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Abstract

In recent years, flying autonomously with UAVs has been a widely researched topic. While most autonomous flying systems use
the Global Navigation Satellite Systems (GNSS) for localization, using GNSS under the forest canopy is not applicable. Thus other
sensors such as lidars are needed. The objective of this study was to evaluate the performance of an autonomous flying system
for flying inside boreal forests. Two open-sourced algorithms, IPC (Integrated Planning and Control framework) path planner
and control algorithm, and LTA-OM (Long-Term Association Lidar-Inertial Odometry and Mapping) simultaneous location and
mapping (SLAM) algorithm, were chosen as the base for the custom-built quadrotor system. Livox Mid-360 lidar was used as the
sensor. The system was evaluated with a set of extensive experiments. First, a set of simulation experiments were conducted with
multiple flights flown in multiple forests with different tree densities and varying target flight velocities. Second, the localization
accuracy of LTA-OM was evaluated by measuring the end-point drift from two manually flown real-world flights. Lastly, 33
autonomous real-world flights were performed in two different forest plots with varying levels of difficulty and tree density as well
as with varying target flight velocities. Based on real-world experiments, the performance of the system was somewhat promising
inside the medium-difficulty forest, but poor inside the dense difficult forest. The success rate of real-world flights was 10/15 inside
the medium-difficulty forest and 6/15 inside the difficult forest with a target flight velocity of 1 m/s. The flight distance on the

real-world flights was 60 meters.

1. Introduction

Uncrewed aerial vehicles (UAVs) have been a widely re-
searched topic both in academic research and in commercial
organizations. Many autonomous UAVs utilize the Global Nav-
igation Satellite Systems (GNSS) for localization. However,
inside forests, localizing the UAV using GNSS can be prob-
lematic due to multipath effects and signal blockages caused by
trees (Schubert et al., 2010). Furthermore, within a forest, the
quadrotor must avoid obstacles, such as trees, branches, bushes,
and other understory vegetation, which cannot be achieved
without additional onboard sensors.

Many solutions have been proposed for flying autonomously
in GNSS-denied environments. In recent years, most solutions
use either a lidar, a camera, or a combination of both. However,
large-scale experiments, especially inside real-world forests,
are rarely performed. Often, the experiments are performed
mainly inside simulated environments. Moreover, if real-world
experiments are performed, the performance of the proposed
system is not extensively reported. Often, the real-world flights
are conducted in a sparse-looking forest without any mention of
forest density. Additionally, the success rate of flights is rarely
reported. Since the experiments, which are conducted when a
new autonomous flight algorithm is proposed, are lacking, the
performance of the algorithms inside forests is unknown.

Therefore, more extensive experiments within dense forests are
needed. Karjalainen et al. (Karjalainen et al., 2023, Karjalainen
et al., 2024) has performed more extensive experiments with a
camera-based autonomous flight algorithm proposed by Zhou
et al. (Zhou et al., 2022). 34 flights were performed inside
forests with varying levels of difficulties. The success rate of
flights varied from 47% inside a difficult forest with the original
system to 100% inside a medium-difficulty forest and 87.5%

with an improved system. To our knowledge, no such extensive
testing scheme has been implemented for flying inside forests
for lidar-based autonomous flight systems.

In this work, a set of extensive experiments is conducted with
an autonomous flight system. The selected autonomous flying
algorithm IPC was proposed by Liu et al. (Liu et al., 2024).
The selected localization algorithm LTA-OM was proposed by
Zou et al. (Zou et al., 2024). First, the feasibility of IPC was
validated with a set of simulated flights inside three different
forests with varying difficulties. Second, the feasibility of LTA-
OM for localizing the quadrotor inside forests was validated
with a manual flight experiment. Lastly, the performance of the
whole system was evaluated with 33 real-world flights flown
inside two different forests with varying difficulty.

This article is based on most parts on the Master’s thesis of the
first author Aleksi Karhunen (Karhunen, 2024).

2. Materials and Methods
2.1 Algorithms

The solution proposed by Liu et al. (Liu et al.,, 2024) was
chosen since Liu et al. had performed real-world experiments
inside forests. Although the forest density was not reported, and
although based on the provided pictures, the test area seemed
sparse, the ability to react quickly to new obstacles and the abil-
ity to handle dynamic obstacles was deemed promising.

