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Abstract 

 

Frame-based VNIR/SWIR multispectral sensors on UAVs offer promising capabilities for precision agriculture by enabling the easy 

simultaneous acquisition of spectral and structural crop information. This study provides an independent validation of a two-band 

VNIR/SWIR sensor system for monitoring winter wheat traits and compares the results with previous findings. The UAV flights were 

conducted on a single date (May 11, 2022), capturing image datasets at wavelengths of 910, 980, 1100, 1200, 1510, and 1650 nm. 

Structure from Motion (SfM) processing enabled crop height extraction from the same multispectral datasets. Ground-truth data 

included fresh and dry biomass, moisture, nitrogen concentration, and nitrogen uptake from 36 samples across six varieties and three 

fertilization levels. Bivariate regression analyses revealed moderate performance for spectral vegetation indices (NRI: R²=0.52-0.61; 

GnyLi: R²=0.50-0.62), which was lower than that previously reported. Crop height showed a superior predictive capability (R²=0.63-

0.75), demonstrating consistency across studies. Multivariate models combining vegetation indices with crop height significantly 

improved trait estimation (R²=0.72-0.84, nRMSE=0.12-0.15), confirming that integrated spectral-structural approaches provide robust 

performance even when individual predictors show limitations. While this single-date analysis limits conclusions about temporal 

stability throughout the growing season, it provides valuable validation of the capabilities of the sensor system. The ability to derive 

both structural and biochemical data from single-sensor imagery is the key advantage of this camera system. Future research should 

expand to multi-temporal analyses across complete growing seasons and implement the recently developed 6-channel VNIR/SWIR 

system to address the current limitations. This study reinforces the fact that combining SWIR spectral features with structural 

parameters is essential for reliable estimation of crop traits. 

 

1. Introduction 

Spatial heterogeneity plays a central role in the approaches of 

precision agriculture (Mulla, 2013). For many applications, 

satellite-based remote sensing does not provide the desired 

spatial and temporal resolutions for within-field variability. The 

highest spatiotemporal resolution from remote sensing 

approaches is provided by different types of sensors carried by 

Unmanned Aerial Vehicles (UAVs) (Bareth, 2021). Optical 

multispectral or hyperspectral sensors are generally used to 

derive biochemical crop traits (e.g., chlorophyll) or structural 

properties (e.g., LAI) (Roberts et al., 2019). For the latter, 

Structure from Motion and Multiview Stereopsis (SfM/MVS) 

(Bendig et al., 2015), and laser scanning (Hütt et al., 2023) have 

been applied to UAV-based data acquisition. 

Recent advances in UAV-based shortwave infrared (SWIR) 

sensing have shown promising results for crop monitoring. 

Bendig et al. (2015) demonstrated that combining SWIR 

vegetation indices (VIs) with crop height (CH) has high potential 

for robust crop trait estimation. Following this approach, Jenal et 

al. (2019) developed a frame-based multiband SWIR imaging 

system capable of deriving both spectral and structural 

information from the same sensor platform, similar to the 

approach presented by Oliveira et al. (2019). Initial validation 

showed promising results (Jenal et al., 2021); however, 

independent verification across different growing seasons and 

conditions is essential to establish the reliability of this 

technology. 

The importance of integrating spectral and structural data is 

further supported by Näsi et al. (2018) and Viljanen et al. (2018), 

who independently validated this approach using different sensor 

configurations. Näsi et al. (2018) conducted a comprehensive 

evaluation of UAV-based hyperspectral and RGB imaging for 

barley and grass biomass estimation, demonstrating that the 

integration of spectral and 3D features consistently improved 

estimation accuracy. Similarly, Viljanen et al. (2018) achieved 

Pearson correlation coefficients (PCCs) of up to 0.98 for grass 

biomass using machine learning to combine photogrammetric 

CH with multispectral VIs, confirming that this integrated 

approach maintained robust performance even when individual 

predictors showed limitations. 

Although single-date analyses using traditional optical visible 

and near-infrared (VNIR) sensors often show moderate to weak 

performance for crop trait estimation, the integration of SWIR 

spectral features with structural parameters offers a potential 

solution. However, the consistency of this approach across 

different years and environmental conditions requires further 

investigation to support its operational deployment in precision 

agriculture. 

