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Abstract

Swarm intelligence (SI), inspired by the collective behaviour of social insects, such as ants, bees, and termites, has been applied to
various domains, including the engineering of drone swarms. Another holistic approach to understand and design complex systems is
systems thinking (ST), which emphasizes particularly the interactions and relationships between a system’s components. This paper
explores the intersection of SI and ST, aiming to find commonalities and synergies between the two fields. Based on previous
research, the paper highlights the key characteristics (e.g., decentralization, self-organization, and adaptability) of the bio-inspired
bottom-up approach of SI and compares them with the core features (such as interconnectedness and feedback loops) of top-down
type of ST. By integrating concepts and principles from both disciplines, the paper suggests that innovative solutions to complex
problems, for instance, in the engineering of drone swarms, can be developed. The paper concludes that both approaches share a
focus on emergent behaviour and the importance of considering a system as a whole. The combined application of both of them can

eventually lead to a better understanding, design and management of complex artificial systems, such as drone swarm solutions.

1. Introduction

Understanding, designing, and managing the behaviour of a
drone swarm in its real-world operational environment remains
a central challenge in the field of unmanned aerial systems
(UAS). As the environments and tasking systems for drone
swarms grow in scale and interconnectivity, traditional linear
models often fall short in capturing their dynamic, emergent
behaviours. This challenge is particularly pressing in domains,
such as wildfire response, where the drones, their human
operators, and other relevant stakeholders (e.g., the fire crews)
must adapt in real time to the changing natural environment.
Addressing this complexity is not only a technical imperative
but also a societal one, with implications for labour safety,
environmental sustainability, and community resilience.

A prominent paradigm in the engineering of drone swarm
solutions is swarm intelligence (SI, see e.g., Bonabeau et al.,
1999; Kennedy and Eberhart, 2001; and Garnier et al. 2007). It
has typically been inspired by the collective behaviour of social
animals like ants, birds, and fish. Recently, SI has been applied,
for instance, to drone swarm coordination (Saffre et al., 2021),
human behavioural analysis (Ylisiurua, 2024), industrial robots
(Cheraghi et al., 2021), network routing (Zungeru et al., 2021),
and collective decision-making (e.g., Prasetyo et al., 2019).
However, SI systems in vivo do not often map to SI systems in
silico directly: for instance, in contrast to simulations, the size
of a beehive or ant colony is not inherently scalable to infinity.
In the context of drones, artificial SI models are therefore
typically scaled from a few to dozens or even hundreds of
relatively similar agents, capable of functioning equally
effectively. SI systems are thus characterized by decentralized
self-organization, where behaviours emerge from adaptive rules
in local interactions among simple agents. As the size of the
swarm increases, in principle the system can often maintain its
performance or even improve in certain cases due to increased
diversity and redundancy (Bjerknes & Winfield, 2013).

In this paper, we reflect another holistic approach to
understanding, modelling and designing complex socio-
technical systems called systems thinking (ST, Senge, 1990)
and consider how it could be utilized in the engineering of
drone swarm solutions. Similarly to SI, ST emphasizes the
interactions and relationships between a system’s components.
However, a “system” in the ST context can entail various kinds
of constituents from a hospital to a human’s digestive system.
ST has been previously applied successfully, for instance, in
ecology (e.g., Orr et al., 2008), economics (e.g., Valentinov et
al., 2015), and healthcare (e.g., Trbovich, 2014). This large
variety of application areas is possible, because ST models
operate at a higher level of abstraction, focusing on aggregate
behaviours and system-wide dynamics (Strijbos, 2010). They
aim to capture the big-picture behaviour of the system, focusing
on a limited number of conceptualized agents to understand the
system’s overall structure and feedback loops (Sterman, 2000).

Whereas SI is a paradigm for operation, ST is more of a
conceptual framework for analysis, helping practitioners to
anticipate unintended consequences and design more robust
systems. ST aids particularly in the development of more potent
approaches to resolving systemic challenges and understanding
of complicated problems by helping people and organizations
foresee unexpected system-level effects. In detail, core features

of ST include (based on Senge, 1990 and Sterman, 2000):

1. Holistic perspective: Systems are viewed as wholes,
recognizing that a system's behaviour is determined by the
interactions between its constituent parts (that are defined
more broadly than as a collection of agents).

2. Interconnectedness: The interdependence of a system's
parts is emphasized, acknowledging that changes to one
part can have a significant effect on the system as a whole.