The architecture of the whole system is presented in Figure 1.
IPC is divided into frontend and backend. The frontend is re-
sponsible for local map construction and reference path search-
ing. Local map construction is triggered every time a point
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cloud is received and is based on a simplified version of ROG-
Map (Ren et al., 2023). ROG-Map produces a robot-centric uni-
form grid local voxel map which is moved efficiently without
copying any data in memory. In the simplified version of ROG-
Map, no raycasting is used but instead, a voxel is marked as an
obstacle if a lidar scan has hit the voxel. Liu et al. (Liu et al.,
2024) introduced the temporal forgetting mechanism to ROG-
Map where an obstacle is considered free if enough time has
passed since the voxel was last been hit by a lidar scan. If the
difference between the current time and the timestamp of the
last hit is larger than the forgetting threshold, the voxel is con-
sidered free. The reference path searching is triggered every
time a new goal command is obtained or if an obstacle is detec-
ted along the old reference path. In reference path searching,
A* is used to find the shortest path to the goal and the reference
path is formed by pruning away the redundant nodes to form
the shortest piecewise reference path.
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Figure 1. The architecture of the whole autonomous flying
system. IPC and LTA-OM receive lidar and IMU data from
sensors and IPC receives localization data from LTA-OM at IMU
update rate of 200 Hz. IPC outputs angular velocity and thrust
references at a rate of 100 Hz to the FCU which is responsible
for controlling the quadrotor. Adapted from (Liu et al., 2024).

The backend of IPC is triggered at a constant rate of 100 Hz.
First, two safe flight corridors (SFCs) (Liu et al., 2017) are cre-
ated based on the obstacle map. Then, model predictive con-
trol (MPC) and the differential flatness property of quadrotors
(Fliess et al., 1995) is used to generate a set of control inputs
for the flight control unit (FCU). The MPC problem formula-
tion provided in the source code of IPC by Liu et al. differs
slightly from the original given in (Liu et al., 2024) and is for-
mulated as:
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where ||u,—1||&, is the control efforts, ||(Pref,n — pn)H%{p +
||(Viet,n — Vi)|l&, + ||an||&, are the reference path, velo-
city, and acceleration following error at reference positions
[Pref, 1, -+ Pref,v—1] tespectively, [[(per,n — Pn)I|R, v +
HVN||,21“7 ~ + llan||&, , are the reference path, velocity, and
acceleration error at the reference position of the horizon length
Pref, v Tespectively, and ||ty 41 —uy,| |§C is the control variation.
The MPC problem is practically the same as presented in (Liu
et al., 2024), but with greater flexibility in parameter selection.
Using Equation 1 allows for setting different weights for the

position, velocity, and acceleration error for the intermediate
reference indexes and the last index. The two SFCs are used
as the safe space constraint for the MPC problem. Using the
differential flatness property, the set of jerk instructions gener-
ated from the MPC problem is transformed into a set of attitude
commands and forwarded to PX4 flight controller software.

LTA-OM (Zou et al., 2024) was selected as the localization
module based on the localization feasibility study presented in
section 3.2. LTA-OM utilizes a variant of FAST-LIO2 (Xu et
al., 2022) as the odometry module. The pose graph optimiza-
tion (PGO) problem consists of nodes and constraints. Sequen-
tial nodes are constrained via odometry and adjacent keypo-
int factors, and non-sequential nodes are constrained by virtual
loop closure keypoint factors. STD-LCD (Yuan et al., 2023) is
used as the loop closure detection module. Loop closure de-
tection is performed on every keyframe which accumulates all
points from all previous n keyframes. From every keyframe,
triangle descriptors are formed which are used to detect loop
closure in a hierarchical manner. First, a hash table is used to
form rough loop closure candidates. If the rough loop closures
are geometrically consistent the keyframe is considered as a fine
loop candidate. Lastly, from all the fine loop closure candidate
keyframes, the one with the highest plane overlap ratio between
the current frame and the candidate frame is selected as the fi-
nal loop closure candidate. A false positive rejection module
is activated before inserting the loop closure to the graph. If
the loop closure passes the consistency check, the loop closure
is added to the graph. GTSAM (Frank Dellaert and GTSAM
Contributors, 2022) is used to solve the PGO problem.

Since odometry was published only at a lidar rate in the ori-
ginal source code of LTA-OM, the source code was modified
to publish odometry data at the IMU rate. To avoid major re-
structuring of the source code, the inter-lidar odometry estim-
ates were obtained by propagating the IMU measurements with
a second-order integrator. The whole system operates on the
Robot Operating System (ROS noetic).

