as illustrated in Figure 1, 
consists of two main experiments. 
 
The first experiment is the process of selecting the optimal Su-
per-Resolution (SR) model. For this purpose, four SR models—
FSRCNN, SRGAN, Real-ESRGAN, and SwinIR—are trained 
and their performance is comparatively evaluated using a self-
constructed high-resolution dataset. 
 
The second experiment aims to verify the practical applicability 
of the selected optimal model. Façade orthomosaics generated 
from low-resolution images acquired by a UAV, to which the 
optimal SR model selected in Experiment 1 is applied. Finally, 
crack segmentation, length, and width measurements are per-
formed on the façade orthomosaics before and after SR applica-
tion. The results are then compared to quantitatively analyze the 
effectiveness of the super-resolution technology. 
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Figure 1. Workflow of the data preparation, processing and 

analysis used in this study 
 
2.1 Data Preparation 

2.1.1 Data Acquisition 

This study constructed two types of image datasets with differ-
ent purposes and specifications for the development and per-
formance verification of Super-Resolution (SR) models. Both 
datasets were acquired from bridges classified as "Category 3 
facilities" under South Korea's "Special Act on the Safety Con-
trol and Maintenance of Establishments." 
 
First, the High-Resolution (HR) dataset for SR model training 
was acquired at Dongcheon Bridge (an RC slab bridge with a 
length of 38.4 m) located in Daegu, South Korea. To secure 
ultra-high-resolution images with a Ground Sample Distance 
(GSD) of 0.1 mm, a high-performance mirrorless camera, the 
Fujifilm GFX100 II (11648×8736 pixels), equipped with a GF 
55mm lens was used. A total of 690 HR images of the abut-
ments and piers were obtained while maintaining a shooting 
distance of approximately 1.4 m from the structure's surface. 
 
Second, the Low-Resolution (LR) dataset for façade orthomosa-
ic generation and verification of the SR model’s applicability 
was acquired at Jujeong Bridge (an RC box girder bridge with a 
length of 24.0 m) in Jinju, Gyeongsangnam-do, South Korea. A 
DJI Mavic 3 Classic UAV (5280×3956 pixels) was utilized for 
image acquisition. The flight was conducted maintaining an 
offset distance of 1 m from the structure, aiming for a GSD of 
approximately 0.3 mm. However, image distortion occurred 
during the capture of the bridge's bottom slab due to the UAV 
gimbal's upward angle limitation (+35°). Furthermore, the non-
uniformity of the shooting distance caused by manual flight 
resulted in the final acquired images having a GSD distribution 
ranging from approximately 0.25 mm to 0.4 mm. 
 

2.1.2 Facade Orthomosaic Generation 

In this study, Agisoft Metashape software was used to generate 
facade orthomosaics from the bridge images captured by the 
UAV. Metashape was selected for its robust image alignment 
capabilities, considering the characteristic of the bridge's under-
side being a GPS signal-shaded area. 
 

The facade orthomosaic generation process is as follows. First, 
the relative positions of the images were estimated through 
Bundle Adjustment. At this stage, a model in a relative coordi-
nate system without an absolute scale is created due to the ab-
sence of GPS information. To enable quantitative analysis of 
damages such as cracks, the absolute scale of the model was 
calibrated using a scale reference (a triangular ruler) attached to 
the structure. 

 
Second, to enhance the quality of the 3D model, a Dense Point 
Cloud was first generated, followed by a refinement process of 
manually removing the background and noise. This was to pre-
vent the generation of unnecessary data and to reduce the mod-
el's complexity, which can occur when generating a mesh di-
rectly from a depth map. 
 
Third, a 3D mesh model was constructed based on the refined 
point cloud, and manual editing was performed to simultaneous-
ly improve processing efficiency and model precision. Finally, 
facade orthomosaics for each bridge member were generated as 
the final output from the completed 3D model by applying a 
Planar Projection method. 
 
The size and GSD information of the generated facade ortho-
mosaics are presented in Table 1, and the facade orthomosaics 
are shown in Figure 2. The facade orthomosaics were generated 
and classified by bridge component, and the front and back of 
the piers were specified as 'Front' and 'Back', respectively. Due 
to the non-uniform shooting distance between the UAV camera 
and the structure during manual flight under the bridge, the 
GSD of the generated facade orthomosaics ranged from 0.25 
mm to 0.4 mm. 
 