3.  Feedback loops: System feedback loops can gradually
intensify (reinforce) or stabilize (balance) system activity.
They can push the system further in the direction of the
initial change, or pull the system back, resisting change.
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4. Emergence: Systems have emergent properties, forcing an
analysis of a system beyond its individual component
pieces towards the behaviours and properties of the whole.

5.  Dynamic complexity: Systems undergo gradual evolution
in response to both internal and external influences.

As can be noted from the features, SI and ST are not alternative
or competing design choices. While both SI and ST originate
from complex systems science, they have largely evolved in
parallel. SI focuses on operational mechanisms for distributed
coordination, whereas ST provides analytical tools for systemic
insight, helping to understand structure and introduce strategy
and control (also potentially to autonomous systems). Despite
their complementary strengths, their integration in the context
of engineering swarm robotics, remains underexplored.

The present paper aims to close this gap by addressing the open
question of how ST can inform the design and engineering of
SI-based robotic systems. It explores the intersection of SI and
ST through reflective concept-level analysis, identifying the key
similarities, differences, and potential synergies of these
approaches. Bridging this gap could enable more adaptive and
context-aware solutions for swarm robotics and its control
systems. By combining the operational strengths of SI with the
analytical depth of ST, we propose a more systemic approach to
the development and management of complex robotic solutions.

2. Major Similarities of Swarm Intelligence and Systems
Thinking

The first obvious similarity between SI and ST is in their shared
focus on understanding complex systems’ behaviour. Both
approaches also focus on the interactions and relationships
between the system's components (e.g., agents) instead of only
on its individual components per se. In detail, SI has at least the
following main properties that are consistent also with the
fundamental ideas and principles in ST (references in brackets):

e  Holistic perspective: The entity under analysis or design
is considered as a whole in both approaches. The
interactions between the parts of the entity are as important
as the parts themselves (for SI, see, e.g., Hasbach and
Bennewitz, 2022; for ST, see, e.g., Senge, 1990).

e  Self-organization: Both approaches focus on the
interconnected units of the system that have some degree
of self-organizing behaviour (for SI: Garnier et al., 2007;
Kennedy and Eberhart, 2001; Bonabeau et al., 1999; for
ST: Jung, 2020). Therefore, a system, such as an ant or a
designed robot swarm, adapts and self-organizes to
maintain stability and functionality in an uncertain and
variable context (e.g., in response to perturbations).

e Dynamic complexity: Both approaches acknowledge the
dynamic nature of systems and their need to adapt and
evolve. In specific, both focus particularly on dynamic
complexity via continuous change and adaptation within
the system over time (SI: Priyadarshi and Kumar, 2025;
ST: Schwaninger, 2020). Adaptation and evolution are
temporal processes and any interconnected multi-agent
composition that has these properties can be considered to
be a complex system (Abbott and Hadzikadi¢, 2017).

e Adaptive behaviour as a response: With SI, a swarm
responds to a change in its environment or in its internal
conditions (Altshuler, 2023). Also ST emphasizes the
importance of understanding how a system adapts and self-
organizes in response to perturbations, as well as how it
maintains stability and functionality in the face of
uncertainty and variability (Abbott and Hadzikadi¢, 2017).

There are some similar — yet nuanced — key concepts in both
approaches that are presented in detail in the next subchapters.

2.1 Adaptation and Learning

A system learns over time that which are the successful
adaptations to different situations. There are, however, subtle
differences in the conceptual tone of what adaptation and
learning means in the context of SI and ST. For bio-inspired SI-
based robot swarms, the agents are often framed through
mechanisms that allow them to adapt in interaction with the
environment and internal conditions. A bio-inspired robot
swarm, therefore, is a superorganism that “learns” rather
differently in comparison to a single robot with higher
processing abilities. In contrast to individual agent learning (see,
e.g., Garnier et al. 2007), when collectively intelligent animals
and insects learn, they do not learn a “correct" sequence of
actions. Instead, an ant colony determines the most beneficial
direction between the nest and the food source by the
pheromone secreted and sensed by individual ants (Greene and
Gordon, 2007). The pheromone that ensures signal
reinforcement also allows the recruitment of peers. The colony
thus "learns" the shortest path through positive amplifying
feedback (Gordon, 2010), while the “parameter values”
governing agent behaviour remain the same.

