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Abstract 

 

Swarm intelligence (SI), inspired by the collective behaviour of social insects, such as ants, bees, and termites, has been applied to 

various domains, including the engineering of drone swarms. Another holistic approach to understand and design complex systems is 

systems thinking (ST), which emphasizes particularly the interactions and relationships between a system’s components. This paper 

explores the intersection of SI and ST, aiming to find commonalities and synergies between the two fields. Based on previous 

research, the paper highlights the key characteristics (e.g., decentralization, self-organization, and adaptability) of the bio-inspired 

bottom-up approach of SI and compares them with the core features (such as interconnectedness and feedback loops) of top-down 

type of ST. By integrating concepts and principles from both disciplines, the paper suggests that innovative solutions to complex 

problems, for instance, in the engineering of drone swarms, can be developed. The paper concludes that both approaches share a 

focus on emergent behaviour and the importance of considering a system as a whole. The combined application of both of them can 

eventually lead to a better understanding, design and management of complex artificial systems, such as drone swarm solutions. 

 

 

1. Introduction 

Understanding, designing, and managing the behaviour of a 

drone swarm in its real-world operational environment remains 

a central challenge in the field of unmanned aerial systems 

(UAS). As the environments and tasking systems for drone 

swarms grow in scale and interconnectivity, traditional linear 

models often fall short in capturing their dynamic, emergent 

behaviours. This challenge is particularly pressing in domains, 

such as wildfire response, where the drones, their human 

operators, and other relevant stakeholders (e.g., the fire crews) 

must adapt in real time to the changing natural environment. 

Addressing this complexity is not only a technical imperative 

but also a societal one, with implications for labour safety, 

environmental sustainability, and community resilience. 

 

A prominent paradigm in the engineering of drone swarm 

solutions is swarm intelligence (SI, see e.g., Bonabeau et al., 

1999; Kennedy and Eberhart, 2001; and Garnier et al. 2007). It 

has typically been inspired by the collective behaviour of social 

animals like ants, birds, and fish. Recently, SI has been applied, 

for instance, to drone swarm coordination (Saffre et al., 2021), 

human behavioural analysis (Ylisiurua, 2024), industrial robots 

(Cheraghi et al., 2021), network routing (Zungeru et al., 2021), 

and collective decision-making (e.g., Prasetyo et al., 2019). 

However, SI systems in vivo do not often map to SI systems in 

silico directly: for instance, in contrast to simulations, the size 

of a beehive or ant colony is not inherently scalable to infinity. 

In the context of drones, artificial SI models are therefore 

typically scaled from a few to dozens or even hundreds of 

relatively similar agents, capable of functioning equally 

effectively. SI systems are thus characterized by decentralized 

self-organization, where behaviours emerge from adaptive rules 

in local interactions among simple agents. As the size of the 

swarm increases, in principle the system can often maintain its 

performance or even improve in certain cases due to increased 

diversity and redundancy (Bjerknes & Winfield, 2013).  

In this paper, we reflect another holistic approach to 

understanding, modelling and designing complex socio-

technical systems called systems thinking (ST, Senge, 1990) 

and consider how it could be utilized in the engineering of 

drone swarm solutions. Similarly to SI, ST emphasizes the 

interactions and relationships between a system’s components. 

However, a “system” in the ST context can entail various kinds 

of constituents from a hospital to a human’s digestive system. 

ST has been previously applied successfully, for instance, in 

ecology (e.g., Orr et al., 2008), economics (e.g., Valentinov et 

al., 2015), and healthcare (e.g., Trbovich, 2014). This large 

variety of application areas is possible, because ST models 

operate at a higher level of abstraction, focusing on aggregate 

behaviours and system-wide dynamics (Strijbos, 2010). They 

aim to capture the big-picture behaviour of the system, focusing 

on a limited number of conceptualized agents to understand the 

system’s overall structure and feedback loops (Sterman, 2000).  

 

Whereas SI is a paradigm for operation, ST is more of a 

conceptual framework for analysis, helping practitioners to 

anticipate unintended consequences and design more robust 

systems. ST aids particularly in the development of more potent 

approaches to resolving systemic challenges and understanding 

of complicated problems by helping people and organizations 

foresee unexpected system-level effects. In detail, core features 

of ST include (based on Senge, 1990 and Sterman, 2000):  

1. Holistic perspective: Systems are viewed as wholes, 

recognizing that a system's behaviour is determined by the 

interactions between its constituent parts (that are defined 

more broadly than as a collection of agents). 

2. Interconnectedness: The interdependence of a system's 

parts is emphasized, acknowledging that changes to one 

part can have a significant effect on the system as a whole. 

3. Feedback loops: System feedback loops can gradually 

intensify (reinforce) or stabilize (balance) system activity. 