2.2 Used Simulation Software and Hardware

The simulation experiments were conducted with the Gazebo
physics simulator (Koenig and Howard, 2004) with PX4 soft-
ware in the loop (SITL). The quadrotor used was a modified
version of the Iris quadrotor provided in the PX4 SITL soft-
ware. The quadrotor was modified to more closely represent
the custom-built quadrotor used in real-world experiments by
modifying the geometry of the collision and the weight and
inertia parameters of the model. The weight of the simulated
quadrotor with the lidar was set to be 1.8 kg. The Livox Mid-
360 lidar used in the real-world experiments was modeled us-
ing an unofficial Mid-360 plugin (Vultaggio et al., 2023) which,
inter alia, fixes the distortion of the point cloud which is present
in the official Mid-360 plugin.

The real-world experiments were conducted with custom-built
quadrotor hardware. The custom quadrotor was built into a
quadrotor frame with a motor-to-motor distance of 350 mm.
The prop length of the two-bladed propellers was 17.8 cm (8
inches). The onboard computer of the system was Minisforum
EM780 with AMD Ryzen 7 7840U CPU, which weighed 268
grams. Pixhawk 6¢ Mini was used as the FCU. Livox Mid-
360 and its built-in IMU, ICM40609, were used for SLAM and
autonomous flight. Livox Mid-360 outputs 200 000 points a
second in a non-repeating manner. The field of view of the
lidar is 360° horizontally, 7° downwards, and 52° upwards. The
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IMU outputs data at 200 Hz. The Livox Mid-360 weighed 265
grams. The whole system was powered with a 10 Ah battery.
The weight of the whole system was 1875 grams with the bat-
tery and 1245 grams without the battery. The whole quadrotor
system is shown in Figure 2.
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10 Ah
0 Ah battery Pixhawk 6C Mini FCU

Figure 2. The custom-built quadrotor used in the real-world
experiments.

2.3 Test Environments and Experimental Setup

The performance of IPC was first evaluated inside a simulated
forest. To test the impact of different forest densities a total of
12 forests were generated. Four of the forests had a tree density
of 0.1 trees/m?, four forests had a tree density of 0.15 trees/m?,
and four forests had a tree density of 0.2 trees/m2. The forest
densities were chosen based on the complexity categories of
the boreal forest introduced by Liang et al. (Liang et al., 2019),
where easy forests have a density of 0.07 trees/m? with minimal
understory vegetation, medium forests have a density of 0.1
trees/m? with sparse understory vegetation and difficult forests
have a density of 0.2 trees/m? with dense understory vegetation.
No understory vegetation was present in the simulated forests.
The forests were generated by using a script by Oleynikova et
al. (Oleynikova et al., 2016) where trees are placed inside the
given area uniformly. A photorealistic Norway spruce model
by Globe Plants (Globe Plants Team, 2022) was used.

To decrease the computational burden the forest size was lim-
ited to being 20 meters long and 10 meters wide. Addition-
ally, the top of the trees were cut off. The forest was surroun-
ded by walls to prevent the quadrotor from flying around the
forest. The ground was completely flat in all the forests. Figure
3 shows an example of the simulated forests.

Figure 3. Forest number 4 with a density of 0.15 trees/m? and
with the simulated quadrotor hovering in its starting position.

The performance of IPC was evaluated by flying five flights in
each of the simulated forests with four different target velocit-
ies: 1.0 m/s, 3.0 m/s, 5.0 m/s, and 6.0 m/s. In total, 20 flights
were performed inside every forest density with every target
flight velocity. A precise position estimate was given to the
autonomous flight algorithm during the experiments. The flight
distance was 30 meters and the starting and goal localization
height was set to 1 meter. The success rate and the true average
velocity of the flight were measured. The flight was deemed as
a success if the quadrotor managed to reach the goal point, and
a failure if there was any collision during the flight.