Similarly, in systems thinking, adaptation and evolution are
temporal processes, but the complex system is constituted by
any interconnected multi-agent composition, not only swarms
(Abbott and Hadzikadi¢, 2017). In brief, both approaches value
learning and adaptation as essential for understanding and
managing a complex system effectively (for SI: Kennedy and
Eberhart, 2001; for ST: Abbott and Hadzikadi¢, 2017), albeit
from a bit different angle. While SI is invested in the pragmatic
survival of the swarm and its agents as part of its local
environment (Garnier et al, 2007), ST highlights that
understanding and managing a system requires attention
specifically to how its socio-technical agents interact and evolve
over (typically long periods of) time.

2.2 Nonlinear Dynamics Through Interconnectedness and
Interdependence

A further similarity with a slightly different tone in SI and ST is
their focus on interconnectedness and relationships of the agents
in the system. Both recognize the importance of understanding
the system’s interactions. In SI, a swarm consists of individual
agents that interact with their environment (globally) and with
each other (locally), making them highly interdependent (Jevtic,
2011). In other words, each agent's behaviour can influence and
can be influenced by the actions of other agents. On the one
hand, this leads to behavioural patterns of the swarm as a whole.
On the other hand, the behaviour of swarms is often
characterized by nonlinear dynamics (Rosenfeld, 2015), where
minor changes in individual actions can lead to significant
effects on the overall swarm behaviour. This nonlinearity can
result in very unexpected behaviours and outcomes.

Similarly, ST  recognizes  interconnectedness  and
interdependence as key elements of a system, and considering
possible unforeseen repercussions of operations over time inside
a system is a key focus in ST. For example, Beerel (2009) states
that cause-and-effect linear mental models do not serve well in a
system-interconnected world. Consequently, modifications to a
single component of the system may have major unintended
consequences, which take time to manifest in the wider scale.
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In conclusion, both SI and ST recognize the potential for so-
called “ripple effects” through small behaviour of one agent, or
even a slight change of a parameter value of the units of a drone
swarm. In practice, a minor design change (e.g., a parameter
value change by 1 digit) to the swarm units can offset the swarm
behaviour to an entirely different macro-level pattern.
Therefore, careful attention and often statistical analysis of
several simulation runs are needed in the engineering of drone
swarms for precise parameter value determination.

2.3 Feedback Loops Human
Intervention

and Opportunity for

Both SI and ST emphasize the role of feedback loops in shaping
system behaviour and adaptation. Swarms self-organize through
feedback loops, where the actions of individual agents produce
effects that influence the behaviour of other agents. With ants,
for instance, the feedback response is provided by the chemical
pheromone signals (Gordon, 2010). In contrast, in a bird flock,
the physical movement of one bird triggers a response in
neighbouring birds, leading to coordinated movement patterns
(Garnier et al., 2007). The diverse characteristics of the related
feedback loops contribute to the varying forms of self-
organization and adaptive behaviour observed in both biological
and artificial swarms (Hasbach and Bennewitz, 2022).

Similarly, in ST, understanding feedback loops is fundamental
to analysing system behaviour, identifying leverage points, and
predicting outcomes. In short, feedback loops show how the
output of a system's action affects its future input, creating a
cycle of influence. ST recognizes the nonlinearity inherent in
systems and emphasizes especially the need to consider the
complex interactions and feedback mechanisms that drive
system dynamics (Liu and Barabasi, 2023).

As a result for man-made swarms, ST illustrates an opportunity
to design interventions as feedback, for instance, from a human
operator affecting the swarm’s behaviour while observing it and
seeing a need to affect its behaviour. This intervention typically
comes through stigmergy-based or other indirect coordination
approach (Saffre et al., 2021). In these types of approaches, the
local environment is changed (e.g., via “virtual pheromone”),
instead of attempting to change the agents’ properties, or to
change some global rule in the environment.

2.4 Boundaries and Context

Boundaries impact the understanding and analysis of a system
by defining what is contained within and what is outside of it
(e.g., Meadows, 1999; Zhang and Ahmed, 2020). Context
means the specific environmental, organizational, temporal, or
stakeholder-related conditions in which a system operates
(Sturmberg and Martin 2024). As swarms consist of multiple
agents that are in constant interaction with their environment,
the boundary of a swarm may be sometimes hard to define.
With biological swarms, the boundary is constituted by each
individual insect or animal in their natural environment. In
contrast, human swarms constantly renegotiate the immediate
physical boundaries of their environment, but also the social,
cultural, or technological context that may influence their
swarm behaviour (Ylisiurua 2024). In the case of drone swarms
(Gumahada and Collins, 2024), the boundary can be constituted
by parameter values like distance to other drones, or the
swarm’s context such as an urban flight environment.