They can push the system further in the direction of the 

initial change, or pull the system back, resisting change.  
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4. Emergence: Systems have emergent properties, forcing an 

analysis of a system beyond its individual component 

pieces towards the behaviours and properties of the whole. 

5. Dynamic complexity: Systems undergo gradual evolution 

in response to both internal and external influences. 

 

As can be noted from the features, SI and ST are not alternative 

or competing design choices. While both SI and ST originate 

from complex systems science, they have largely evolved in 

parallel. SI focuses on operational mechanisms for distributed 

coordination, whereas ST provides analytical tools for systemic 

insight, helping to understand structure and introduce strategy 

and control (also potentially to autonomous systems). Despite 

their complementary strengths, their integration in the context 

of engineering swarm robotics, remains underexplored.  

 

The present paper aims to close this gap by addressing the open 

question of how ST can inform the design and engineering of 

SI-based robotic systems. It explores the intersection of SI and 

ST through reflective concept-level analysis, identifying the key 

similarities, differences, and potential synergies of these 

approaches. Bridging this gap could enable more adaptive and 

context-aware solutions for swarm robotics and its control 

systems. By combining the operational strengths of SI with the 

analytical depth of ST, we propose a more systemic approach to 

the development and management of complex robotic solutions. 

 

2. Major Similarities of Swarm Intelligence and Systems 

Thinking 

The first obvious similarity between SI and ST is in their shared 

focus on understanding complex systems’ behaviour. Both 

approaches also focus on the interactions and relationships 

between the system's components (e.g., agents) instead of only 

on its individual components per se. In detail, SI has at least the 

following main properties that are consistent also with the 

fundamental ideas and principles in ST (references in brackets): 

• Holistic perspective: The entity under analysis or design 

is considered as a whole in both approaches. The 

interactions between the parts of the entity are as important 

as the parts themselves (for SI, see, e.g., Hasbach and 

Bennewitz, 2022; for ST, see, e.g., Senge, 1990). 

• Self-organization: Both approaches focus on the 

interconnected units of the system that have some degree 

of self-organizing behaviour (for SI: Garnier et al., 2007; 

Kennedy and Eberhart, 2001; Bonabeau et al., 1999; for 

ST: Jung, 2020). Therefore, a system, such as an ant or a 

designed robot swarm, adapts and self-organizes to 

maintain stability and functionality in an uncertain and 

variable context (e.g., in response to perturbations). 

• Dynamic complexity: Both approaches acknowledge the 

dynamic nature of systems and their need to adapt and 

evolve. In specific, both focus particularly on dynamic 

complexity via continuous change and adaptation within 

the system over time (SI: Priyadarshi and Kumar, 2025; 

ST: Schwaninger, 2020). Adaptation and evolution are 

temporal processes and any interconnected multi-agent 

composition that has these properties can be considered to 

be a complex system (Abbott and Hadžikadić, 2017). 

• Adaptive behaviour as a response: With SI, a swarm 

responds to a change in its environment or in its internal 

conditions (Altshuler, 2023). Also ST emphasizes the 

importance of understanding how a system adapts and self-

organizes in response to perturbations, as well as how it 

maintains stability and functionality in the face of 

uncertainty and variability (Abbott and Hadžikadić, 2017).  

There are some similar – yet nuanced – key concepts in both 

approaches that are presented in detail in the next subchapters. 

 

2.1 Adaptation and Learning 

A system learns over time that which are the successful 

adaptations to different situations. There are, however, subtle 

differences in the conceptual tone of what adaptation and 

learning means in the context of SI and ST. For bio-inspired SI-

based robot swarms, the agents are often framed through 

mechanisms that allow them to adapt in interaction with the 

environment and internal conditions. A bio-inspired robot 

swarm, therefore, is a superorganism that “learns” rather 

differently in comparison to a single robot with higher 

processing abilities. In contrast to individual agent learning (see, 

e.g., Garnier et al. 2007), when collectively intelligent animals 

and insects learn, they do not learn a “correct" sequence of 

actions. Instead, an ant colony determines the most beneficial 

direction between the nest and the food source by the 

pheromone secreted and sensed by individual ants (Greene and 

Gordon, 2007). The pheromone that ensures signal 

reinforcement also allows the recruitment of peers. The colony 

thus "learns" the shortest path through positive amplifying 

feedback (Gordon, 2010), while the “parameter values” 

governing agent behaviour remain the same.  

