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Abstract  

 

Unmanned Aerial Vehicle (UAV) imagery is playing an important role in various remote sensing applications, including precision 

agriculture, environmental monitoring, and urban planning. To construct a seamless and geometrically accurate mosaic from multiple 

overlapping UAV images, it is essential to interpret the camera geometry accurately and extract tiepoints between images reliably. In 

this study, we focus on evaluating the robustness and effectiveness of the combination of SIFT with LightGlue, a hybrid matching 

approach that integrates the rotationally invariant properties of SIFT with the contextual matching capabilities of LightGlue. For 

comparison, we tested two traditional methods, the SIFT with Brute-Force matcher and the SIFT with FLANN matcher, and one AI-

based method, the SuperPoint with LightGlue matcher. These matching algorithms were applied to UAV datasets covering both high-

texture regions, such as urban environments, and low-texture areas, such as agricultural fields. The performance evaluation was 

conducted based on several criteria, including the number and spatial distribution of tiepoints, epipolar error, rotational robustness, 

bundle adjustment stability, and mosaic completeness. Among all methods, the SIFT with LightGlue matcher consistently 

demonstrated the most reliable performance. This approach not only achieved robust and accurate matching in low-texture and high-

rotation scenarios but also led to superior spatial consistency in bundle adjustment and final mosaics, confirming its suitability for 

practical UAV image mosaicking tasks. 

 

 

1. Introduction 

 

Unmanned Aerial Vehicle (UAV) imagery is playing an 

important role in various remote sensing applications, including 

precision agriculture, environmental monitoring, and urban 

planning. However, due to the limited field of view of UAV 

platforms, image mosaicking, which integrates multiple 

overlapping images into a single seamless composite, is an 

essential preprocessing step. To achieve precise and gap-free 

mosaicking, it is critical to accurately interpret the imaging 

geometry of the camera during acquisition in order to estimate 

ground coordinates with high accuracy. In photogrammetry, this 

is typically accomplished through bundle adjustment. In this 

process, tiepoints, feature points commonly observed between 

image pairs, are key elements that significantly affect both the 

accuracy and precision of the adjustment. The accuracy and 

spatial distribution of tiepoints are critical for stabilizing camera 

parameter estimation and minimizing geometric distortion in the 

resulting mosaic. The choice of tiepoint extraction algorithm has 

a substantial impact on the quality of UAV mosaicking. 

 

Traditionally, descriptor-based feature extraction algorithms 

such as SIFT, SURF, and ORB combined with Brute-Force or 

FLANN matcher have been widely used for tiepoint extraction 

(Zhang et al., 2018). Among these, SIFT has shown favorable 

performance for UAV imagery acquired from various viewing 

angles, as it structurally ensures rotational invariance by 

computing the dominant orientation during feature detection 

(Lowe, 2004). However, these traditional methods tend to 

concentrate tiepoints along edges, resulting in an uneven spatial 

distribution across the image. This limitation becomes more 

pronounced in textureless regions such as farmlands areas, where 

reliable tiepoint extraction is particularly challenging (Wu et al., 

2021). 

Recently, LightGlue has been proposed as a method that employs 

self-attention and cross-attention mechanisms to learn contextual 

relationships between feature points and perform precise 

matching (Lindenberger et al., 2023). LightGlue is typically used 

in conjunction with SuperPoint, a CNN-based feature detector, 

and has achieved state-of-the-art results across several 

benchmarks (Morelli et al., 2024). However, detectors such as 

SuperPoint are generally robust to translation but relatively 

vulnerable to rotation and scale variations (Mo and Zhao, 2024). 

This weakness can lead to matching errors in UAV imagery, 

where flight directions and camera poses frequently change. In 

fact, several studies have reported that the SuperPoint with 

LightGlue combination produces larger geometric errors than 

SIFT-based methods (Song et al., 2024). Therefore, combining 

SIFT with LightGlue may offer a promising approach to 

compensate for the respective weaknesses of each method. 

 

In this study, we apply the SIFT with LightGlue combination to 

TIN-based UAV image mosaicking algorithm (Yoon and Kim., 

2024) and evaluate the robustness of the SIFT with LightGlue by 

comparing it with both AI-based and traditional matching 

methods. The experiments were conducted using UAV images 

acquired over both complex urban environments, which contain 

various artificial structures and open areas, and low-texture 

regions such as farmlands. The goal was to analyze the 

performance of each algorithm in terms of tiepoint extraction and 

mosaic generation. In addition, considering the characteristics of 

UAV imaging, we evaluated the matching performance under 

both nearly non-rotated conditions and extreme cases with nearly 

180-degree image rotations. For comparative analysis, we used 

the previously mentioned SIFT algorithm with Brute-Force and 

FLANN matchers, as well as the SuperPoint with LightGlue 

matcher, which is known for its high accuracy among LightGlue-

based methods. 
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This paper is structured as follows: we first present the analysis 

methodology for the mosaicking algorithm and tiepoint 

extraction performance. We then evaluate the performance at 

each stage, including tiepoint extraction, bundle adjustment, and 

image mosaicking. Finally, the main findings are summarized in 

the conclusion. 