Also ST highlights the boundaries and context within which a
system operates, taking into account the limitations, constraints,
and the viewpoints from which the system is seen (Midgley,

2000). In ST, the context shapes crucially how system
boundaries are drawn, how feedback loops function, and how
interactions among components are interpreted. The context
frames both the external environment and the internal dynamics
that influence system behaviour (Zhang and Ahmed, 2020).

For drone swarm design, these observations mean that the
boundaries and context are to be carefully considered in the
design and operation of a swarm. For instance, understanding
the boundaries of the swarm is essential for analysing and
predicting swarm dynamics accurately. Furthermore, a swarm
solution working effectively in one context might be obsolete in
another. The actual planned context needs to be therefore clear
already in the beginning phase of engineering a drone swarm
solution and respected also in the operation of that swarm.

2.5 Emergence

In SI, a swarm’s collective properties, such as strategies and
behavioural patterns emerge from the interactions between
individual agents and their environment. These emergent
properties can include complex patterns of: I) movement, II)
coordination, and III) decision-making that are not present at the
level of individual agents but arise from the collective
(Ganapathy et al. 2025).

Similarly in ST, the emergent properties of a system result from
the interactions and relationships within the system
(Gharajedaghi, 2011). Furthermore, ST recognizes that the
behaviour of the entire system cannot be predicted based only
on the behaviour of its constituent parts. ST thus also
acknowledges the importance of understanding and analysing
emergent properties to fully capture the system’s behaviour.

The main shade of difference of SI to ST here is that swarms
emerge typically from participating agents that are structurally
remarkably simple and that have a shared set of rules they
follow. In that sense, the agents and their appearance or way of
being constitutes the boundary between the swarm and its
environment. In contrast, a system in ST is more generic and
can consist of different types of entities at different level of
organization, that share only a few properties. Consequently, the
boundary of an observed system in ST is less clear and chosen
from the observer’s point of view.

In conclusion, highlighting the opportunity of emergence and
designing it in drone systems is a key factor for successful
solutions. For example, the performance of a drone swarm is
likely to suffer temporarily from an inability to react to a new
environment with a property salient to the swarm success, such
as an emergent need to learn to perform in snow when the
agents are trained to work in a desert. A goal-oriented swarm
optimizing its fitness function should therefore learn to navigate
in the unfamiliar environment.

2.6 Summary of Major Similarities

In brief, both SI and ST highlight the importance of the
interactions and relationships of the actors within the system in
causing non-linear phenomena. Table 1 presents their major
similarities based on the previous reflections in this section.
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Feature Similarities between SI and ST
Holistic Considering the system as a whole,
perspective which is more than the sum of its parts.

Self-organization

Emphasizing the interconnectedness of
the system, resulting in self-organized
behaviour on the collective level.

human intervention

Dynamic Acknowledging the system’s dynamism

complexity and tendency to change over time.

Adaption and Emphasizing how systems can adapt and

learning maintain stability in various uncertain
circumstances.

Nonlinear Recognizing the interactions and the

dynamics through | relationships between the parts of the

interconnectedness | system, and the resulting potential for

and nonlinear dynamics.

interdependence

Feedback loops Emphasizing the role of feedback loops

and opportunity for | in different parts of the system in

shaping its collective-level behaviour,
opening the potential for unintended
consequences but also the opportunity to
control the system through deliberate
human interventions.

Boundaries and
context

Considering both the boundaries and
context within which a system operates.

Emergence

Acknowledging the emergent properties

arising from the interactions of the parts
within the system.

Table 1. Summary of major similarities of SI and ST.

3. Major Differences Between Swarm Intelligence and
Systems Thinking

The differences between SI and ST arise, for instance, from the
fact that they explain diverse phenomena from different
standpoints. SI concentrates on the decentralized emergent
behaviour of natural or artificial swarms, whereas ST takes a
broader top-down approach to comprehending complex
systems. Furthermore, while SI typically focuses on algorithms
and artificial intelligence (Al), ST is more about comprehension
and optimization. In detail, SI and ST differ from each other in
the fundamental ideas described in the following subchapters.