 

Similarly, in systems thinking, adaptation and evolution are 

temporal processes, but the complex system is constituted by 

any interconnected multi-agent composition, not only swarms 

(Abbott and Hadžikadić, 2017). In brief, both approaches value 

learning and adaptation as essential for understanding and 

managing a complex system effectively (for SI: Kennedy and 

Eberhart, 2001; for ST: Abbott and Hadžikadić, 2017), albeit 

from a bit different angle. While SI is invested in the pragmatic 

survival of the swarm and its agents as part of its local 

environment (Garnier et al., 2007), ST highlights that 

understanding and managing a system requires attention 

specifically to how its socio-technical agents interact and evolve 

over (typically long periods of) time. 

 

2.2 Nonlinear Dynamics Through Interconnectedness and 

Interdependence 

A further similarity with a slightly different tone in SI and ST is 

their focus on interconnectedness and relationships of the agents 

in the system. Both recognize the importance of understanding 

the system’s interactions. In SI, a swarm consists of individual 

agents that interact with their environment (globally) and with 

each other (locally), making them highly interdependent (Jevtić, 

2011). In other words, each agent's behaviour can influence and 

can be influenced by the actions of other agents. On the one 

hand, this leads to behavioural patterns of the swarm as a whole. 

On the other hand, the behaviour of swarms is often 

characterized by nonlinear dynamics (Rosenfeld, 2015), where 

minor changes in individual actions can lead to significant 

effects on the overall swarm behaviour. This nonlinearity can 

result in very unexpected behaviours and outcomes. 

   

Similarly, ST recognizes interconnectedness and 

interdependence as key elements of a system, and considering 

possible unforeseen repercussions of operations over time inside 

a system is a key focus in ST. For example, Beerel (2009) states 

that cause-and-effect linear mental models do not serve well in a 

system-interconnected world. Consequently, modifications to a 

single component of the system may have major unintended 

consequences, which take time to manifest in the wider scale. 
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In conclusion, both SI and ST recognize the potential for so-

called “ripple effects” through small behaviour of one agent, or 

even a slight change of a parameter value of the units of a drone 

swarm. In practice, a minor design change (e.g., a parameter 

value change by 1 digit) to the swarm units can offset the swarm 

behaviour to an entirely different macro-level pattern. 

Therefore, careful attention and often statistical analysis of 

several simulation runs are needed in the engineering of drone 

swarms for precise parameter value determination.  

 

2.3 Feedback Loops and Opportunity for Human 

Intervention 

Both SI and ST emphasize the role of feedback loops in shaping 

system behaviour and adaptation. Swarms self-organize through 

feedback loops, where the actions of individual agents produce 

effects that influence the behaviour of other agents. With ants, 

for instance, the feedback response is provided by the chemical 

pheromone signals (Gordon, 2010). In contrast, in a bird flock, 

the physical movement of one bird triggers a response in 

neighbouring birds, leading to coordinated movement patterns 

(Garnier et al., 2007). The diverse characteristics of the related 

feedback loops contribute to the varying forms of self-

organization and adaptive behaviour observed in both biological 

and artificial swarms (Hasbach and Bennewitz, 2022).  

 

Similarly, in ST, understanding feedback loops is fundamental 

to analysing system behaviour, identifying leverage points, and 

predicting outcomes. In short, feedback loops show how the 

output of a system's action affects its future input, creating a 

cycle of influence. ST recognizes the nonlinearity inherent in 

systems and emphasizes especially the need to consider the 

complex interactions and feedback mechanisms that drive 

system dynamics (Liu and Barabási, 2023).  

 

As a result for man-made swarms, ST illustrates an opportunity 

to design interventions as feedback, for instance, from a human 

operator affecting the swarm’s behaviour while observing it and 

seeing a need to affect its behaviour. This intervention typically 

comes through stigmergy-based or other indirect coordination 

approach (Saffre et al., 2021). In these types of approaches, the 

local environment is changed (e.g., via “virtual pheromone”), 

instead of attempting to change the agents’ properties, or to 

change some global rule in the environment. 

 

2.4 Boundaries and Context  

Boundaries impact the understanding and analysis of a system 

by defining what is contained within and what is outside of it 

(e.g., Meadows, 1999; Zhang and Ahmed, 2020). Context 

means the specific environmental, organizational, temporal, or 

stakeholder-related conditions in which a system operates 

(Sturmberg and Martin 2024). As swarms consist of multiple 

agents that are in constant interaction with their environment, 

the boundary of a swarm may be sometimes hard to define. 

With biological swarms, the boundary is constituted by each 

individual insect or animal in their natural environment. In 

contrast, human swarms constantly renegotiate the immediate 

physical boundaries of their environment, but also the social, 

cultural, or technological context that may influence their 

swarm behaviour (Ylisiurua 2024). In the case of drone swarms 

(Gumahada and Collins, 2024), the boundary can be constituted 

by parameter values like distance to other drones, or the 

swarm’s context such as an urban flight environment.  