To evaluate the location accuracy of LTA-OM, a real-world
manual flight experiment was conducted. The location accur-
acy of LTA-OM was compared against two other SLAM al-
gorithms: SLOAM proposed by Chen et al. (Chen et al., 2020)
and improved by Liu et al. (Liu et al., 2022), and GLIM pro-
posed by Koide et al. (Koide et al., 2024), and one odometry
algorithm: FAST-LIO2 proposed by Xu et al. (Xu et al., 2022).
Since the Minisforum EM780 does not have a dedicated GPU,
a version of GLIM for the CPU was used. This differs from
GPU-accelerated GLIM by using VGICP (Koide et al., 2021)
as the odometry module as well as a way to extract loop clos-
ure detection features. The experiment was conducted by fly-
ing the custom-built quadrotor inside a boreal forest in Palo-
heind, Helsinki (60°15°28.4”N 24°55°19.9”E). The experiment
was conducted by collecting flight data on two manually flown
flights. The approximated flight distances of the flights were
150 meters and 420 meters. The starting and end locations of
the flights were approximately the same. The end-point drift
was measured for all algorithms for both flights.

The performance of the whole system was evaluated with a set
of autonomously flown real-world experiments. The experi-
ments were conducted in Paloheind, Helsinki. The forest plots
were classified by using the forest complexity categories by Li-
ang et al. (Liang et al., 2019). The first forest plot was classi-
fied as a medium-difficulty forest. The approximated tree dens-
ity was 0.104 trees/m? with sparse understory vegetation. The
second forest plot was classified as a difficult forest. The ap-
proximated tree density was 0.222 trees/m? with sparse under-
story vegetation. Both forest plots consisted of mainly spruces
with many dry low-hanging branches. Figure 4 shows the view
from the starting location for both forest plots. Figure 5 shows
the overhead view of the point clouds obtained from both forest
plots.

(@ (b)

Figure 4. View towards the goal from the starting position of the
medium-difficulty forest plot (a) and difficult forest plot (b).

In total 33 flights were flown. 15 flights were flown inside both
forest plots with a target flight velocity of 1 m/s. Additionally,
three flights were flown inside the medium-difficulty forest with
a target flight velocity of 2 m/s. The goal location was approx-
imately 60 meters forward from the starting location. The alti-
tude of the starting location and goal was set at 1 meter.
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Figure 5. Overhead view of the point cloud of the
medium-difficulty forest plot (a) and difficult forest plot (b). The
green cube depicts the starting position (0, 0, 1) and the blue
cube depicts the goal position (60, 0, 1) both given in meters.
The exact location of the goal position varied between flights
since the initial orientation of the quadrotor varied slightly
between the flights. The white lines in (b) depict the edges of a
trail, after which the denser end forest starts.

The parameters of IPC were set as follows for the real-
world experiments: The obstacle inflation of A* and the SFC
shrinking parameter was set to 0.4 m. The horizon length
and time step of MPC were set to 15 and 0.1 seconds, re-
spectively. The maximum velocity, acceleration, and jerk
were set for all directions to 10 m/s, 20 m/s?, and 50
m/s® respectively except for acceleration downwards which
was set to 9.5 m/s2. The MPC problem weight paramet-
ers of Equation 1 was set as follows: R, = diag(0,0,0),
R, = diag(2500,2500,2500), R, = diag(0,0,0), R, =
diag(0,0,0), R,,n = diag(3500,3500,3500), R, n =
diag(200, 200, 200), R.,~n = diag(200,200,200), and R. =
diag(1.0,1.0,1.0). The forgetting threshold was set to 30
seconds.

The performance was evaluated by measuring the success rate
of flights, flight distance, flight time, point-to-point velocity,
and true average velocity of the flights. A flight is considered a
success if the system manages to fly to the goal point or if the
system deems that the goal is unreachable near the goal point.
Otherwise, the flight is deemed a failure. The true average velo-
city is calculated by taking the average velocity of the smoothed
LTA-OM approximated path over the whole flight. The point-
to-point average velocity is calculated by dividing the distance
between the starting location and the goal location by the flight
time. Using the point-to-point average velocity and the true av-
erage velocity of the flights, the time spent flying unnecessary
long routes can be calculated by:

d d

@

textra =
Up-to-p

Vtrue ’
textra 1S the time spent flying unnecessary long routes, ve 1S
the true average velocity, vpt-p is the point-to-point average
velocity, and d is the flight distance. It is good to notice, that
the texira cannot be O seconds if there are obstacles between the
start and goal location. However, with a perfect system the texira
should be at most a few seconds even in the difficult forests.

Treoum Targetm/s |15 | 30 | 50 | 60
01 17720 | 18/20 | 13720 | 14720
0.15 1720 | 15120 | 7720 | 920
0.2 20120 | 15/20 | 11720 | 4720

Table 1. The success rate of flights depending on the forest tree
density and target flight velocity.