3.1 Level of Hierarchy

One prominent distinction between SI and ST is the depth of
hierarchy levels in them. In ST, interventions are typically
conducted top-down via centralized control, a higher-level
structure that oversees and adjusts the behaviour of the system
and its subsystems when they deviate from the desired
outcomes. For example, Senge (1990) emphasizes the role of
systemic structures and mental models in shaping system
behaviour and highlights the importance of identifying leverage
points for intervention. These leverage points are typically
located at high levels of abstraction and control in the system.

In contrast, the decentralized management of individual agents
inside the swarm is the foundation of SI. The group as a whole
is not under the direct and explicit control of any single actor.
Consequently, the different members of the swarm are relatively
equal. This does not, however, mean that there cannot be
different roles for the agents within the swarm. Rather, in a
typical swarming scenario, each agent in the swarm
communicates only with its neighbours and abides some rule
set, reacting to local observations.

3.2 Top-down vs. Bottom-up Approach

As discussed above, a major difference between ST and agent-
based models is the utilized top-down and bottom-up
approaches. ST models usually take a top-down approach,
which also automatically gives hierarchy (Mingers and White,
2010), whereas with SI groups of individual agents typically
take a bottom-up approach in which the dynamics emerge from
the interactions of the swarm’s agents (Khare et al., 2023).

A key aspect to consider here is that the behaviour of the swarm
is the result of individual decisions and actions (bottom-up), but
it does not mean that such behaviour wasn’t the target of the
process that led to the selection of the decision rules applied on
the individual level, whether this process is biological evolution
or deliberate design. In other words, a large part of SI design
consists in studying systemic properties of, for instance,
possible rulesets, mechanisms, and parameter values to identify
those capable and sufficient to foster the emergence of the
desired global behaviour. These types of bottom-up systems are
also very much capable of responding to microscopic events:
that is the exact basis of chaos theory (cf. “butterfly effect”; see,
e.g., Savi, 2023).

Top-down ST-informed approaches for drone swarm operations
could include the human making interventions to the
functioning of the swarm. ST may inform especially the
development of the operational concept of the socio-technical
system for swarm operations in real-life contexts and scenarios.

3.3 Mental Models

Mental models are a key element in ST (Zhang and Ahmed,
2020): they are internal representations that individuals or
groups have about how a system works. These models influence
the way people, for instance, see situations, evaluate
information, and make decisions. They do not remain static;
rather, they change with experience, learning, and reflection.

Oftentimes the swarming behaviour in a group of agents
capable of higher-level thinking is the result of interactions in
which their more "advanced" cognitive abilities or mental
models play no part. Human crowd behaviour is a good
example of this phenomenon: for instance, the flow of people
leaving a crowded metro station is very "swarm-like", because it
is governed by remarkably simple interaction between the
individuals (e.g., collision avoidance).

Although in agent-based models (Salgado and Gilbert, 2013),
such as SI, mental models are not explicitly in focus, they can
be inherently included in the evolutionary soundness criteria or
in the mind of the designer of the swarm. For instance, at least
the swarm designer’s mental model has to be quite consistent
with its human operator’s mental model of the swarm.
Therefore, mental models of the swarms’ human designer and
operator are worth evaluating from the systems perspective in
order to optimize the joint cognitive system (Hollnagel and
Woods, 2005) of the human-swarm entity.

3.4 Approach to Resilience

Although both SI and ST approaches emphasize the system’s
resilient adaptation to the prevailing circumstances, they have a
different take on how this is achieved. With swarms, for
instance, if one member of the swarm is lost, the others can step
in and compensate for the loss. Systems using SI frequently
show resilience in the face of disruptions or errors (Bari et al.,
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2023). Because of the swarm's decentralized control, restoring
actions are spread across the swarm, which allows adjusting to
shifting circumstances without appreciably affecting the
system's overall performance (Stolfi and Danoy, 2025).

However, in ST, a change in one part of the system can be also
seen to result in drastic changes to the entire system. Especially,
in hierarchical top-level models of ST even the smallest change
at the top can change the whole behaviour (Meadows, 1999) —
which is quite different to agent-based SI models. With swarms,
small change affects a rule applied by all agents instead of a
single unit and because the nonlinear nature of complex systems
leveraging feedback loops means that changing a parameter
value can push the artificial system as a whole over a threshold.

3.5 Nature of Dynamics

Both SI and ST consider spatio-temporal dynamics. However,
SI often focuses more on the spatial dynamics (as is done, e.g.,
with drone swarming models; see Saffre et al., 2022), while ST
has a more temporal dynamics focus. Especially of interest in
ST are the long-term wider effects on system behaviour,
reactions to external factors, delays, and feedback over time
(see, e.g., Zhang and Ahmed, 2020).

