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Abstract

Frame-based VNIR/SWIR multispectral sensors on UAVs offer promising capabilities for precision agriculture by enabling the easy
simultaneous acquisition of spectral and structural crop information. This study provides an independent validation of a two-band
VNIR/SWIR sensor system for monitoring winter wheat traits and compares the results with previous findings. The UAV flights were
conducted on a single date (May 11, 2022), capturing image datasets at wavelengths of 910, 980, 1100, 1200, 1510, and 1650 nm.
Structure from Motion (SfM) processing enabled crop height extraction from the same multispectral datasets. Ground-truth data
included fresh and dry biomass, moisture, nitrogen concentration, and nitrogen uptake from 36 samples across six varieties and three
fertilization levels. Bivariate regression analyses revealed moderate performance for spectral vegetation indices (NRI: R?2=0.52-0.61;
GnyLi: R2=0.50-0.62), which was lower than that previously reported. Crop height showed a superior predictive capability (R2=0.63-
0.75), demonstrating consistency across studies. Multivariate models combining vegetation indices with crop height significantly
improved trait estimation (R2=0.72-0.84, nRMSE=0.12-0.15), confirming that integrated spectral-structural approaches provide robust
performance even when individual predictors show limitations. While this single-date analysis limits conclusions about temporal
stability throughout the growing season, it provides valuable validation of the capabilities of the sensor system. The ability to derive
both structural and biochemical data from single-sensor imagery is the key advantage of this camera system. Future research should
expand to multi-temporal analyses across complete growing seasons and implement the recently developed 6-channel VNIR/SWIR
system to address the current limitations. This study reinforces the fact that combining SWIR spectral features with structural

parameters is essential for reliable estimation of crop traits.
1. Introduction

Spatial heterogeneity plays a central role in the approaches of
precision agriculture (Mulla, 2013). For many applications,
satellite-based remote sensing does not provide the desired
spatial and temporal resolutions for within-field variability. The
highest spatiotemporal resolution from remote sensing
approaches is provided by different types of sensors carried by
Unmanned Aerial Vehicles (UAVS) (Bareth, 2021). Optical
multispectral or hyperspectral sensors are generally used to
derive biochemical crop traits (e.g., chlorophyll) or structural
properties (e.g., LAI) (Roberts et al., 2019). For the latter,
Structure from Motion and Multiview Stereopsis (SfM/MVS)
(Bendig et al., 2015), and laser scanning (Hutt et al., 2023) have
been applied to UAV-based data acquisition.

Recent advances in UAV-based shortwave infrared (SWIR)
sensing have shown promising results for crop monitoring.
Bendig et al. (2015) demonstrated that combining SWIR
vegetation indices (VIs) with crop height (CH) has high potential
for robust crop trait estimation. Following this approach, Jenal et
al. (2019) developed a frame-based multiband SWIR imaging
system capable of deriving both spectral and structural
information from the same sensor platform, similar to the
approach presented by Oliveira et al. (2019). Initial validation
showed promising results (Jenal et al., 2021); however,
independent verification across different growing seasons and
conditions is essential to establish the reliability of this
technology.

The importance of integrating spectral and structural data is
further supported by Naési et al. (2018) and Viljanen et al. (2018),
who independently validated this approach using different sensor
configurations. Néasi et al. (2018) conducted a comprehensive
evaluation of UAV-based hyperspectral and RGB imaging for
barley and grass biomass estimation, demonstrating that the
integration of spectral and 3D features consistently improved

estimation accuracy. Similarly, Viljanen et al. (2018) achieved
Pearson correlation coefficients (PCCs) of up to 0.98 for grass
biomass using machine learning to combine photogrammetric
CH with multispectral VIs, confirming that this integrated
approach maintained robust performance even when individual
predictors showed limitations.

Although single-date analyses using traditional optical visible
and near-infrared (VNIR) sensors often show moderate to weak
performance for crop trait estimation, the integration of SWIR
spectral features with structural parameters offers a potential
solution. However, the consistency of this approach across
different years and environmental conditions requires further
investigation to support its operational deployment in precision
agriculture.

Therefore, this study aimed to (i) provide independent validation
of the frame-based VNIR/SWIR sensor system for winter wheat
monitoring, (ii) evaluate the individual and combined
performance of SWIR vegetation indices and crop height for trait
estimation, and (iii) compare the results with previous findings to
assess temporal consistency. We hypothesized that the
integration of SWIR VIs with CH will significantly improve crop
trait estimation compared to bivariate approaches, validating the
methodology proposed by Bendig et al. (2015) and demonstrated
by Jenal et al. (2025).