Bridge Image 
name 

Pixels 
(W x H) 

GSD 
(mm) 

Jujeong A1 31473 x 9612 0.25 
Jujeong A2 23505 x 9278 0.34 
Jujeong S1 19356 x 9731 0.42 
Jujeong S2 18059 x 9592 0.45 
Jujeong S3 23186 x 12545 0.35 
Jujeong S4 23164 x 11683 0.35 
Jujeong P1_Front 27867 x 9391 0.3 
Jujeong P1_Back 22861 x 7533 0.35 
Jujeong P2_Front 24203 x 8867 0.33 
Jujeong P2_Back 19830 x 7203 0.4 
Jujeong P3_Front 19963 x 7218 0.4 
Jujeong P3_Back 24157 x 9674 0.33 

Table 1. Pixel dimensions (W x H) and Ground Samplin g Dis-
tance for the Orthomosaics of Jujeong bridge 

 

 
Figure 2. Facade Orthomosaic of a Pier from the Jujeong Bridge 
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2.1.3 Super-Resolution Training Dataset Construction 

The dataset for training the SR models was constructed based 
on single high-resolution images taken with a digital camera at 
Dongcheon Bridge. Out of a total of 690 original high-
resolution images, 345 images containing crack objects were 
selected for use. 
 
A dataset composed of paired LR and HR images is essential 
for SR model training. In this study, the tile size of the LR im-
ages was fixed at 256×256 pixels, and the tile size of the HR 
images was set according to the target scale factor. As the target 
scale factor in this study was set to 3x, the HR images were tiled 
into 768×768 pixels. Subsequently, only the tiles that clearly 
contained crack objects were further selected. 
 

The LR tiles corresponding to the selected HR tiles were gene-
rated by downsampling them to a size of 256×256 pixels using 
the Bicubic interpolation method provided by the OpenCV 
library. Through this process, a final training dataset consisting 
of LR-HR image pairs was constructed. The entire dataset was 
randomly split into a training set and a validation set at a 9:1 
ratio for model training and performance verification. The com-
position of the constructed dataset is summarized in Table 2. 

 
Tile size Image # Train # Validation # Sum 
768x768 HR 5539 615 6154 
256x256 LR 5539 615 6154 

Table 2. Overview of the SR Dataset Based on Tile Size 
 
2.2 Analysis Methodology 

2.2.1 Super-Resolution models 

In this study, to select the model most optimized for the super-
resolution of facade orthomosaics, deep learning models based 
on three representative architectures were comparatively ana-
lyzed. The selected models are the CNN (Convolutional Neural 
Network)-based FSRCNN, the GAN (Generative Adversarial 
Network)-based SRGAN and Real-ESRGAN, and the Trans-
former-based SwinIR. Each model possesses distinct ad-
vantages in computational efficiency, realistic texture restora-
tion, and learning long-range dependencies, respectively. 
 
The performance of the models was evaluated through a com-
prehensive integration of both quantitative metrics and qualita-
tive assessment. For the quantitative evaluation, Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure 
(SSIM) were utilized. Qualitative assessment involved a com-
parative analysis of the visual quality of the generated output. 
Notably, for GAN-based models, which are capable of exhibit-
ing superior perceptual quality despite yielding lower PSNR 
scores, both quantitative metrics and visual naturalness were 
concurrently considered during the final model selection pro-
cess. 
 

2.2.2 Crack segmentation and Quantitative Analysis 

In this study, the Mask2Former model, which uses a Swin 
Transformer as its backbone network, was adopted for crack 
segmentation (Cheng et al., 2022). A key feature of 
Mask2Former is the application of a masked attention-based 
transformer structure in its decoder. According to previous re-
search, combining it with a Swin Transformer backbone has 
been reported to achieve particularly high segmentation accura-
cy (Liu et al., 2021). For model training, instead of constructing 

a new dataset, pre-trained model weights from the study by Jeon 
(2023) on concrete tunnel crack images were utilized. 
 
The model's segmentation output is in the form of a binary mask
 but tends to be predicted thicker than the actual crack. Therefor
e, to extract the precise center path of the crack, the segmentatio
n area was first converted into a 1-pixel-thick skeleton using sci
kit-image's skeletonization algorithm. From this skeleton, Open
CV's findContours was used to extract continuous contours, layi
ng the groundwork for calculating the crack's length. 
 