3.6 Level of Abstraction

SI-based swarm models operate at a level of agents and their
interactions. However, abstract mathematical modelling is
applied in order to investigate the behaviour of the swarm as a
whole. This forms the basis for statistical predictability for
swarm behaviour. The statistical modelling outcomes help to
understand phenomena such as emergence, self-organization,
and decentralized decision-making, and for including such
phenomena in an artificial swarm’s system design. For example,
models may predict that a swarm will end up in a certain system
state based on stability analysis, although it will usually not be
possible to determine how long the process will take.
Alternatively, it may be possible to predict what fraction of a
time a swarm will spend in each of the possible states.

In contrast, ST models function at a higher degree of
abstraction, emphasizing aggregate behaviours and system-wide
dynamics (Strijbos 2010). They try to capture the system's
overall behaviour by focusing on a small number of imagined
agents (Sterman, 2000). Furthermore, ST models typically aim
to provide multiple abstraction levels to the system by utilizing
various perspectives in the analysis of a system.

3.7 Levels of Analysis

Agents of a swarm often have rather limited ways of interacting
with their environment. Consequently, their perspectives may
be limited and local. However, taking a multi-level perspective
with a swarm allows for a comprehensive understanding of the
swarm system, its behaviour, dynamics, and interactions
between different levels such as units, sub-swarm, entire swarm,
and even swarm of swarms levels. A related example from the
is provided by Bjurling et al. (2020) with their various proposed
levels of control for the human operator(s) of the swarm.

ST specifically promotes considering the opinions of many
stakeholders at various hierarchy levels (see, e.g., Sturmberg
and Martin, 2024). It aims to analyse systems at multiple levels
of abstraction, from individual elements of the system to its
collective dynamics. These levels can be divided, for example,
to micro- (e.g., a stakeholder’s decision), meso- (e.g., team

communication), macro- (e.g., national healthcare system), and
meta-levels (e.g., multi-national governance models). In ST,
understanding systems' behaviour and dynamics more
thoroughly is made possible by analysing them at several levels
and integrating various stakeholder views into the system
model. ST also encourages moving fluidly between the levels to
understand how local actions influence broader dynamics and
vice versa (Cox, 2024). Interventions in ST are usually a feature
of their higher-level structure: when the lower-level
mechanisms are moving the system to a direction that is not
wanted, the higher hierarchy can intervene and directly change
the course. An analogue of this could be a control system in an
industrial environment. This type of control is more direct
compared to SI approaches.

3.8 Summary of Major Differences

Based on the previous reflections in this chapter, the major
differences between SI and ST are summarized in Table 2.

Feature Differences between SI and ST
Focus SI explores emergent behaviours in
decentralized systems using algorithms,
while ST adopts a broader, often top-down
view of complex systems with an emphasis
on human-led control and optimization.
Level of SI is decentralized, while ST often involves
hierarchy centralized hierarchical control.
Bottom-up vs. | SI uses bottom-up organization (on the
top-down micro level), while ST usually has a top-
approach down approach (on the macro level).

Mental models | SI focuses on evolutionary soundness, while
ST examines people’s mental models of the

system specifically.

Approach to ST emphasizes resilience through

resilience redundancy, while ST considers the impact
of changes on the entire system.

Nature of SI focuses more on spatial dynamics, while

dynamics ST focuses more on temporal dynamics.

Level of SI models operate at a detailed level to

abstraction simulate individual interactions and enable
statistical predictions of emergent
behaviour, while ST models abstract these
details to focus on aggregate dynamics and
system-wide feedback.

Levels of SI benefits from observing interactions

Analysis across different levels, while ST

systematically integrates perspectives across
various levels to understand and influence

system behaviour.

Table 2. Summary of major differences between SI and ST.

4. Seeking Common Ground to Gain Inspiration for the
Engineering of Swarm Robotics Solutions

Next, we focus on how SI and ST could come closer together as
disciplines by seeking and suggesting areas for common ground
with examples for the engineering of drone swarm solutions.