2. Study Area and Methods
2.1 Study Area

This study was conducted at Campus Klein-Altendorf, the largest
external laboratory of the University of Bonn's Faculty of
Agriculture, during the 2021/2022 growing season. The winter
wheat field trial employed a split-plot design consisting of five
replicates arranged in rows, with each replicate containing three
nitrogen fertilization treatments (0, 120, and 240 kg/ha). Six
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winter wheat varieties were randomly distributed within each
nitrogen treatment across 7.0 x 1.5 m plots, maintaining 11.3 cm
spacing between seed rows. This design resulted in 18 plots per
replicate, with a total of 90 experimental plots across the field
(Figure 1).

Winter wheat cultivars were sown in November 2021. Two
replicates (rows 2 and 4) were designated for destructive
sampling throughout the growing season. Sampling commenced
in early April 2022, with subsequent collections occurring at two-
week intervals, coinciding with fertilization treatment
applications. Seven sampling dates were established, with 36
samples collected on each occasion.

Each sampling event was accompanied by a UAV-based
VINIR/SWIR data collection campaign. During the May 11,
2022, UAV campaign, 1 x 0.3 m sampling areas were harvested
(indicated by dark red squares in Figure 1) for comprehensive
laboratory analysis, including fresh biomass (FBM), dry biomass
(DBM), moisture content, and nitrogen concentration (Nconc).
Nitrogen uptake (N uptake) was calculated from DBM and Nconc
measurements (Lemaire and Gastal, 1997). Twelve ground
control points (GCPs) were strategically positioned across the
field to ensure precise geolocation accuracy for all the image
datasets.
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Figure 1: Layout of winter wheat experiment 2022 at Campus Klein-Altendorf (CKA). A Digital Orthophoto (DOP) of May 11,
2022, plot outlines and areas of destructive samplings in row 2 and 4 (black outlines) are shown.

2.2 UAV-based Image Acquisition

Data acquisition was conducted using a newly developed
multispectral imaging system optimized for UAV applications,
focusing on the shortwave infrared (SWIR) region (Figure 2;
modified from Jenal et al., 2019). To the best of our knowledge,
this is the first multispectral multi-camera imaging system
designed specifically for UAV-based applications. The unique
two-band VNIR/SWIR multicamera system comprises three
integrated modules: an UAV equipped with a gimbal stabilization
system, a sensor-managing unit (SMU), and a spectral camera
unit (SCU).

The SCU forms the core of the instrument and incorporates two
VNIR-enhanced SWIR cameras based on indium gallium

arsenide (InGaAs) technology. These cameras feature
interchangeable narrow bandpass filters mounted via a
specialized filter flange system, enabling adaptation to specific
wavelength combinations between 600 and 1700 nm. This
configuration allows the collection of two image datasets per
flight at selected wavelengths, with additional wavelengths
requiring multiple flights and corresponding filter changes. The
SMU provides centralized control of the SCU while managing
the readout and storage of the raw image data.

On May 11, 2022, around solar noon, the UAV-based system
acquired image data across six spectral bands (910, 980, 1100,
1200, 1510, and 1650 nm) during three consecutive four-minute
flights conducted at approximately 30 m above ground level.
High-resolution image datasets were recorded at a ground
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sampling distance (GSD) of 4 cm/px. Data collection was
performed under clear-sky conditions.

2.3 Data Processing and Analysis

After flat field correction, each spectral channel image dataset
was calibrated from digital numbers to reflectance values using
an empirical line method with six grayscale panels strategically
positioned next to the experimental field. The image datasets
were processed using the Agisoft Metashape software (version
1.8.2) to generate georeferenced digital orthophotos (DOPSs) and
digital elevation models (DEMs).

Two vegetation indices were derived from the DOPs at 910, 980,
1100, and 1200 nm for subsequent analysis. The four-band
GnyLi (Eq. 1; Gnyp et al., 2014), and two-band Normalized Ratio
Index (NRI) (Eg. 2; Koppe et al., 2010). Canopy height (CH) was
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Figure 2: Concept of the modular VNIR/SWIR system design (modified from Jenal et al. 2019)

3. Results

The predictive performance of spectral vegetation indices (NRI
and GnyLi) and crop surface height (CH) for estimating crop
traits was evaluated using both bivariate and multivariate linear
regression models for the dataset of May 11, 2022. Pooled data
from six crop varieties (n = 36) were analyzed for five key traits:
fresh biomass matter (FBM), dry biomass matter (DBM),
moisture content, nitrogen concentration (Nconc), and nitrogen

uptake (N uptake). The model performance was assessed using
the coefficient of determination (R?), root mean square error
(RMSE), normalized RMSE (nRMSE), and statistical
significance tests. The results are presented in the following two
sections. First, the individual predictive capabilities of each
variable were examined through bivariate models, followed by
an evaluation of combined predictor models to test the hypothesis
that multivariate approaches improve trait estimation accuracy.