Also ST highlights the boundaries and context within which a 

system operates, taking into account the limitations, constraints, 

and the viewpoints from which the system is seen (Midgley, 

2000). In ST, the context shapes crucially how system 

boundaries are drawn, how feedback loops function, and how 

interactions among components are interpreted. The context 

frames both the external environment and the internal dynamics 

that influence system behaviour (Zhang and Ahmed, 2020).  

 

For drone swarm design, these observations mean that the 

boundaries and context are to be carefully considered in the 

design and operation of a swarm. For instance, understanding 

the boundaries of the swarm is essential for analysing and 

predicting swarm dynamics accurately. Furthermore, a swarm 

solution working effectively in one context might be obsolete in 

another. The actual planned context needs to be therefore clear 

already in the beginning phase of engineering a drone swarm 

solution and respected also in the operation of that swarm. 

 

2.5 Emergence 

In SI, a swarm’s collective properties, such as strategies and 

behavioural patterns emerge from the interactions between 

individual agents and their environment. These emergent 

properties can include complex patterns of: I) movement, II) 

coordination, and III) decision-making that are not present at the 

level of individual agents but arise from the collective 

(Ganapathy et al. 2025).  

 

Similarly in ST, the emergent properties of a system result from 

the interactions and relationships within the system 

(Gharajedaghi, 2011). Furthermore, ST recognizes that the 

behaviour of the entire system cannot be predicted based only 

on the behaviour of its constituent parts. ST thus also 

acknowledges the importance of understanding and analysing 

emergent properties to fully capture the system’s behaviour. 

 

The main shade of difference of SI to ST here is that swarms 

emerge typically from participating agents that are structurally 

remarkably simple and that have a shared set of rules they 

follow. In that sense, the agents and their appearance or way of 

being constitutes the boundary between the swarm and its 

environment. In contrast, a system in ST is more generic and 

can consist of different types of entities at different level of 

organization, that share only a few properties. Consequently, the 

boundary of an observed system in ST is less clear and chosen 

from the observer’s point of view.  

 

In conclusion, highlighting the opportunity of emergence and 

designing it in drone systems is a key factor for successful 

solutions. For example, the performance of a drone swarm is 

likely to suffer temporarily from an inability to react to a new 

environment with a property salient to the swarm success, such 

as an emergent need to learn to perform in snow when the 

agents are trained to work in a desert. A goal-oriented swarm 

optimizing its fitness function should therefore learn to navigate 

in the unfamiliar environment. 

 

2.6 Summary of Major Similarities 

In brief, both SI and ST highlight the importance of the 

interactions and relationships of the actors within the system in 

causing non-linear phenomena. Table 1 presents their major 

similarities based on the previous reflections in this section. 
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Feature Similarities between SI and ST 

Holistic 

perspective 

Considering the system as a whole, 

which is more than the sum of its parts. 

Self-organization Emphasizing the interconnectedness of 

the system, resulting in self-organized 

behaviour on the collective level. 

Dynamic 

complexity 

Acknowledging the system’s dynamism 

and tendency to change over time. 

Adaption and 

learning  

Emphasizing how systems can adapt and 

maintain stability in various uncertain 

circumstances. 

Nonlinear 

dynamics through 

interconnectedness 

and 

interdependence 

Recognizing the interactions and the 

relationships between the parts of the 

system, and the resulting potential for 

nonlinear dynamics. 

Feedback loops 

and opportunity for 

human intervention 

Emphasizing the role of feedback loops 

in different parts of the system in 

shaping its collective-level behaviour, 

opening the potential for unintended 

consequences but also the opportunity to 

control the system through deliberate 

human interventions. 

Boundaries and 

context 

Considering both the boundaries and 

context within which a system operates. 

Emergence Acknowledging the emergent properties 

arising from the interactions of the parts 

within the system. 

Table 1. Summary of major similarities of SI and ST. 

3. Major Differences Between Swarm Intelligence and 

Systems Thinking 

The differences between SI and ST arise, for instance, from the 

fact that they explain diverse phenomena from different 

standpoints. SI concentrates on the decentralized emergent 

behaviour of natural or artificial swarms, whereas ST takes a 

broader top-down approach to comprehending complex 

systems. Furthermore, while SI typically focuses on algorithms 

and artificial intelligence (AI), ST is more about comprehension 

and optimization. In detail, SI and ST differ from each other in 

the fundamental ideas described in the following subchapters.  

 

3.1 Level of Hierarchy 

One prominent distinction between SI and ST is the depth of 

hierarchy levels in them. In ST, interventions are typically 

conducted top-down via centralized control, a higher-level 

structure that oversees and adjusts the behaviour of the system 

and its subsystems when they deviate from the desired 

outcomes. For example, Senge (1990) emphasizes the role of 

systemic structures and mental models in shaping system 

behaviour and highlights the importance of identifying leverage 

points for intervention. These leverage points are typically 

located at high levels of abstraction and control in the system. 