4.1 Common Ground for Adaptation

Adaptation on a general level should be understood as a
response to the system’s environment or internal conditions.
Adaptation is often framed as passive, as if the environment
causes pressure on the system while it passively adapts to this
pressure. If there are many other possibilities than just mere
survival, the system may orientate to an otherwise preferred
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direction or even develop its new goal on the go. In the contexts
of drone swarms, their goal orientation is probably the norm.
However, another type of adaptation could be described as
“playful orientation” (Ylisiurua, 2024). Certain kind of
innovation activity is non-goal oriented and playful, such as
when a new technology is tried out for fun. Arguably, current
generative Al solutions are used in this way, as users try out
what generative Al can actually do and what are its limits.

We suggest that in the design of SI for drone swarms, this type
of “playful experimentation” might be fruitful. Unpredictable
microscopic deviation from the initial mission plan is part of the
approach. This trait is what gives drone swarms their adaptability
and resilience compared to directed, more traditional command
and control approaches. Nevertheless, this “tuneable noise” is
not synonymous with macroscopic unpredictability: if the
parameter values are right, for example, a simulated swarm of
ants will find the shortest path between the nest and the food
source (eventually). Similarly, by using particle swarm
optimization (PSO) type of dynamics, one can effectively control
the general direction of movement of the swarm, but not the
precise trajectory of individual units, which will keep “messing
around”: this is how they are able to collectively discover new
points of interests that were unknown at the time of the mission
planning. It also makes it difficult to anticipate precisely what
the swarm is going to do from moment to moment, which is a
key advantage in many situations. For example, in a search
context, it is easy to avoid a detection by a squad of agents
following a lawnmower pattern, but hard to do so when they
exhibit a swarming behaviour with some inconsistencies.

4.2 Common Ground for Bottom-Up and Top-Down
Approaches

The top-down and bottom-up division discussed earlier is a very
general-level approach that dismisses the meeting ground and
the tensions between the two. To think more towards this
direction, consider the following examples. In biology, “a
shore” is the boundary area where sea and land meet and form a
combination. In economics, meso-level is assessed between the
macro and micro economy (see, e.g., Mazzoni, 2024). Similarly,
in drone system design, the meso-level boundary appears as an
area where the top-down and bottom-up meet and create an
emergent structure. For example, a boundary meso-level area
may develop between two groups of drone operators from
different organizations. In the case of programming robotic
swarms where a macro-level operation emerges from the micro-
level logic, if one would like to take that operation to a certain
direction, it can mean coding a new role into the swarm.
However, this role would not be higher in the hierarchy and, for
example, "stronger" than others in terms of functions and
characteristics, but rather, complementary.

4.3 Common Ground for Feedback

Interventions

Loops and

As recognized earlier, interconnectedness and interdependence
of a system’s agents result in feedback loops where members of
the swarm form, exchange and interpret messages with each
other. In a swarm, these range from awareness of their own
state, sensory perceptions of the environment such as vision, to
their relative position in the swarm such as the safety distance,
and to their relationship to the environment such as flight
altitude. In ST, explicit coordination (e.g., human interventions)
is an additional feedback feature of a system. With swarms, so-
called second-level interventions can also happen where the
swarm itself, on its own initiative, starts to act differently for
some reason. Since something emerges from the swarm’s

actions (boundary, structure or something else), that emerged
fact can be locally important, such as detecting a local seashore
or fire front in case of a drone swarm. However, it might also be
possible that the emerged perceptions can be useful in other
situations, such as learning to recognize an animal in the forest.

Concurrently, this learning applies differently in different drone
swarms’ contexts. In agent-based simulations, such perceptions
and rules are coded for reliable in silico agents, and consistent
behaviour can be expected. In contrast, if a real-life drone unit
fails to follow a swarming rule, it is considered an error and is
often caused by a mechanical malfunction. However, the rule
design could take more inspiration from the biological world. A
biological agent (person, ant, fish, bird) not only learns to
modify their rule-based strategies but also applies them variably
in different situations. As an example, in designed human
swarm situations, like traffic, internalized traffic rules and
external traffic signs guide the drivers. However, even traffic
rules are somewhat flexible, because there can be weather
conditions, miscreant drivers, and emergency situations, which
agents assess differently. Consequently, all rule deviations are
not errors, nor are they random ways of reacting. Nevertheless,
the deviations may have non-linear effects. In the context of
machines, one could thus perhaps say that such quirks are
features, not bugs of the system, and it's good to understand
them. This is especially salient because, in a real-life robotic
swarm, there can be several devices made in different
manufacturing facilities and of different generations. These may
work technically differently and interpret each other's behaviour
in varying ways, which one should be able to take into account
when designing their collaboration and control.