Table 1: Bivariate regression results for UAV-derived VIs (GnyLi and NRI) and CH against

destructively measured crop traits for May 11, 2022.

_ NRI GnyLi CH
Crop Trait R? RMSE  nRMSE R? RMSE  nRMSE R2 RMSE  nRMSE
FBM (t/ha) 0.54 7.18 0.21 0.55 7.10 0.21 0.73 5.43 0.16
DBM (t/ha) 0.55 0.91 0.19 0.58 0.89 0.18 0.70 0.75 0.15
Moisture (t/ha) 0.52 6.40 0.22 053 6.34 0.22 0.73 4.84 0.17
Neonc (%) 0.55 0.32 0.19 0.55 0.32 0.19 0.63 0.29 0.17
N uptake (kg/ha) 0.61 315 0.18 0.62 313 0.18 0.75 255 0.15
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3.1 Bivariate Analysis

All three predictors (NRI, GnyLi, and CH) showed highly
significant relationships (p < 0.001) with all crop traits across the
six pooled varieties (Table 1, Figure 3). Among the spectral
vegetation indices, GnyLi marginally outperformed NRI for most
traits, with R2 values ranging from 0.53-0.62 compared to 0.52-
0.61 for NRI. However, crop surface height (CH) demonstrated
consistently superior predictive capability, achieving R? values
between 0.63-0.75 across all traits.

The strongest relationships were observed for N uptake (Figure
3, bottom row), where CH explained 75% of the variance (R? =

0.75, nRMSE = 14.8%), followed by VIs (NRI: R?2 = 0.61,
NRMSE = 18.3%; GnyLi: R?2 = 0.62, nRMSE = 18.1%). For
biomass-related traits (FBM and DBM), CH also showed
superior performance, with RZ values of 0.73 and 0.70,
respectively, representing improvements of approximately 18-20
percentage points over the spectral indices. The scatter plots
revealed tighter clustering around the regression lines for CH
compared to both vegetation indices, particularly for moisture
and biomass traits (Figure 3). The normalized RMSE values
indicate good model precision, ranging from 14.8-21.8% across
all models, with CH consistently achieving the lowest values.

Bivariate Regression - Multispectral Camera vs Crop Traits 11.05.2022
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Figure 3: Bivariate linear regression models between spectral VIs (NRI, GnyLi), crop surface height (CH), and

five crop traits for May 11, 2022.

3.2 Multivariate Analysis

Combining spectral vegetation indices with crop surface height
significantly improved model performance for all traits (Table 2).
The NRI plus CH models achieved R? values ranging from 0.72-
0.84, while GnyLi plus CH combinations showed similar
performance (R2 = 0.72-0.84). Both multivariate approaches
resulted in substantial improvements over their respective
bivariate VI models, with R2 increases of 17-24 percentage points
for biomass traits and 21-23 percentage points for N uptake.

The three-dimensional response surfaces illustrate the
complementary nature of combining spectral and structural
information (Figure 4 and Figure 5). For both, DBM and N
uptake, the regression planes showed how the traits increased
with both predictor variables, with steeper gradients along the CH
axis indicating a stronger influence. The highest predictive
accuracy was achieved for N uptake, in which both multivariate
models explained 84% of the variance (R2 = 0.84, nRMSE =
12%). The surface plots demonstrate minimal interaction effects
between the predictors, as evidenced by the relatively planar
response surfaces rather than the curved or warped surfaces.
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All regression coefficients remained highly significant (p < 0.01)
in the multivariate models, indicating that both predictors
independently contributed to the explained variance. The F-
statistics (42.38-84.41) confirmed the overall significance of all
the multivariate models (p < 0.001). Notably, the improvement
from bivariate CH to multivariate models was modest (6-9

Table 2: Multivariate regression results combining VIs and crop height (GnyLi & CH, NRI & CH) against destructively measured

and derived crop traits

percentage points), suggesting that CH already captured much of
the trait variation independently. The similar performance of NRI
& CH versus GnyLi & CH combinations indicates that either
vegetation index can be effectively paired with crop height for
improved trait estimation.