Targetm/s |40 1 30 | 50 | 60 | Al
Forest
Density 0.1, forest 1 5/5 | 5/5 | 3/5 | 2/5 | 15/20
Density 0.1, forest 2 5/5 | 4/5 | 3/5 | 5/5 | 17/20
Density 0.1, forest 3 4/5 | 5/5 | 3/5 | 2/5 | 14/20
Density 0.1, forest 4 3/5 | 3/5 | 45 | 5/5 | 15/20
Density 0.15, forest 1 5/5 1 5/5 | 0/5 | 2/5 | 12/20
Density 0.15, forest 2 4/5 | 5/5 | 5/5 | 4/5 | 18/20
Density 0.15, forest 3 5/5 | 4/5 | 2/5 | 3/5 | 14/20

Density 0.15, forest 4 35| 1/5 1 0/5 | 0/5 | 420

Density 0.2, forest 1 5/5 | 4/5 | 2/5 | 2/5 | 13/20
Density 0.2, forest 2 5/5 | 4/5 | 4/5 | 2/5 | 15/20
Density 0.2, forest 3 5/5 | 4/5 | 4/5 | 0/5 | 13/20

Density 0.2, forest 4 5/5 | 3/5 | 1/5 | 0/5 9/20

Table 2. The success rate of flights depending on the individual
forest. The forests are divided into three density groups: 0.1
trees/m?, 0.15 trees/m?, and 0.2 trees/m2. The best and worst

success rates of flights for all target flight velocities of individual
forests are bolded.

3. Results and Discussion

3.1 Simulation Experiment

A summary of the success rates of the flights is presented in
Table 1. In general, with lower target flight velocities, the dens-
ity of the forests did not have an impact on the success rate of
flights. However, with target flight velocities of 5.0 m/s and 6.0
m/s, the success rate of the flights decreased, especially with
the target flight velocity of 6.0 m/s, where the success rate de-
creased from 14/20 in the sparsest forest to 4/20 in the densest
forest. The success rate was additionally impacted by the tar-
get flight velocity. When the target flight velocity was 1.0 m/s
or 3.0 m/s the success rate was 15/20 or over across all forest
densities. With target flight velocities of 5.0 m/s and 6.0 m/s,
the success rate was 14/20 or under across all forest densities,
and under 10/20 for half of the forest densities.

The target flight velocities were not reached during the flights.
With a target flight velocity of 1.0 m/s, the true average velocity
was 0.75 m/s across all flights. With a target flight velocity of
3.0 m/s, the true average velocity was 1.9 m/s. With a target
flight velocities of 5.0 m/s and 6.0 m/s, the corresponding true
average velocities were 2.7 m/s and 3.0 m/s, respectively.

Table 2 presents the success rate of flights depending on the
individual forest. The impact of the individual forest to the
success rates of flights was larger than the impact of the forest
density in general. With a forest density of 0.1 trees/m? 76.25%
of flights were successful, with a forest density of 0.15 trees/m?
60% of flights were successful, and with a forest density of 0.2
trees/m? 62.5% of flights were successful. However, the differ-
ences between the success rates across individual forests were
higher, especially in the forest density category of 0.15 trees/m?2.
In fact, the easiest (forest 2 with a success rate of 18/20) and
most difficult (forest 4 with a success rate of 4/20) forests had
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a density of 0.15 trees/m2. Thus based on the simulation exper-
iments, it can be concluded that the configuration of the indi-
vidual tree clusters has a larger impact on the success rate than
the forest density in general. Of course, the denser the forest,
the more likely it becomes that there will be a cluster of trees
which is difficult to traverse through for IPC.

3.2 Manual Flight Experiment

To evaluate the location accuracy of LTA-OM, the end-point
drift from two manually flown flights was measured. The res-
ults are presented in Table 3 for the first 150-meter flight and
in Table 4 for the second 420-meter flight. The tree detection
of SLOAM failed for all flights due to the non-repetitive and
non-gravity-aligned point cloud of the Livox Mid-360 lidar.
Due to the backend failure, SLAOM fell back to using only
the odometry module. LTA-OM and FAST-LIO2 achieved sim-
ilar results across both flights while the location accuracy of
GLIM was poor, especially on the longer second flight. Al-
though FAST-LIO2 achieved slightly better results than LTA-
OM across both flights, the difference is inside the measure-
ment error. Moreover, for very long flights LTA-OM should
achieve lower drift due to loop closure detection. A drift of
only a couple tens of centimeters across both flights indicates
that LTA-OM is well suited for autonomous flights.