Therefore, this study aimed to (i) provide independent validation 

of the frame-based VNIR/SWIR sensor system for winter wheat 

monitoring, (ii) evaluate the individual and combined 

performance of SWIR vegetation indices and crop height for trait 

estimation, and (iii) compare the results with previous findings to 

assess temporal consistency. We hypothesized that the 

integration of SWIR VIs with CH will significantly improve crop 

trait estimation compared to bivariate approaches, validating the 

methodology proposed by Bendig et al. (2015) and demonstrated 

by Jenal et al. (2025). 

 

2. Study Area and Methods 

2.1 Study Area 

This study was conducted at Campus Klein-Altendorf, the largest 

external laboratory of the University of Bonn's Faculty of 

Agriculture, during the 2021/2022 growing season. The winter 

wheat field trial employed a split-plot design consisting of five 

replicates arranged in rows, with each replicate containing three 

nitrogen fertilization treatments (0, 120, and 240 kg/ha). Six 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-145-2025 | © Author(s) 2025. CC BY 4.0 License.

 
145



 

winter wheat varieties were randomly distributed within each 

nitrogen treatment across 7.0 × 1.5 m plots, maintaining 11.3 cm 

spacing between seed rows. This design resulted in 18 plots per 

replicate, with a total of 90 experimental plots across the field 

(Figure 1). 

Winter wheat cultivars were sown in November 2021. Two 

replicates (rows 2 and 4) were designated for destructive 

sampling throughout the growing season. Sampling commenced 

in early April 2022, with subsequent collections occurring at two-

week intervals, coinciding with fertilization treatment 

applications. Seven sampling dates were established, with 36 

samples collected on each occasion. 

Each sampling event was accompanied by a UAV-based 

VINIR/SWIR data collection campaign. During the May 11, 

2022, UAV campaign, 1 × 0.3 m sampling areas were harvested 

(indicated by dark red squares in Figure 1) for comprehensive 

laboratory analysis, including fresh biomass (FBM), dry biomass 

(DBM), moisture content, and nitrogen concentration (Nconc). 

Nitrogen uptake (N uptake) was calculated from DBM and Nconc 

measurements (Lemaire and Gastal, 1997). Twelve ground 

control points (GCPs) were strategically positioned across the 

field to ensure precise geolocation accuracy for all the image 

datasets. 

 

 

 

Figure 1: Layout of winter wheat experiment 2022 at Campus Klein-Altendorf (CKA). A Digital Orthophoto (DOP) of May 11, 

2022, plot outlines and areas of destructive samplings in row 2 and 4 (black outlines) are shown. 

 

2.2 UAV-based Image Acquisition 

Data acquisition was conducted using a newly developed 

multispectral imaging system optimized for UAV applications, 

focusing on the shortwave infrared (SWIR) region (Figure 2; 

modified from Jenal et al., 2019). To the best of our knowledge, 

this is the first multispectral multi-camera imaging system 

designed specifically for UAV-based applications. The unique 

two-band VNIR/SWIR multicamera system comprises three 

integrated modules: an UAV equipped with a gimbal stabilization 

system, a sensor-managing unit (SMU), and a spectral camera 

unit (SCU). 

The SCU forms the core of the instrument and incorporates two 

VNIR-enhanced SWIR cameras based on indium gallium 

arsenide (InGaAs) technology. These cameras feature 

interchangeable narrow bandpass filters mounted via a 

specialized filter flange system, enabling adaptation to specific 

wavelength combinations between 600 and 1700 nm. This 

configuration allows the collection of two image datasets per 

flight at selected wavelengths, with additional wavelengths 

requiring multiple flights and corresponding filter changes. The 

SMU provides centralized control of the SCU while managing 

the readout and storage of the raw image data.  

On May 11, 2022, around solar noon, the UAV-based system 

acquired image data across six spectral bands (910, 980, 1100, 

1200, 1510, and 1650 nm) during three consecutive four-minute 

flights conducted at approximately 30 m above ground level. 