 

2. Methodology 

 

2.1 Mosaicking Process 

 

Figure 1 illustrates the overall workflow of the proposed UAV 

image mosaicking pipeline. First, the algorithm selects image 

matching pairs and extracts initial tiepoints. These tiepoints are 

refined using a relative geometric model to retain only 

geometrically accurate triplet points, feature points commonly 

observed between three images (Yoon and Kim., 2023). Bundle 

adjustment is performed using the selected tiepoints and 

coplanarity constraints to optimize the camera poses and 3D 

point coordinates. Finally, using the optimized 3D points, the 

method corrects image distortions through a TIN (Triangulated 

Irregular Network)-based image warping technique, and 

generates a high-resolution, geometrically precise mosaic image.  

 

 
Figure 1. Flowchart of the proposed method 

 

2.2 Evaluation Method for Tiepoint Extraction Performance 

 

Tiepoints are a critical component for performing bundle 

adjustment and generating image mosaics, as they play a key role 

in accurately determining the geometric relationships between 

images. In this study, we focus on evaluating the performance of 

the hybrid matching method, SIFT with LightGlue, and compare 

it with traditional approaches (SIFT with Brute-Force, SIFT with 

FLANN) and deep learning-based methods (SuperPoint with 

LightGlue), as summarized in Table 1. The performance 

evaluation is conducted in terms of the number and spatial 

distribution of triplets, matching accuracy, and robustness to 

rotation. Emphasis is placed on verifying the performance of the 

SIFT with LightGlue combination under various conditions. 

 

Test 

Case 
Type Detector Matcher 

1 Traditional SIFT Brute-Force 

2 Traditional SIFT FLANN 

3 AI-Based SuperPoint LightGlue 

4 Hybrid SIFT LightGlue 

Table 1. Matching Algorithm using Experiment 

 

The number of tiepoints is the most fundamental metric for 

evaluating matching performance, as a higher number of 

tiepoints provides more observations for subsequent bundle 

adjustment. In particular, triplets play a crucial role in ensuring 

geometric consistency. Because they satisfy the epipolar 

geometry across all three image pairs, triplets serve as a key 

indicator for accurate bundle adjustment. Accordingly, this study 

uses both the total number of tiepoints and the number of triplet 

points as separate evaluation metrics. 

 

In addition to the number of tiepoints, the uniformity of their 

spatial distribution within each image is also a critical factor in 

establishing accurate geometry (Vahid Mousavi et al., 2021). To 

quantitatively evaluate this aspect, each image is divided into a 

20 × 20 grid, and the coverage ratio is computed as the proportion 

of grid cells containing at least one tiepoint, as defined in 

Equation (1), where  𝑁𝑜𝑐𝑐 𝑔𝑟𝑖𝑑  refers to the number of cells 

containing tiepoints and 𝑁𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 to the number of total cells 

within one image. 

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜(%) =  ∑
𝑁𝑜𝑐𝑐 𝑔𝑟𝑖𝑑

𝑁𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑
∗ 100 (1) 

 

To qualitatively examine how tiepoints are distributed within 

each image, we visualize the spatial locations of the extracted 

tiepoints. This analysis focus on evaluating whether tiepoints are 

evenly distributed not only in high-texture areas such as buildings 

and roads, but also in low-texture regions with minimal 

brightness variation, such as within agricultural fields. 

 

Even if a large number of tiepoints are extracted and their 

distribution is uniform across the image, geometric analysis may 

still be compromised if the tiepoints are not located at 

geometrically accurate positions. This is because inaccurate 

tiepoints can introduce errors in the bundle adjustment process, 

leading to incorrect estimation of camera poses and 3D scene 

structure, ultimately degrading the geometric accuracy of the 

entire image. In this study, epipolar error was used as a 

quantitative metric to evaluate the geometric accuracy of 

tiepoints. The epipolar condition is a fundamental condition that 

describes the geometric relationship between stereo image pairs. 

In our approach, the fundamental matrix was estimated from the 

set of tiepoints, and epipolar lines were generated on the right 

image based on this matrix. The epipolar error was then defined 

as the perpendicular distance between each corresponding 

tiepoint and its associated epipolar line. 