3.3 Real-world Experiments

Table 5 presents an overview of all real-world flights. Figure 6
presents the LTA-OM approximated flight paths from the flights
performed in both forest plots. Since the flight paths are given
in the local coordinate system and since the starting location
and orientation varied slightly in-between flights, the same loc-
ation on the graph does not necessary correspond to the same
location in the test area. The success rate of the system was
somewhat promising inside the medium-difficulty forest with
a target flight velocity of 1 m/s. 10/15 flights were success-
ful. However, the flight performance inside the difficult forest
was poor. Only 6/15 flights were successful. Table 6 presents
the failure reasons for flights flown inside different forest plots
with different target flight velocities. Only three flights were
performed with the target flight velocity of 2 m/s inside the
medium-difficulty forest.

In a failure due to a cloud of leaves, the quadrotor thrust a cloud
of leaves from the ground with its propellers which were detec-
ted as obstacles by the system. This led the system to think that
it was located inside an obstacle which caused the planner to
move the starting location for the A* search to the closest free
voxel in the obstacle map. This sometimes led to very aggress-
ive control maneuvers which sometimes led to an MPC solver
failure. This in turn sometimes led to a collision with the ground
or with the surrounding obstacles. In a failure due to a collision
with a tree, the system steered the quadrotor too close to a tree
which resulted in a crash. In a failure due to “not a numbers”
(NaNs) being generated during the SFC generation process, the
corners of the SFC polyhedron were defined as NaNs. This led
to MPC generating NaN control inputs which turned off the mo-
tors. In unstable flying, too aggressively planned paths led to a
prolonged period of MPC solver failure, which sometimes led
to a crash or to the quadrotor shooting up toward the sky.

For the flights performed inside the medium-difficulty forest
with the target flight velocity of 1 m/s, the reasons for failure
were divided equally. The most common reason was a cloud
of leaves being thrust from the ground. It is good to note that
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Figure 6. The approximated flight paths of all flight performed
inside the medium-difficulty forest (a) and difficult forest (b).
The rosbag record of flight 11 inside the medium-difficulty
forest was lost and thus omitted from (a). The rosbag recording
of flight 7 inside the difficult forest was cut short, but the
terminal point of that flight is very close to the one depicted in
the graph (b).

most times a cloud of leaves being thrust from the ground did
not not lead to a failure. Out of the 10 successful flights on five
of them, a cloud of leaves was thrust alongside the quadrotor
which did not lead to a failure. For the flights performed inside
the difficult forest with the target flight velocity of 2 m/s, failure
due to NaNs being generated by the SFC module was the most
numerous one, followed by collision with a tree and unstable
flying. Due to the ground being frozen, no leaves were thrust
from the ground by the quadrotor.

For the flights inside the medium-difficulty forest, the differ-
ence between the average true average velocity and point-to-
point average velocity was moderate, resulting, on average, 9.6
seconds of lost time over the 60-meter-long flight. However,
the difference was much larger in the difficult forest. On aver-
age, the system lost 50.6 seconds over the 60-meter-long flight.
The most prominent reason was unstable route planning. Since
the A* module tries to always find the shortest path towards the
goal, after replanning, two subsequent routes might be very dif-
ferent. An example of how different subsequently planned ref-
erence paths can be is shown in Figure 7. When this behavior
repeats multiple times every few seconds the system starts to fly
up-and-down or left-to-right in place for long periods. These
periods usually last for 5-20 seconds, however in extreme cases
such periods might last much longer. For example on flight
seven inside the difficult forest, one in place flying period las-
ted for over six minutes. The locations of these in place flying
periods can be seen in Figure 6 as tight zigzag in the position
estimates.

All flights with a target flight velocity of 2 m/s failed. All in
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Algorithm Error x (m) Error y (m) Error z (m) Total (m)
LTA-OM -0.08 -0.10 0.15 0.19
GLIM -0.07 0.25 -0.11 0.28
FAST-LIO2 -0.03 0.01 -0.13 0.13

Table 3. End-point error and total distance from end-point of tested SLAM algorithms of the first 150-meter flight. SLOAM was
omitted from the table due to backend failure.