Crop Trait NRI & CH GnyLi & CH
R? RMSE nRMSE | R2 RMSE  nRMSE

FBM (/ha) 0.79 4.83 0.14 0.79 479 0.14

DBM (t/ha) 0.77 0.65 0.13 0.78 0.64 0.13

Moisture (t/ha) 0.78 4.36 0.15 0.78 434 0.15

Neonc (%) 0.72 0.25 0.15 0.72 0.25 0.15

N uptake (kg/a) | 0.84 2056  0.12 084 2047  0.12
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Figure 4: Three-dimensional response surfaces for multivariate regression models combining NRI and crop height (CH) as

predictors for dry biomass matter (DBM, left) and N uptake (right). Color gradients indicate the predicted trait values.
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Figure 5: Three-dimensional response surfaces for bivariate regression models combining GnyLi and crop height (CH) as predictors

for dry biomass matter (DBM, left) and nitrogen uptake (right). Color gradients indicate the predicted trait values.

4. Discussion

The present study evaluated the performance of a VNIR/SWIR
multispectral UAV sensor system for monitoring winter wheat
traits based on the methodology established by Jenal et al. (2025).
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Using the same sensor system and spectral bands (910, 980,
1100, and 1200 nm), our analysis provides an independent
validation of this technology, while revealing both consistencies

and notable differences in performance.
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4.1 Comparison with previous findings

Our bivariate regression results showed moderate to strong
correlations between spectral indices and crop traits, although
generally lower than those reported by Jenal et al. (2025) for a
similar dataset on May 12, 2021. For instance, NRI achieved R2
values of 0.52-0.61 across traits in our study, compared to 0.74-
0.84 reported in 2021. Similarly, GnyLi performance was
considerably lower, with R2 values of 0.50-0.62 versus 0.59-0.85
in the previous study. This difference is particularly intriguing
given that our data collection occurred under clear-sky
conditions, whereas Jenal et al. (2025) reported challenging
weather with variable cloud cover during the campaign on May
12, 2021.

The discrepancy in the bivariate model performance between
studies suggests that factors beyond weather or illumination
conditions may influence the effectiveness of the spectral index.
Potential explanations include differences in crop development
stages between the two sampling dates, variety-specific
responses within the pooled datasets, or variations in soil
background effects. Despite similar sampling dates in mid-May,
the one-year gap between studies could result in different crop
phenological stages owing to year-specific growing conditions
and temperature patterns, potentially affecting the spectral
response of vegetation indices, particularly in the SWIR region
(Basinger et al., 2020; Longchamps and Philpot, 2023).
Comparing the improvements from bivariate to multivariate
regression in both studies revealed an interesting pattern. In Jenal
et al. (2025), the integration of vegetation indices with crop
height improved the R2 values by 6-11 percentage points for NRI
and 23-31 percentage points for GnyLi. In contrast, our study
showed substantially larger improvements for NRI (17-26
percentage points) but slightly smaller improvements for GnyLi
(17-25 percentage points). This difference is particularly
noteworthy because, despite starting from lower bivariate R2
values in our study, the multivariate models achieved comparable
performance to Jenal et al. (2025), with final R2 values of 0.72-
0.84. The larger relative improvement in our study, especially for
NRI, demonstrates that the integration of structural information
becomes even more valuable when spectral indices alone show
weaker performance, effectively compensating for limitations in
individual predictors, and confirming the robustness of the
integrated approach across varying conditions.

The importance of integrating spectral and structural data has
been supported by recent studies. Both Nasi et al. (2018) and
Viljanen et al. (2018) independently demonstrated that
combining 3D features with spectral data consistently
outperformed single-modality approaches across different sensor
configurations (hyperspectral FPI vs. RGB-NIR) and analytical
methods (Random Forest vs. MLR), with performance
improvements ranging from 10-20 percentage points in R2. This
aligns with our findings and reinforces the robustness of the
integrated approach across studies and environmental conditions.

4.2 Structural information performance

Crop height demonstrated a consistently strong predictive
capability in both studies. Our CH results (R2 = 0.63-0.75) align
well with the general findings of Jenal et al. (2021) and Jenal et
al. (2025), who emphasized the importance of structural
parameters for trait estimation. Similar findings are reported by
Bareth et al. (2025, accepted). The robust performance of CH
across both years and different weather conditions underscores
its reliability as a predictive variable. This consistency suggests
that structural information is less sensitive to atmospheric
conditions and spectral variations than vegetation indices,
making it a valuable complement to the spectral data.