The crack width was measured through a multi-directional 
search centered on each point of the skeleton. From a center 
point c=(x0,y0), pixels were searched in multiple directions at 
10-degree intervals to find the boundary where the crack region 
(value 1) ends. A threshold-refined segmentation mask was 
used to improve the accuracy of boundary detection. As speci-
fied in the equation below, the width in a given direction (di) is 
calculated by summing the distances to the boundary in the 
search direction (rf) and the opposite direction (rb). Among the 
several width values calculated at a single point, the minimum 
value was adopted as the final width for that point. This value 
was then multiplied by the GSD to convert it to millimeters 
(mm). 

 

 
 

3. Results and Discussions 

3.1 Super-resolution models comparison 

To objectively compare the performance among models, all 
experimental conditions except for the model architecture were 
set identically. Specifically, all models used the same input and 
output data. The training process was conducted for 20 epochs 
with a batch size of 2. The Adam optimizer was used with a 
learning rate of 1×10−4. Mean Squared Error (MSELoss) was 
commonly applied as the loss function. No data augmentation 
techniques were used, and training was performed in a 
DataParallel environment using 2 GPUs. This approach was 
intended to clearly analyze the impact of structural differences 
between models on super-resolution performance. 
 
In the quantitative evaluation, the changes in Loss, Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index Meas-
ure (SSIM) for the training data of each model are visualized 
per epoch in Figure 3. Analysis of the graphs in Figure 3 shows 
that in 'Loss per Epoch', the Real-ESRGAN model maintained 
the lowest loss values throughout the training process and ex-
hibited the most stable learning trend. In Figure 3, the Real-
ESRGAN model also sustained the highest PSNR values across 
all epochs, demonstrating its superior pixel-level image restora-
tion capability. 
 
The final PSNR and SSIM performance of each model on the 
validation dataset is presented in Table 3. The results show that 
the Real-ESRGAN model achieved a PSNR of 34.20 dB and an 
SSIM of 0.82, outperforming the other compared models in 
quantitative performance metrics. Considering the stability and 
performance improvement trend during the training process, as 
well as the final performance metrics on the validation dataset, 
the Real-ESRGAN model demonstrated the most outstanding 
super-resolution performance among the SR models compared 
in this study. This proves that Real-ESRGAN possesses excel-
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lent restoration capabilities in both pixel-level accuracy (PSNR) 
and visual quality (SSIM). 
 

 
Figure 3. Training performance of super-resolution models per 

epoch 
 

Model FSRCNN SRGAN Real-
ESRGAN SwinIR 

PSNR(dB) 31.46 31.0 34.2 31.6 

SSIM 0.73 0.81 0.82 0.75 

Table 3. Comparison of SR models using PSNR and SSIM met-
rics 

 
3.2 Effect of Super-resolution 

This section comparatively analyzes the crack width and length 
measurement results between the original facade orthomosaics 
and the super-resolved results using the Real-ESRGAN model. 

 

3.2.1 Crack Length Comparision 

The accuracy of crack length measurements before and after the 
application of super-resolution was evaluated by comparing 
them against the Ground Truth (GT), and the results are pre-
sented in Table 4. The GT lengths of the 15 crack samples used 
in the analysis were calculated based on manually created 2D 
crack vectors. For the facade orthomosaics before and after SR 
application, crack vectors were automatically extracted and their 
lengths were calculated using a crack segmentation model. 

 

The analysis revealed that the average relative error for the SR-
applied facade orthomosaic (GSD ≈ 0.1 mm) was 1.93%, which 
is less than half of the 4.80% error for the non-SR facade or-
thomosaic (GSD 0.25-0.4 mm). The maximum relative error 
also showed twice the stability at 5%, compared to 10% for the 
original image. For instance, crack #6 exhibited a high error of 
10% without SR, but this was significantly improved to 2% 
after SR application. These results suggest that the SR model 
reduces the variance in crack measurements and provides more 
consistent results. 

 

Furthermore, the errors in crack lengths calculated from the SR 
facade orthomosaic showed a balanced characteristic, with a mi
x of overestimation (negative error) and underestimation (positi
ve error), indicating no significant prediction bias in a particular
 direction. In contrast, the original facade orthomosaic showed a
 clear tendency to underestimate the length of most cracks. This 
is attributed to the fact that the resolution of the original imager
y was not high enough to adequately capture the detailed structu
re of the cracks. 