 

In contrast, the decentralized management of individual agents 

inside the swarm is the foundation of SI. The group as a whole 

is not under the direct and explicit control of any single actor. 

Consequently, the different members of the swarm are relatively 

equal. This does not, however, mean that there cannot be 

different roles for the agents within the swarm. Rather, in a 

typical swarming scenario, each agent in the swarm 

communicates only with its neighbours and abides some rule 

set, reacting to local observations. 

 

3.2 Top-down vs. Bottom-up Approach 

As discussed above, a major difference between ST and agent-

based models is the utilized top-down and bottom-up 

approaches. ST models usually take a top-down approach, 

which also automatically gives hierarchy (Mingers and White, 

2010), whereas with SI groups of individual agents typically 

take a bottom-up approach in which the dynamics emerge from 

the interactions of the swarm’s agents (Khare et al., 2023).  

 

A key aspect to consider here is that the behaviour of the swarm 

is the result of individual decisions and actions (bottom-up), but 

it does not mean that such behaviour wasn’t the target of the 

process that led to the selection of the decision rules applied on 

the individual level, whether this process is biological evolution 

or deliberate design. In other words, a large part of SI design 

consists in studying systemic properties of, for instance, 

possible rulesets, mechanisms, and parameter values to identify 

those capable and sufficient to foster the emergence of the 

desired global behaviour. These types of bottom-up systems are 

also very much capable of responding to microscopic events: 

that is the exact basis of chaos theory (cf. “butterfly effect”; see, 

e.g., Savi, 2023). 

 

Top-down ST-informed approaches for drone swarm operations 

could include the human making interventions to the 

functioning of the swarm. ST may inform especially the 

development of the operational concept of the socio-technical 

system for swarm operations in real-life contexts and scenarios. 

 

3.3 Mental Models 

Mental models are a key element in ST (Zhang and Ahmed, 

2020): they are internal representations that individuals or 

groups have about how a system works. These models influence 

the way people, for instance, see situations, evaluate 

information, and make decisions. They do not remain static; 

rather, they change with experience, learning, and reflection. 

 

Oftentimes the swarming behaviour in a group of agents 

capable of higher-level thinking is the result of interactions in 

which their more "advanced" cognitive abilities or mental 

models play no part. Human crowd behaviour is a good 

example of this phenomenon: for instance, the flow of people 

leaving a crowded metro station is very "swarm-like", because it 

is governed by remarkably simple interaction between the 

individuals (e.g., collision avoidance). 

 

Although in agent-based models (Salgado and Gilbert, 2013), 

such as SI, mental models are not explicitly in focus, they can 

be inherently included in the evolutionary soundness criteria or 

in the mind of the designer of the swarm. For instance, at least 

the swarm designer’s mental model has to be quite consistent 

with its human operator’s mental model of the swarm. 

Therefore, mental models of the swarms’ human designer and 

operator are worth evaluating from the systems perspective in 

order to optimize the joint cognitive system (Hollnagel and 

Woods, 2005) of the human-swarm entity. 

 

3.4 Approach to Resilience 

Although both SI and ST approaches emphasize the system’s 

resilient adaptation to the prevailing circumstances, they have a 

different take on how this is achieved. With swarms, for 

instance, if one member of the swarm is lost, the others can step 

in and compensate for the loss. Systems using SI frequently 

show resilience in the face of disruptions or errors (Bari et al., 
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2023). Because of the swarm's decentralized control, restoring 

actions are spread across the swarm, which allows adjusting to 

shifting circumstances without appreciably affecting the 

system's overall performance (Stolfi and Danoy, 2025).  

 

However, in ST, a change in one part of the system can be also 

seen to result in drastic changes to the entire system. Especially, 

in hierarchical top-level models of ST even the smallest change 

at the top can change the whole behaviour (Meadows, 1999) – 

which is quite different to agent-based SI models. With swarms, 

small change affects a rule applied by all agents instead of a 

single unit and because the nonlinear nature of complex systems 

leveraging feedback loops means that changing a parameter 

value can push the artificial system as a whole over a threshold.  

 

3.5 Nature of Dynamics  

Both SI and ST consider spatio-temporal dynamics. However, 

SI often focuses more on the spatial dynamics (as is done, e.g., 

with drone swarming models; see Saffre et al., 2022), while ST 

has a more temporal dynamics focus. Especially of interest in 

ST are the long-term wider effects on system behaviour, 

reactions to external factors, delays, and feedback over time 

(see, e.g., Zhang and Ahmed, 2020).  