 

For matching algorithms applied to UAV imagery, where 

frequent rotations occur, robustness to rotation is essential. UAV 

platforms typically capture images in one direction and then 

rotate nearly 180° to capture the next flight strip in the opposite 

direction. As a result, image pairs are often composed of one 

image from one flight strip and one image from an adjacent flight 

strip and have opposite viewing directions. This characteristic 

provides a valuable experimental condition for evaluating the 

rotational robustness of tiepoint matching algorithms. 

 

To analyze this aspect, we categorized the image pairs into two 

types based on the UAV flight pattern. Intra-strip pairs refer to 

image pairs captured within the same flight strip and generally 

exhibit similar viewing directions. In contrast, inter-strip pairs 

refer to pairs composed of images from adjacent flight strips, 

which typically have opposite viewing directions due to the 

platform's rotation between strips. 
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To quantitatively assess the rotational robustness of each 

matching algorithm, we measure the number of matches for both 

intra-strip and inter-strip image pairs. In addition, we conduct a 

qualitative evaluation by visualizing the matching results for 

representative scenes that reflect the characteristics of the dataset. 

 

2.3 Evaluation Method for Bundle Adjustment  

 

For precise UAV image mosaicking, accurate estimation of cam-

era parameters and reconstruction of ground coordinates based 

on geometric alignment between overlapping images is essential. 

In this study, we evaluated the performance of the bundle adjust-

ment model established through tiepoints using two key indica-

tors: reprojection error and the number of reconstructed 3D 

ground points. 

 

Reprojection error refers to the distance between the actual tie-

points and the reprojected points when the reconstructed 3D 

points, obtained through bundle adjustment, are projected back 

onto the original images. It serves as a primary metric for as-

sessing the precision of camera parameter estimation. 

 

Meanwhile, the reconstructed 3D ground points are derived from 

overlapping stereo images using the refined tiepoints. The num-

ber and spatial distribution of these points are used as qualitative 

indicators of mosaic quality and geometric stability. 

 

2.4 Evaluation Method for Mosaic quality Performance 

 

The quality of the mosaic was qualitatively evaluated based on 

visual continuity across image boundaries, the presence or 

absence of gaps between adjacent images, and the completeness 

of the mosaic area without missing regions (holes). Specifically, 

visual inspection was conducted to identify discontinuities, 

geometric distortions, and inconsistencies along the seams of the 

mosaic generated by each algorithm, thereby assessing the 

overall mosaic completeness. 

  

3. Experimental Environment and Dataset 

 

3.1 Experimental Environment 

 

All experiments were conducted on a Windows system equipped 

with an 11th Gen Intel i7-11700, 32 GB RAM, and an NVIDIA 

RTX 3070 GPU (24 GB memory). The algorithms were 

implemented using C++, Python 3.10 and OpenCV 4.5. The 

LightGlue algorithm was adopted from official GitHub 

implementation, released in August 2023 (Lindenberger et al., 

2023).  

 

3.2 Experimental Dataset 

 

The datasets used in the experiments are summarized in Table 2. 

Each dataset consists of UAV images with approximately 70 to 

80% overlap and can be categorized into two environmental 

types. The first type is a mixed environment that includes both 

artificial structures and low-texture areas such as sports fields and 

grassy regions. The second type is dominated by low-texture 

areas, such as agricultural fields. Considering these differing 

texture characteristics, this study quantitatively analyzed tiepoint 

extraction performance across distinct zones. The objective is to 

compare algorithm performance under diverse scene conditions 

and to identify a robust and generalizable tiepoint extraction 

method applicable to both complex and low-texture 

environments. 

 

Dataset Name Dataset 1 Dataset 2 

Flight Type Fixed Wing Fixed Wing 

Image Num 60 171 

Image Size 7,952 × 5,304 4,896 ×3,672 

Overlap 
End 80% 85% 

Side 70% 75% 

GSD 0.0242m 0.0482m 

Characters 

Mixed-Texture 

Area (e.g., 

buildings, 

ground,etc) 

Low-Texture 

Area 

(e.g., rural, 

grasslands, etc.) 

Table 2. Dataset Information 

 

  

  
(a) Images from Dataset 1 

  

  
(b) Images from Dataset 2 

Figure 2. Dataset Example 

 

ID Matching Algorithm 
Feature 

Num 

Tiepoint Num 

(Total / Triplet) 

Coverage Ratio (%) 

(Total / Triplet) 

Epipolar Error 

(pixel) 