High-resolution image datasets were recorded at a ground 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-145-2025 | © Author(s) 2025. CC BY 4.0 License.

 
146



 

sampling distance (GSD) of 4 cm/px. Data collection was 

performed under clear-sky conditions. 

 

2.3 Data Processing and Analysis 

After flat field correction, each spectral channel image dataset 

was calibrated from digital numbers to reflectance values using 

an empirical line method with six grayscale panels strategically 

positioned next to the experimental field. The image datasets 

were processed using the Agisoft Metashape software (version 

1.8.2) to generate georeferenced digital orthophotos (DOPs) and 

digital elevation models (DEMs). 

Two vegetation indices were derived from the DOPs at 910, 980, 

1100, and 1200 nm for subsequent analysis. The four-band 

GnyLi (Eq. 1; Gnyp et al., 2014), and two-band Normalized Ratio 

Index (NRI) (Eq. 2; Koppe et al., 2010). Canopy height (CH) was 

determined by subtracting the mean DEM heights on May 11, 

2022, from the baseline model obtained at the start of the growth 

period. Spectral and structural information was extracted from 

the destructively sampled areas using zonal statistics. The 

derived data were analyzed using regression-based models with 

sampled ground-truth data, with data from the six varieties 

pooled within each of the three fertilization treatments to 

establish robust general relationships. 

 

 GnyLi =
(R910⋅R1100)−(R980⋅R1200)

(R910⋅R1100)+(R980⋅R1200)
    (1) 

 

 NRI =
𝑅910−𝑅1200

𝑅910+𝑅1200
     (2) 

 

 

 

Figure 2: Concept of the modular VNIR/SWIR system design (modified from Jenal et al. 2019) 

 

3. Results 

The predictive performance of spectral vegetation indices (NRI 

and GnyLi) and crop surface height (CH) for estimating crop 

traits was evaluated using both bivariate and multivariate linear 

regression models for the dataset of May 11, 2022. Pooled data 

from six crop varieties (n = 36) were analyzed for five key traits: 

fresh biomass matter (FBM), dry biomass matter (DBM), 

moisture content, nitrogen concentration (Nconc), and nitrogen 

uptake (N uptake). The model performance was assessed using 

the coefficient of determination (R²), root mean square error 

(RMSE), normalized RMSE (nRMSE), and statistical 

significance tests. The results are presented in the following two 

sections. First, the individual predictive capabilities of each 

variable were examined through bivariate models, followed by 

an evaluation of combined predictor models to test the hypothesis 

that multivariate approaches improve trait estimation accuracy. 

 

Table 1: Bivariate regression results for UAV-derived VIs (GnyLi and NRI) and CH against  

destructively measured crop traits for May 11, 2022. 

Crop Trait 
NRI GnyLi CH 

R2 RMSE nRMSE R2 RMSE nRMSE R2 RMSE nRMSE 

FBM (t/ha) 0.54 7.18 0.21 0.55 7.10 0.21 0.73 5.43 0.16 

DBM (t/ha) 0.55 0.91 0.19 0.58 0.89 0.18 0.70 0.75 0.15 

Moisture (t/ha) 0.52 6.40 0.22 0.53 6.34 0.22 0.73 4.84 0.17 

Nconc (%) 0.55 0.32 0.19 0.55 0.32 0.19 0.63 0.29 0.17 

N uptake (kg/ha) 0.61 31.5 0.18 0.62 31.3 0.18 0.75 25.5 0.15 
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3.1 Bivariate Analysis 

All three predictors (NRI, GnyLi, and CH) showed highly 

significant relationships (p < 0.001) with all crop traits across the 

six pooled varieties (Table 1, Figure 3). Among the spectral 

vegetation indices, GnyLi marginally outperformed NRI for most 

traits, with R² values ranging from 0.53-0.62 compared to 0.52-

0.61 for NRI. However, crop surface height (CH) demonstrated 

consistently superior predictive capability, achieving R² values 

between 0.63-0.75 across all traits. 