 

3.6 Level of Abstraction 

SI-based swarm models operate at a level of agents and their 

interactions. However, abstract mathematical modelling is 

applied in order to investigate the behaviour of the swarm as a 

whole. This forms the basis for statistical predictability for 

swarm behaviour. The statistical modelling outcomes help to 

understand phenomena such as emergence, self-organization, 

and decentralized decision-making, and for including such 

phenomena in an artificial swarm’s system design. For example, 

models may predict that a swarm will end up in a certain system 

state based on stability analysis, although it will usually not be 

possible to determine how long the process will take. 

Alternatively, it may be possible to predict what fraction of a 

time a swarm will spend in each of the possible states. 

 

In contrast, ST models function at a higher degree of 

abstraction, emphasizing aggregate behaviours and system-wide 

dynamics (Strijbos 2010). They try to capture the system's 

overall behaviour by focusing on a small number of imagined 

agents (Sterman, 2000). Furthermore, ST models typically aim 

to provide multiple abstraction levels to the system by utilizing 

various perspectives in the analysis of a system. 

 

3.7 Levels of Analysis 

Agents of a swarm often have rather limited ways of interacting 

with their environment. Consequently, their perspectives may 

be limited and local. However, taking a multi-level perspective 

with a swarm allows for a comprehensive understanding of the 

swarm system, its behaviour, dynamics, and interactions 

between different levels such as units, sub-swarm, entire swarm, 

and even swarm of swarms levels. A related example from the 

is provided by Bjurling et al. (2020) with their various proposed 

levels of control for the human operator(s) of the swarm. 

 

ST specifically promotes considering the opinions of many 

stakeholders at various hierarchy levels (see, e.g., Sturmberg 

and Martin, 2024). It aims to analyse systems at multiple levels 

of abstraction, from individual elements of the system to its 

collective dynamics. These levels can be divided, for example, 

to micro- (e.g., a stakeholder’s decision), meso- (e.g., team 

communication), macro- (e.g., national healthcare system), and 

meta-levels (e.g., multi-national governance models). In ST, 

understanding systems' behaviour and dynamics more 

thoroughly is made possible by analysing them at several levels 

and integrating various stakeholder views into the system 

model. ST also encourages moving fluidly between the levels to 

understand how local actions influence broader dynamics and 

vice versa (Cox, 2024). Interventions in ST are usually a feature 

of their higher-level structure: when the lower-level 

mechanisms are moving the system to a direction that is not 

wanted, the higher hierarchy can intervene and directly change 

the course. An analogue of this could be a control system in an 

industrial environment. This type of control is more direct 

compared to SI approaches.  

 

3.8 Summary of Major Differences 

Based on the previous reflections in this chapter, the major 

differences between SI and ST are summarized in Table 2. 

 

Feature Differences between SI and ST 

Focus SI explores emergent behaviours in 

decentralized systems using algorithms, 

while ST adopts a broader, often top-down 

view of complex systems with an emphasis 

on human-led control and optimization. 

Level of 

hierarchy 

SI is decentralized, while ST often involves 

centralized hierarchical control. 

Bottom-up vs. 

top-down 

approach 

SI uses bottom-up organization (on the 

micro level), while ST usually has a top-

down approach (on the macro level). 

Mental models SI focuses on evolutionary soundness, while 

ST examines people’s mental models of the 

system specifically. 

Approach to 

resilience 

SI emphasizes resilience through 

redundancy, while ST considers the impact 

of changes on the entire system. 

Nature of 

dynamics 

SI focuses more on spatial dynamics, while 

ST focuses more on temporal dynamics. 

Level of 

abstraction 

SI models operate at a detailed level to 

simulate individual interactions and enable 

statistical predictions of emergent 

behaviour, while ST models abstract these 

details to focus on aggregate dynamics and 

system-wide feedback.  

Levels of 

Analysis 

SI benefits from observing interactions 

across different levels, while ST 

systematically integrates perspectives across 

various levels to understand and influence 

system behaviour. 

Table 2. Summary of major differences between SI and ST. 

4. Seeking Common Ground to Gain Inspiration for the 

Engineering of Swarm Robotics Solutions 

Next, we focus on how SI and ST could come closer together as 

disciplines by seeking and suggesting areas for common ground 

with examples for the engineering of drone swarm solutions. 

4.1 Common Ground for Adaptation 

Adaptation on a general level should be understood as a 

response to the system’s environment or internal conditions. 

Adaptation is often framed as passive, as if the environment 

causes pressure on the system while it passively adapts to this 

pressure. If there are many other possibilities than just mere 

survival, the system may orientate to an otherwise preferred 
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direction or even develop its new goal on the go. In the contexts 

of drone swarms, their goal orientation is probably the norm. 