 

Overall, super-resolution (SR) technology effectively restores 
fine structural details, such as the subtle curvatures of cracks, 
thereby significantly enhancing the accuracy and stability of 
crack measurements (Figure 4). Accordingly, the application of 
SR models to façade orthomosaics can be regarded as a practi-
cal and reliable approach to overcome the inherent limitations 
of conventional low-resolution image analysis. 

  

 
Figure 4. Comparison of Crack length,  (a) GT by Crack 

Segmentation: Length = 64.69 mm,  (b) Crack Segmentation in 
LR Facade Orthomosaic: Length = 62.24 mm, (c) SR Façade 

Orthomosaic: Length = 63.46 mm

(a)

(b)

(c)
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Table 4. Comparision of Crack length measurements 
 
Measurement 

(mm) 
 GSD ≈ 0.1mm (After SR)  GSD ≈ 0.3mm (Before SR) 

No. Width 
 

Calculation Absolute error Relative error 
 

Calculation Absolute error Relative error 
1 

0.1 

 
0.1 0 0% 

 
0.33 0.23 230% 

2 
 

0.12 -0.02 20% 
 

0.33 0.23 230% 
3 

 
0.12 -0.02 20% 

 
0.36 0.26 260% 

4 
 

0.1 0 0% 
 

0.77 0.67 670% 
5 

 
0.2 -0.1 100% 

 
0.39 0.29 290% 

6 
 

0.12 -0.02 20% 
 

0.42 0.32 320% 
7 

0.15 

 
0.12 0.03 20% 

 
0.36 0.21 140% 

8 
 

0.12 0.03 20% 
 

0.6 0.45 300% 
9 

0.2 

 
0.2 0 0% 

 
0.66 0.46 230% 

10 
 

0.2 0 0% 
 

0.6 0.4 200% 
11 

 
0.2 0 0% 

 
0.6 0.4 200% 

12 
 

0.2 0 0% 
 

0.36 0.16 80% 
13 

0.3 

 
0.31 -0.01 3% 

 
0.36 0.06 20% 

14 
 

0.29 0.01 3% 
 

0.7 0.4 133% 
15 

 
0.29 0.01 3% 

 
0.44 0.14 47% 

16 
 

0.31 -0.01 3% 
 

0.8 0.5 167% 
17 

 
0.29 0.01 3% 

 
0.66 0.36 120% 

18 
0.4 

 
0.42 -0.02 5% 

 
0.44 0.04 10% 

19 
 

0.42 -0.02 5% 
 

0.44 0.04 10% 
20 

0.45 

 
0.42 0.03 7% 

 
0.44 0.01 2.2% 

21  0.42 0.03 7%  0.66 0.21 47% 
22 

0.5 

 
0.52 -0.02 4% 

 
0.74 0.24 48% 

23 
 

0.48 0.02 4% 
 

0.66 0.16 32% 
24 

 
0.48 0.02 4% 

 
0.8 0.3 60% 

25 0.55 
 

0.52 0.03 5% 
 

0.6 0.05 9% 
26 0.6  0.62 -0.02 3%  0.6 0.1 14% 

Table 5. Comparision of Crack width measurements 

Measurement 
(mm) 

 GSD ≈ 0.1mm (After SR)  GSD ≈ 0.3mm (Before SR) 

No. Length  Calculation Absolute error Relative error  Calculation Absolute error Relative error 

1 88.2816  87.5711 0.7105 1%  85.9825 2.2991 3% 

2 49.6905  47.9821 1.7084 3%  46.2209 3.4696 7% 

3 129.7856  123.0473 6.7383 5%  119.0611 10.7245 8% 

4 62.049  60.6508 1.3982 2%  58.5354 3.5136 6% 

5 123.8035  123.5571 0.2464 0%  121.3312 2.4723 2% 

6 145.1841  142.2324 2.9517 2%  130.1144 15.0697 10% 

7 126.1787  124.9406 1.2381 1%  120.831 5.3477 4% 

8 89.361  87.666 1.695 2%  86.8565 2.5045 3% 

9 44.3138  42.8118 1.502 3%  41.3132 3.0006 7% 

10 83.0751  83.7291 -0.654 1%  80.6431 2.432 3% 

11 153.1216  147.9271 5.1945 3%  145.6694 7.4522 5% 

12 106.8712  107.2806 -0.4094 0%  105.5292 1.342 1% 

13 62.173  60.2012 1.9718 3%  57.3425 4.8305 8% 

14 76.6865  77.4377 -0.7512 1%  75.968 0.7185 1% 

15 80.1966  78.7508 1.4458 2%  76.6302 3.5664 4% 
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3.2.2 Crack Width Comparision 