4.3 Enhanced performance through data integration

Despite the lower bivariate performance of spectral indices
compared to CH, our multivariate models combining VIs with
CH achieved excellent results, with R2 values ranging from 0.72-
0.84 across all traits. These findings strongly support the
integrated approach advocated by Bendig et al. (2015) and
demonstrate that the complementary nature of spectral and
structural information can compensate for the limitations of
individual predictors. This improvement was particularly notable
for biomass traits, where R2 increased by up to 24 percentage
points when combining predictors.

The success of multivariate models in our study, achieving
similar or better performance than Jenal et al. (2021) despite
weaker bivariate VI results, highlights the robustness of the
integrated approach. This is consistent with the findings of Nési
et al. (2018) and Viljanen et al. (2018), who reported optimal
performance when combining 3D and spectral features regardless
of the sensor type or regression method used.

Our results confirm that frame-based VNIR/SWIR sensors can
successfully derive both spectral and structural information from
a single platform, thus validating the technological approach
introduced by Jenal et al. (2019). The ability to extract crop
height through SfM/MVS processing from multispectral SWIR
imagery represents a significant advantage over pushbroom
systems that are primarily designed for spectral data acquisition.
The advantages of frame-based multispectral sensors for
simultaneous spectral and structural data acquisition have been
independently validated by Nasi et al. (2018) using FPI
hyperspectral cameras, and Viljanen et al. (2018) using RGB-
NIR sensors, both achieving optimal results through feature
integration. This convergent evidence from multiple sensor
configurations strengthens confidence in the operational
deployment of integrated spectral-structural approaches for
precision agriculture applications.

The varying performance of the spectral indices between years
emphasizes the importance of multi-temporal validation studies.
While our study provides valuable independent validation, the
differences observed suggest that robust crop monitoring systems
should not rely solely on spectral information but should
integrate structural parameters to ensure consistent performance
across varying conditions.

5. Conclusion

This study successfully validated a frame-based VNIR/SWIR
UAV sensor system for estimating winter wheat traits by
integrating spectral vegetation indices and structural parameters.
Our independent evaluation confirms the technological approach
introduced by Jenal et al. (2019), while revealing important
considerations for operational deployment.

A clear advantage of a frame-based multispectral camera system
is its ability to easily derive both spectral and structural
information from the same image dataset. Through SfIM/MVS
processing, crop height can be extracted along with spectral
vegetation indices from overlapping frame images, eliminating
the need for separate sensors or multiple flights. This dual
capability of a single sensor platform represents a significant
advancement over pushbroom systems, which are primarily
limited to spectral data acquisition. Our multivariate models
combining vegetation indices (NRI and GnyLi) with crop height
achieved high accuracy (R? = 0.72-0.84) across all traits,
demonstrating that this integrated data acquisition approach can
provide robust trait estimation even when individual spectral
indices show variable performance.
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Figure 6: Advanced 6-channel VNIR/SWIR multicamera
system for airborne (crewed and uncrewed)
remote sensing applications (Jenal et al., 2024).

However, the differences in the bivariate spectral index
performance between our study and those of Jenal et al. (2021)
and Jenal et al. (2025) highlight critical areas for further
investigation. The lower R2 values observed for both the NRI and
GnyLi, despite favorable weather conditions, suggest potential
calibration uncertainties that require attention. Future
implementations should prioritize rigorous calibration protocols
and consider environmental factors beyond weather conditions
that may influence the spectral responses.

The recent development of a 6-channel VNIR/SWIR
multicamera system, as introduced by Jenal et al. (2024), offers
promising solutions to the current limitations (Figure 6). This
expanded system maintains the crucial advantage of deriving
both spectral and structural information from frame-based
imagery, while providing enhanced spectral capability. The
increased number of parallel acquired bands should enable more
robust vegetation indices by simultaneously capturing
wavelengths critical for biochemical constituent detection,
potentially reducing the sensitivity to calibration errors.

This study reinforces the idea that integrating spectral SWIR
features with structural parameters, both derived from the same
multispectral image datasets, is essential for achieving the
consistency and accuracy required for practical precision
agriculture applications. Future research should focus on multi-
temporal and multi-site validation to establish robust operational
protocols for this promising technology. The robustness of
combining SWIR spectral features with structural parameters
was independently confirmed by Nési et al. (2018), who
demonstrated similar improvements in the accuracy of crop trait
estimation when integrating hyperspectral and 3D features across
different sensor configurations and flying heights. This
convergent evidence from multiple studies strengthens
confidence in the operational deployment of integrated spectral-
structural approaches for precision agriculture applications.
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