5. Discussion

While SI and ST have distinct focuses and methodologies, they
share common principles related to, for example, understanding
complexity, emergence, and adaptation within systems. This
reflective paper suggests that combining SI (that is traditionally
used in swarm robotics; see, e.g., Cheraghi et al., 2021) and ST
(that is typically used in human systems modelling; see, e.g.,
Sterman, 2000) can lead to novel solutions in the development
of drone swarms. For instance, by deeply understanding and
utilizing the obvious common ideas of emergence, advancement
of holistic design, and definition of suitable boundaries for the
system, drone swarm researchers and operators can gain
insights into the underlying mechanisms driving the system’s
behaviour and design effective solutions for various
applications in the future. Furthermore, by bridging the
differences between the disciplines, for example, with
conceptual analysis type of approach utilised in this paper, we
can gain inspiration from ST to the design of, for example,
robotic drone swarms. Finding a common ground between these
approaches would significantly benefit artificial swarm system
(e.g., drone swarm) design.

The paper also details some less obvious key areas where
common ground between SI and ST is sought, along with
suitable practical-level examples. Table 3 summarizes some of
our discovered implications and advice on these chosen areas
for the design of drone swarms. By applying ST principles to
the study of swarms, the researchers, designers and engineers of
drone swarms can gain insights into the underlying mechanisms
driving swarm behaviour, predict their dynamics, and
potentially design or control robotic swarm systems. Utilizing
ST may allow to study swarms not as isolated entities, but as
intricate patterns of relationships. Based on our analysis, the
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following preliminary implications can be drawn on how to

utilize ST to improve the design of artificial swarms:

e  Understand emergence: Study how local rules lead to
global patterns. Analyse in detail the emergent properties,
such as self-organization, synchronization, and adaptation.

e Advance holistic design: Design swarm behaviours that
align with the whole system’s purpose (e.g., exploration,
surveillance, etc in case of drone swarms).

e Test for robustness: Study the swarm’s responses to
disturbances and evaluate its resilience via its adaptation
patterns both with simulations and real-world tests.

e Define suitable boundaries: Define the swarm’s
behavioural boundaries clearly and consider the context

(e.g., the environment) in detail in this process.

Common Implications Advice
Ground
Adaptation | Goal-oriented Experiment with both
adaptation responds to | goal-oriented and
environmental playful approaches in
pressures with specific | swarm design to
objectives, while enhance the solution’s
playful adaptation adaptability and
involves resilience. Balance-
experimentation directed approaches
without predefined with tuneable noise for
goals. optimal performance.
Bottom-up | The meso-level is In design work, focus
and top- where the top-down also on the meso-level
down and bottom-up to understand and
approaches | approaches meet, manage the
creating tensions and | interactions between
structures. This level' | top-down (macro-
is crucial for optimal level) and bottom-up
emergent structures (micro-level)
and practices. processes.
Feedback | Second-level Enhance
Loops and | interventions occur communication and
Interven- | when the swarm acts feedback mechanisms
tions differently on its own | within the swarm to
initiative, leading to improve collective
emergent structures or | decision-making.
boundaries. These can | Monitor and analyse
be locally important emergent behaviours
and have broader within the swarm to
implications. identify functional
patterns and structures.
Use these insights to
inform robotic swarm
designs and related
interventions.

Table 3. Some implications and advice for the common ground

sought between SI and ST to improve the design of swarms.

6. Conclusions

Based on earlier research, this paper analysed the key
characteristics of SI and compared them with the core concepts
of ST. The paper suggested that novel solutions for complex
systems, such as drone swarms, can be developed by integrating
high-level principles from both fields. A general-level benefit of
the ST approach for the design of swarming systems is the more
systemic approach to considering the swarm as a whole and
predicting its potential transitions already in the design phase.

Future work in this domain includes practical-level
experimentation and empirical studies using both approaches. A
key aspect in this context is to study the same phenomenon both

with SI and ST simulations, from which the results would then
be compared and a unified methodological approach sought.
Overall, a common ground sought between the two approaches
can lead to improved control, amplified swarm behaviours, and
increased adaptability of the developed solutions. By applying
certain top-down ST principles to the study of bio-inspired
bottom-up SI solutions, researchers, engineers and operators of
drone swarms can gain insights into the underlying mechanisms
driving the swarm’s behaviour, predict its dynamics, and design
the systems better for various application fields, such as
geomatics, environmental monitoring, and firefighting. This
paper aims to serve as the first step in considering both
approaches in an integrated manner.
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