The impact of applying super-resolution to facade orthomosaics 
on the accuracy of crack width measurement was quantitatively 
evaluated, and the results are summarized in Table 5. The GT 
was based on field measurements taken with a crack scale, 
while the crack widths from the images before and after SR 
application were calculated using an automated algorithm and 
compared with the GT. In the width calculation process, a ro-
bust crack outline was extracted by taking the intersection of the 
Meijering filter and Adaptive Mean binarization. Then, the min-
imum diameter was calculated through a radial search and con-
verted to a physical unit (mm). 
 
The analysis showed that the average relative error of the crack 
widths measured from the SR-applied image (GSD ≈ 0.1 mm) 
was 10.03%, indicating a high degree of agreement with the 
GT. In contrast, the average relative error for the original non-
SR image (GSD ≈ 0.3 mm) reached 150.53%, indicating very 
low reliability of the measurements. 
 
This extreme error stems from the fundamental limitation that 
the GSD of the original image (≈0.3 mm) exceeds the width of 
the micro-cracks being measured (0.1–0.2 mm). Given that the 
pixel size is larger than the crack itself, the algorithm fails to 
resolve the true boundaries, leading to a significant overestima-
tion of the width. It was only when super-resolution (SR) tech-
nology enhanced the GSD to approximately 0.1 mm, thereby 
reducing the pixel size to below that of the crack width, that 
reliable and accurate measurements became feasible. Conse-
quently, the application of SR reduced the average relative error 
to approximately one-fifteenth of the original, clearly demon-
strating its transformative impact on measurement precision. 
 
This indicates that Super-Resolution (SR) technology extends 
beyond mere visual enhancement, serving as a robust and prac-
tical tool for the quantitative assessment of micro-cracks below 
regulatory thresholds (e.g., < 0.3 mm) defined by facility safety 
standards, within the context of UAV-based remote inspection. 
Consequently, SR is expected to overcome the intrinsic limita-
tions of conventional visual inspection and low-resolution im-
age analysis by delivering objective and high-fidelity data es-
sential for evidence-based infrastructure maintenance and deci-
sion-making. 
 

4. Conclusion 

This study successfully demonstrated that Super-Resolution 
(SR) technology can effectively overcome the inherent GSD 
limitations of UAV-based bridge inspections, enabling high-
precision quantitative crack analysis from efficiently captured, 
lower-resolution imagery. Our comparative analysis identified 
Real-ESRGAN as the optimal model among CNN, GAN, and 
Transformer-based architectures, excelling in both quantitative 
metrics (PSNR/SSIM) and the perceptual quality required for 
restoring fine crack details. 
 
When applied to a real-world facade orthomosaic, the SR-
enhanced imagery (GSD ≈ 0.1 mm) yielded significant im-
provements in measurement accuracy. Specifically, the average 
relative error in crack length measurement was more than 
halved, decreasing from 4.80% to 1.93%. More dramatically, 
the SR application corrected the severe overestimation of fine 
crack widths inherent in the original low-resolution data, reduc-
ing the average relative error from a prohibitive 149.11% to a 
practical 10.03%. 

 
These findings are significant as they validate a practical work-
flow for bridging the gap between efficient, safe-distance UAV 
data acquisition and the high-precision data required for struc-
tural integrity assessments. This approach allows for the reliable 
quantification of critical damage metrics (e.g., crack widths 
under 0.3 mm) without resorting to risky, close-range flights, 
thereby enhancing the safety, cost-effectiveness, and reliability 
of digital bridge inspections. While this study provides a strong 
proof-of-concept on selected samples, future work should focus 
on scaling this methodology to evaluate full-facade segmenta-
tion and on testing the model's robustness under diverse envi-
ronmental conditions. 
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