The strongest relationships were observed for N uptake (Figure 

3, bottom row), where CH explained 75% of the variance (R² = 

0.75, nRMSE = 14.8%), followed by VIs (NRI: R² = 0.61, 

nRMSE = 18.3%; GnyLi: R² = 0.62, nRMSE = 18.1%). For 

biomass-related traits (FBM and DBM), CH also showed 

superior performance, with R² values of 0.73 and 0.70, 

respectively, representing improvements of approximately 18-20 

percentage points over the spectral indices. The scatter plots 

revealed tighter clustering around the regression lines for CH 

compared to both vegetation indices, particularly for moisture 

and biomass traits (Figure 3). The normalized RMSE values 

indicate good model precision, ranging from 14.8-21.8% across 

all models, with CH consistently achieving the lowest values. 

 

 

Figure 3: Bivariate linear regression models between spectral VIs (NRI, GnyLi), crop surface height (CH), and  

five crop traits for May 11, 2022. 

 

3.2 Multivariate Analysis 

Combining spectral vegetation indices with crop surface height 

significantly improved model performance for all traits (Table 2). 

The NRI plus CH models achieved R² values ranging from 0.72-

0.84, while GnyLi plus CH combinations showed similar 

performance (R² = 0.72-0.84). Both multivariate approaches 

resulted in substantial improvements over their respective 

bivariate VI models, with R² increases of 17-24 percentage points 

for biomass traits and 21-23 percentage points for N uptake. 

The three-dimensional response surfaces illustrate the 

complementary nature of combining spectral and structural 

information (Figure 4 and Figure 5). For both, DBM and N 

uptake, the regression planes showed how the traits increased 

with both predictor variables, with steeper gradients along the CH 

axis indicating a stronger influence. The highest predictive 

accuracy was achieved for N uptake, in which both multivariate 

models explained 84% of the variance (R² = 0.84, nRMSE = 

12%). The surface plots demonstrate minimal interaction effects 

between the predictors, as evidenced by the relatively planar 

response surfaces rather than the curved or warped surfaces. 
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All regression coefficients remained highly significant (p < 0.01) 

in the multivariate models, indicating that both predictors 

independently contributed to the explained variance. The F-

statistics (42.38-84.41) confirmed the overall significance of all 

the multivariate models (p < 0.001). Notably, the improvement 

from bivariate CH to multivariate models was modest (6-9 

percentage points), suggesting that CH already captured much of 

the trait variation independently. The similar performance of NRI 

& CH versus GnyLi & CH combinations indicates that either 

vegetation index can be effectively paired with crop height for 

improved trait estimation. 

 

 

Table 2: Multivariate regression results combining VIs and crop height (GnyLi & CH, NRI & CH) against destructively measured 

and derived crop traits 

Crop Trait 
NRI & CH GnyLi & CH 

R2 RMSE nRMSE R2 RMSE nRMSE 

FBM (t/ha) 0.79 4.83 0.14 0.79 4.79 0.14 

DBM (t/ha) 0.77 0.65 0.13 0.78 0.64 0.13 

Moisture (t/ha) 0.78 4.36 0.15 0.78 4.34 0.15 

Nconc (%) 0.72 0.25 0.15 0.72 0.25 0.15 

N uptake (kg/ha) 0.84 20.56 0.12 0.84 20.47 0.12 

 

 

 

Figure 4: Three-dimensional response surfaces for multivariate regression models combining NRI and crop height (CH) as 

predictors for dry biomass matter (DBM, left) and N uptake (right). Color gradients indicate the predicted trait values. 

 

 

Figure 5: Three-dimensional response surfaces for bivariate regression models combining GnyLi and crop height (CH) as predictors 

for dry biomass matter (DBM, left) and nitrogen uptake (right). Color gradients indicate the predicted trait values. 

 

4. Discussion 

The present study evaluated the performance of a VNIR/SWIR 

multispectral UAV sensor system for monitoring winter wheat 

traits based on the methodology established by Jenal et al. (2025). 

Using the same sensor system and spectral bands (910, 980, 

1100, and 1200 nm), our analysis provides an independent 

validation of this technology, while revealing both consistencies 

and notable differences in performance. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-145-2025 | © Author(s) 2025. CC BY 4.0 License.