However, another type of adaptation could be described as 

“playful orientation” (Ylisiurua, 2024). Certain kind of 

innovation activity is non-goal oriented and playful, such as 

when a new technology is tried out for fun. Arguably, current 

generative AI solutions are used in this way, as users try out 

what generative AI can actually do and what are its limits. 

We suggest that in the design of SI for drone swarms, this type 

of “playful experimentation” might be fruitful. Unpredictable 

microscopic deviation from the initial mission plan is part of the 

approach. This trait is what gives drone swarms their adaptability 

and resilience compared to directed, more traditional command 

and control approaches. Nevertheless, this “tuneable noise” is 

not synonymous with macroscopic unpredictability: if the 

parameter values are right, for example, a simulated swarm of 

ants will find the shortest path between the nest and the food 

source (eventually). Similarly, by using particle swarm 

optimization (PSO) type of dynamics, one can effectively control 

the general direction of movement of the swarm, but not the 

precise trajectory of individual units, which will keep “messing 

around”: this is how they are able to collectively discover new 

points of interests that were unknown at the time of the mission 

planning. It also makes it difficult to anticipate precisely what 

the swarm is going to do from moment to moment, which is a 

key advantage in many situations. For example, in a search 

context, it is easy to avoid a detection by a squad of agents 

following a lawnmower pattern, but hard to do so when they 

exhibit a swarming behaviour with some inconsistencies. 

 

4.2 Common Ground for Bottom-Up and Top-Down 

Approaches 

The top-down and bottom-up division discussed earlier is a very 

general-level approach that dismisses the meeting ground and 

the tensions between the two. To think more towards this 

direction, consider the following examples. In biology, “a 

shore” is the boundary area where sea and land meet and form a 

combination. In economics, meso-level is assessed between the 

macro and micro economy (see, e.g., Mazzoni, 2024). Similarly, 

in drone system design, the meso-level boundary appears as an 

area where the top-down and bottom-up meet and create an 

emergent structure. For example, a boundary meso-level area 

may develop between two groups of drone operators from 

different organizations. In the case of programming robotic 

swarms where a macro-level operation emerges from the micro-

level logic, if one would like to take that operation to a certain 

direction, it can mean coding a new role into the swarm. 

However, this role would not be higher in the hierarchy and, for 

example, "stronger" than others in terms of functions and 

characteristics, but rather, complementary.  

4.3 Common Ground for Feedback Loops and 

Interventions 

As recognized earlier, interconnectedness and interdependence 

of a system’s agents result in feedback loops where members of 

the swarm form, exchange and interpret messages with each 

other. In a swarm, these range from awareness of their own 

state, sensory perceptions of the environment such as vision, to 

their relative position in the swarm such as the safety distance, 

and to their relationship to the environment such as flight 

altitude. In ST, explicit coordination (e.g., human interventions) 

is an additional feedback feature of a system. With swarms, so-

called second-level interventions can also happen where the 

swarm itself, on its own initiative, starts to act differently for 

some reason. Since something emerges from the swarm’s 

actions (boundary, structure or something else), that emerged 

fact can be locally important, such as detecting a local seashore 

or fire front in case of a drone swarm. However, it might also be 

possible that the emerged perceptions can be useful in other 

situations, such as learning to recognize an animal in the forest. 

 

Concurrently, this learning applies differently in different drone 

swarms’ contexts. In agent-based simulations, such perceptions 

and rules are coded for reliable in silico agents, and consistent 

behaviour can be expected. In contrast, if a real-life drone unit 

fails to follow a swarming rule, it is considered an error and is 

often caused by a mechanical malfunction. However, the rule 

design could take more inspiration from the biological world. A 

biological agent (person, ant, fish, bird) not only learns to 

modify their rule-based strategies but also applies them variably 

in different situations. As an example, in designed human 

swarm situations, like traffic, internalized traffic rules and 

external traffic signs guide the drivers. However, even traffic 

rules are somewhat flexible, because there can be weather 

conditions, miscreant drivers, and emergency situations, which 

agents assess differently. Consequently, all rule deviations are 

not errors, nor are they random ways of reacting. Nevertheless, 

the deviations may have non-linear effects. In the context of 

machines, one could thus perhaps say that such quirks are 

features, not bugs of the system, and it's good to understand 

them. This is especially salient because, in a real-life robotic 

swarm, there can be several devices made in different 

manufacturing facilities and of different generations. These may 

work technically differently and interpret each other's behaviour 

in varying ways, which one should be able to take into account 

when designing their collaboration and control. 