Algorithm Error x (m) Error y (m) Error z (m) Total (m)
LTA-OM -0.01 -0.08 -0.02 0.08
GLIM -0.28 1.00 0.36 1.10
FAST-LIO2 -0.00 -0.05 0.02 0.06

Table 4. End-point error and total distance from end-point of tested SLAM algorithms of the second 420-meter flight. SLOAM was
omitted from the table due to backend failure.

Forest difficulty and target velocity Success rate Average
point-to-point

average velocity

Average true
average velocity

Average texira

Med. forest, 1 m/s 10/15 0.68 m/s 0.76 m/s 9.3s
Dif. forest, 1 m/s 6/15 0.44 m/s 0.70 m/s 50.6 s
Med. forest, 2 m/s 0/3 - - -

Table 5. An overview of all real-world flights. tcxra from Equation 2 is calculated by using the average point-to-point average velocity
and true average velocity. The average true average velocity and point-to-point average velocity were only calculated for the
successful flights.

Forest difficulty and target velocity Hit a tree Cloud of NaN SFC Unstable Total
leaves flying

Med. forest, 1 m/s 1 2 1 1 5

Dif. forest, 1 m/s 3 0 4 2 9

Med. forest, 2 m/s* 0 0 0 3 3%

Table 6. The failure reasons for flights flown inside different forest plots with different target flight velocities. Only three flights were
performed inside the medium-difficulty forest with a target flight velocity of 2 m/s.

all, flying was very unstable right from the start. On all flights,
the flight ended in a crash after approximately 15 meters due to
constant and volatile A* reference path replanning which led to
a long period of MPC failure.

3.4 Discussion

The system showed promising performance inside the simu-
lator, but based on the real-world experiments the simulation
experiments showed over-promising results. While based on
the simulation experiment flights even with a target flight velo-
city of 6 m/s could be possible, based on the real-world exper-
iments performing flights with a target flight velocity of 2 m/s
or over would be unadvisable.

Based on the real-world experiment, the system showed encour-
aging performance, especially in the medium-difficulty forest.
However, in the difficult forest environment, the performance
was poor with under half of the flights being successful. Based
on the estimated time spent flying unnecessary routes texra, re-
ducing the time spent flying in place would reduce the flight
times drastically, especially in more difficult forests. Decreas-
ing the volatility of the A* module by for example making it
follow the old reference path should decrease the time spent fly-
ing in place during flight. More stable reference path creation
should also improve the general stability of the system which
should lead to fewer failures due to extended MPC failure or

due to a collision with a tree. Additionally, handling NaNs dur-
ing the SFC generation should improve the reliability of the
system. To be considered as a viable option for data collection
inside forests, the reliability of the system should be improved
and the flight times missions should be decreased.

4. Conclusions

In this study, the performance of a lidar-based autonomous fly-
ing system for flying a quadrotor inside boreal forests was eval-
uvated. The system was built upon the IPC path planner pro-
posed by Liu et al. and the LTA-OM SLAM proposed by Zou
et al. The performance of the system was evaluated inside a
set of simulated and real-world forests with varying levels of
difficulty. Additionally, the location accuracy of LTA-OM was
evaluated by flying two long manual flights and measuring the
end-point drift. The system showed good performance inside
the simulator, but the results of the real-world experiments were
not as promising. Based on the real-world experiments, the sys-
tem showed promising performance for the medium-difficulty
forest, but poor performance for the difficult forest. However,
with modifications to the system, the performance could be im-
proved drastically. By making the A* reference path planning
less volatile, and by introducing a way to handle NaNs during
the SFC generation process should improve the reliability of the
system as well as reduce the flight mission completion times.
The end-point location accuracy of LTA-OM was in the range
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Figure 7. An example of volatile A* reference path planning
from a flight done in a difficult forest. The black line depicts the
optimal planned A* path and the blue line depicts the outputted

reference path. The time interval between the first picture (a)

and the last picture (c) was approximately 1.2 seconds. The
distance from the current position of the quadrotor to the goal
point was approximately 15 meters.

of a couple of tens of centimeters on flights of a few hundred
meters.

The capability to fly autonomously within forest environments
could simplify laborious forest data collection. The system
could be used for example for stem measurements of trees,
collection of understory point cloud or image data, or for
bark beetle infestation detection to mention a few potential
applications.
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