 
149



 

4.1 Comparison with previous findings 

Our bivariate regression results showed moderate to strong 

correlations between spectral indices and crop traits, although 

generally lower than those reported by Jenal et al. (2025) for a 

similar dataset on May 12, 2021. For instance, NRI achieved R² 

values of 0.52-0.61 across traits in our study, compared to 0.74-

0.84 reported in 2021. Similarly, GnyLi performance was 

considerably lower, with R² values of 0.50-0.62 versus 0.59-0.85 

in the previous study. This difference is particularly intriguing 

given that our data collection occurred under clear-sky 

conditions, whereas Jenal et al. (2025) reported challenging 

weather with variable cloud cover during the campaign on May 

12, 2021. 

The discrepancy in the bivariate model performance between 

studies suggests that factors beyond weather or illumination 

conditions may influence the effectiveness of the spectral index. 

Potential explanations include differences in crop development 

stages between the two sampling dates, variety-specific 

responses within the pooled datasets, or variations in soil 

background effects. Despite similar sampling dates in mid-May, 

the one-year gap between studies could result in different crop 

phenological stages owing to year-specific growing conditions 

and temperature patterns, potentially affecting the spectral 

response of vegetation indices, particularly in the SWIR region 

(Basinger et al., 2020; Longchamps and Philpot, 2023).  

Comparing the improvements from bivariate to multivariate 

regression in both studies revealed an interesting pattern. In Jenal 

et al. (2025), the integration of vegetation indices with crop 

height improved the R² values by 6-11 percentage points for NRI 

and 23-31 percentage points for GnyLi. In contrast, our study 

showed substantially larger improvements for NRI (17-26 

percentage points) but slightly smaller improvements for GnyLi 

(17-25 percentage points). This difference is particularly 

noteworthy because, despite starting from lower bivariate R² 

values in our study, the multivariate models achieved comparable 

performance to Jenal et al. (2025), with final R² values of 0.72-

0.84. The larger relative improvement in our study, especially for 

NRI, demonstrates that the integration of structural information 

becomes even more valuable when spectral indices alone show 

weaker performance, effectively compensating for limitations in 

individual predictors, and confirming the robustness of the 

integrated approach across varying conditions. 

The importance of integrating spectral and structural data has 

been supported by recent studies. Both Näsi et al. (2018) and 

Viljanen et al. (2018) independently demonstrated that 

combining 3D features with spectral data consistently 

outperformed single-modality approaches across different sensor 

configurations (hyperspectral FPI vs. RGB-NIR) and analytical 

methods (Random Forest vs. MLR), with performance 

improvements ranging from 10-20 percentage points in R². This 

aligns with our findings and reinforces the robustness of the 

integrated approach across studies and environmental conditions. 

 

4.2 Structural information performance 

Crop height demonstrated a consistently strong predictive 

capability in both studies. Our CH results (R² = 0.63-0.75) align 

well with the general findings of Jenal et al. (2021) and Jenal et 

al. (2025), who emphasized the importance of structural 

parameters for trait estimation. Similar findings are reported by 

Bareth et al. (2025, accepted). The robust performance of CH 

across both years and different weather conditions underscores 

its reliability as a predictive variable. This consistency suggests 

that structural information is less sensitive to atmospheric 

conditions and spectral variations than vegetation indices, 

making it a valuable complement to the spectral data. 

 

4.3 Enhanced performance through data integration 

Despite the lower bivariate performance of spectral indices 

compared to CH, our multivariate models combining VIs with 

CH achieved excellent results, with R² values ranging from 0.72-

0.84 across all traits. These findings strongly support the 

integrated approach advocated by Bendig et al. (2015) and 

demonstrate that the complementary nature of spectral and 

structural information can compensate for the limitations of 

individual predictors. This improvement was particularly notable 

for biomass traits, where R² increased by up to 24 percentage 

points when combining predictors.  

The success of multivariate models in our study, achieving 

similar or better performance than Jenal et al. (2021) despite 

weaker bivariate VI results, highlights the robustness of the 

integrated approach. This is consistent with the findings of Näsi 

et al. (2018) and Viljanen et al. (2018), who reported optimal 

performance when combining 3D and spectral features regardless 

of the sensor type or regression method used. 