 

5. Discussion 

While SI and ST have distinct focuses and methodologies, they 

share common principles related to, for example, understanding 

complexity, emergence, and adaptation within systems. This 

reflective paper suggests that combining SI (that is traditionally 

used in swarm robotics; see, e.g., Cheraghi et al., 2021) and ST 

(that is typically used in human systems modelling; see, e.g., 

Sterman, 2000) can lead to novel solutions in the development 

of drone swarms. For instance, by deeply understanding and 

utilizing the obvious common ideas of emergence, advancement 

of holistic design, and definition of suitable boundaries for the 

system, drone swarm researchers and operators can gain 

insights into the underlying mechanisms driving the system’s 

behaviour and design effective solutions for various 

applications in the future. Furthermore, by bridging the 

differences between the disciplines, for example, with 

conceptual analysis type of approach utilised in this paper, we 

can gain inspiration from ST to the design of, for example, 

robotic drone swarms. Finding a common ground between these 

approaches would significantly benefit artificial swarm system 

(e.g., drone swarm) design. 

 

The paper also details some less obvious key areas where 

common ground between SI and ST is sought, along with 

suitable practical-level examples. Table 3 summarizes some of 

our discovered implications and advice on these chosen areas 

for the design of drone swarms. By applying ST principles to 

the study of swarms, the researchers, designers and engineers of 

drone swarms can gain insights into the underlying mechanisms 

driving swarm behaviour, predict their dynamics, and 

potentially design or control robotic swarm systems. Utilizing 

ST may allow to study swarms not as isolated entities, but as 

intricate patterns of relationships. Based on our analysis, the 
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following preliminary implications can be drawn on how to 

utilize ST to improve the design of artificial swarms: 

• Understand emergence: Study how local rules lead to 

global patterns. Analyse in detail the emergent properties, 

such as self-organization, synchronization, and adaptation. 

• Advance holistic design: Design swarm behaviours that 

align with the whole system’s purpose (e.g., exploration, 

surveillance, etc in case of drone swarms). 

• Test for robustness: Study the swarm’s responses to 

disturbances and evaluate its resilience via its adaptation 

patterns both with simulations and real-world tests. 

• Define suitable boundaries: Define the swarm’s 

behavioural boundaries clearly and consider the context 

(e.g., the environment) in detail in this process. 

 

Common 

Ground  

Implications  Advice 

Adaptation Goal-oriented 

adaptation responds to 

environmental 

pressures with specific 

objectives, while 

playful adaptation 

involves 

experimentation 

without predefined 

goals. 

Experiment with both 

goal-oriented and 

playful approaches in 

swarm design to 

enhance the solution’s 

adaptability and 

resilience. Balance-

directed approaches 

with tuneable noise for 

optimal performance. 

Bottom-up 

and top-

down 

approaches 

The meso-level is 

where the top-down 

and bottom-up 

approaches meet, 

creating tensions and 

structures. This level' 

is crucial for optimal 

emergent structures 

and practices. 

In design work, focus 

also on the meso-level 

to understand and 

manage the 

interactions between 

top-down (macro-

level) and bottom-up 

(micro-level) 

processes.  

Feedback 

Loops and 

Interven-

tions 

 

Second-level 

interventions occur 

when the swarm acts 

differently on its own 

initiative, leading to 

emergent structures or 

boundaries. These can 

be locally important 

and have broader 

implications. 

Enhance 

communication and 

feedback mechanisms 

within the swarm to 

improve collective 

decision-making. 

Monitor and analyse 

emergent behaviours 

within the swarm to 

identify functional 

patterns and structures. 

Use these insights to 

inform robotic swarm 

designs and related 

interventions. 

Table 3. Some implications and advice for the common ground 

sought between SI and ST to improve the design of swarms. 

6. Conclusions 

Based on earlier research, this paper analysed the key 

characteristics of SI and compared them with the core concepts 

of ST. The paper suggested that novel solutions for complex 

systems, such as drone swarms, can be developed by integrating 

high-level principles from both fields. A general-level benefit of 

the ST approach for the design of swarming systems is the more 

systemic approach to considering the swarm as a whole and 

predicting its potential transitions already in the design phase.  

Future work in this domain includes practical-level 

experimentation and empirical studies using both approaches. A 

key aspect in this context is to study the same phenomenon both 

with SI and ST simulations, from which the results would then 

be compared and a unified methodological approach sought. 

Overall, a common ground sought between the two approaches 

can lead to improved control, amplified swarm behaviours, and 

increased adaptability of the developed solutions. By applying 

certain top-down ST principles to the study of bio-inspired 

bottom-up SI solutions, researchers, engineers and operators of 

drone swarms can gain insights into the underlying mechanisms 

driving the swarm’s behaviour, predict its dynamics, and design 

the systems better for various application fields, such as 

geomatics, environmental monitoring, and firefighting. This 

paper aims to serve as the first step in considering both 

approaches in an integrated manner. 
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