Our results confirm that frame-based VNIR/SWIR sensors can 

successfully derive both spectral and structural information from 

a single platform, thus validating the technological approach 

introduced by Jenal et al. (2019). The ability to extract crop 

height through SfM/MVS processing from multispectral SWIR 

imagery represents a significant advantage over pushbroom 

systems that are primarily designed for spectral data acquisition. 

The advantages of frame-based multispectral sensors for 

simultaneous spectral and structural data acquisition have been 

independently validated by Näsi et al. (2018) using FPI 

hyperspectral cameras, and Viljanen et al. (2018) using RGB-

NIR sensors, both achieving optimal results through feature 

integration. This convergent evidence from multiple sensor 

configurations strengthens confidence in the operational 

deployment of integrated spectral-structural approaches for 

precision agriculture applications. 

The varying performance of the spectral indices between years 

emphasizes the importance of multi-temporal validation studies. 

While our study provides valuable independent validation, the 

differences observed suggest that robust crop monitoring systems 

should not rely solely on spectral information but should 

integrate structural parameters to ensure consistent performance 

across varying conditions. 

 

5. Conclusion 

This study successfully validated a frame-based VNIR/SWIR 

UAV sensor system for estimating winter wheat traits by 

integrating spectral vegetation indices and structural parameters. 

Our independent evaluation confirms the technological approach 

introduced by Jenal et al. (2019), while revealing important 

considerations for operational deployment. 

A clear advantage of a frame-based multispectral camera system 

is its ability to easily derive both spectral and structural 

information from the same image dataset. Through SfM/MVS 

processing, crop height can be extracted along with spectral 

vegetation indices from overlapping frame images, eliminating 

the need for separate sensors or multiple flights. This dual 

capability of a single sensor platform represents a significant 

advancement over pushbroom systems, which are primarily 

limited to spectral data acquisition. Our multivariate models 

combining vegetation indices (NRI and GnyLi) with crop height 

achieved high accuracy (R² = 0.72-0.84) across all traits, 

demonstrating that this integrated data acquisition approach can 

provide robust trait estimation even when individual spectral 

indices show variable performance. 
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Figure 6: Advanced 6-channel VNIR/SWIR multicamera 

system for airborne (crewed and uncrewed)  

remote sensing applications (Jenal et al., 2024). 

 

However, the differences in the bivariate spectral index 

performance between our study and those of Jenal et al. (2021) 

and Jenal et al. (2025) highlight critical areas for further 

investigation. The lower R² values observed for both the NRI and 

GnyLi, despite favorable weather conditions, suggest potential 

calibration uncertainties that require attention. Future 

implementations should prioritize rigorous calibration protocols 

and consider environmental factors beyond weather conditions 

that may influence the spectral responses. 

The recent development of a 6-channel VNIR/SWIR 

multicamera system, as introduced by Jenal et al. (2024), offers 

promising solutions to the current limitations (Figure 6). This 

expanded system maintains the crucial advantage of deriving 

both spectral and structural information from frame-based 

imagery, while providing enhanced spectral capability. The 

increased number of parallel acquired bands should enable more 

robust vegetation indices by simultaneously capturing 

wavelengths critical for biochemical constituent detection, 

potentially reducing the sensitivity to calibration errors. 

This study reinforces the idea that integrating spectral SWIR 

features with structural parameters, both derived from the same 

multispectral image datasets, is essential for achieving the 

consistency and accuracy required for practical precision 

agriculture applications. Future research should focus on multi-

temporal and multi-site validation to establish robust operational 

protocols for this promising technology. The robustness of 

combining SWIR spectral features with structural parameters 

was independently confirmed by Näsi et al. (2018), who 

demonstrated similar improvements in the accuracy of crop trait 

estimation when integrating hyperspectral and 3D features across 

different sensor configurations and flying heights. This 

convergent evidence from multiple studies strengthens 

confidence in the operational deployment of integrated spectral-

structural approaches for precision agriculture applications. 
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