Dataset1 

SIFT/Brute-Force 1,788,603 158,919 / 71,260 80.39 / 76.91 1.09 

SIFT/FLANN 1,788,603 158,075 / 69,034 81.06 / 77.24 1.13 

Superpoint/LightGlue 230,574 52,341/ 26,286 87.78 / 78.83 1.41 

SIFT/LightGlue 495,504 73,388 / 32,320 90.36 / 83.56 1.20 

Dataset2 

SIFT/Brute-Force 1,260,069 111,718 / 38,442 42.52 / 31.28 1.01 

SIFT/FLANN 1,260,069 112,067 / 37,843 42.77 / 31.36 1.02 

Superpoint/LightGlue 399,590 81,411/ 28,003 69.35 / 45.70 1.36 

SIFT/LightGlue 1,129,681 233,102 / 92,094 82.41 / 65.92 1.20 

Table 3. Tipoint Extraction Result
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4. Experimental Result

 

4.1 Tiepoint Extraction Result 

 

To evaluate the tiepoint extraction performance of each matching 

algorithm, we applied the methods to the UAV datasets and as-

sessed them based on the number and spatial distribution of tie-

points and triplet points, epipolar error, and robustness to rotation. 

Table 3 summarizes the results related to tiepoint quantity, distri-

bution uniformity, and geometric accuracy, while Table 4 pre-

sents the evaluation of rotational robustness using intra-strip and 

inter-strip image pair configurations. 

 

In Dataset 1, the traditional methods, SIFT with Brute-Force and 

SIFT with FLANN, extracted more keypoints and tiepoints than 

the LightGlue-based methods (SIFT with LightGlue and Super-

Point with LightGlue). However, in terms of coverage ratio, the 

SIFT with LightGlue outperformed the traditional ones, indicat-

ing better spatial uniformity in tiepoint distribution. 

 

Figure 3 visualizes the spatial distribution of tiepoints across the 

datasets. As shown, traditional methods failed to extract tiepoints 

in low-texture regions such as sports field interiors or grassy ar-

eas, instead concentrating most of the matches along strong linear 

boundaries or artificial edges. In contrast, LightGlue-based meth-

ods produced more evenly distributed tiepoints, even within tex-

ture-poor areas. The results in Figure 3 are consistent with the 

coverage ratio results in Table 3. 

 

This difference of tiepoint extraction in spatial distribution be-

came more pronounced in Dataset 2, which mainly consists of 

low-texture environments such as agricultural fields. Although 

the SuperPoint with LightGlue extracted fewer tiepoints overall 

due to the limited number of keypoints initially detected by Su-

perPoint, the SIFT with LightGlue method yielded more than 

twice the number of tiepoints and triplet points compared to tra-

ditional methods. Moreover, the coverage ratio was also signifi-

cantly higher for SIFT with LightGlue. 

 

As shown in Figure 3, the traditional methods tended to extract 

tiepoints only along strong edges such as field boundaries or 

ridges, and failed to detect tiepoints in the central low-texture ar-

eas of the farmland. On the other hand, LightGlue-based methods 

were able to extract a dense and spatially uniform set of tiepoints 

even in these low-texture regions. 

 

  
SIFT with Brute-Force SIFT with FLANN 

  
Superpoint with LightGlue SIFT with LightGlue 

(a) Results from Dataset 1 

 

 

  
SIFT with Brute-Force SIFT with FLANN 

  
Superpoint with LightGlue SIFT with LightGlue 

(b) Results from Dataset 2 

 

Figure 3. Tiepoint/Triplet Distribution Result 

*Red Point : Tiepoint, Yellow Point : Triplet 

 

Building on the previous findings regarding quantity and distri-

bution, we further analyzed the geometric accuracy of the ex-

tracted tiepoints. A more comprehensive evaluation of tiepoint 

extraction must also consider the epipolar error, which we used 

to assess geometric accuracy, as presented in Table 1. 

 

The results show that traditional methods consistently produced 

lower epipolar errors across all datasets compared to LightGlue-

based methods. In particular, the AI-based SuperPoint with 

LightGlue exhibited relatively high errors, with differences ex-

ceeding 0.3 pixels on average compared to traditional methods. 

On the other hand, the SIFT with LightGlue showed only a minor 

difference of approximately 0.1 pixels, indicating negligible deg-

radation in accuracy. 

 

These findings are consistent with previous studies (Ye et al., 

2023; Wang et al., 2023; Luo et al., 2024), which have also re-

ported that traditional algorithms tend to yield higher geometric 

accuracy than LightGlue-based approaches. 

 

Dataset 
ID 

Matching  
Algorithm 

Total Inlier Num 
Average Inlier 

Num 

Intra 

Strip 
Pair 

Inter 

Strip 
Pair 

Intra 

Strip 
Pair 

Inter 

Strip 
Pair 

Dataset 

1 

SIFT/ 

Brute-Force 
247,806 136,188 4,589 2,522 

SIFT/ 
FLANN 

241,326 133,002 4,469 2,466 

Superpoint/ 

LightGlue 
94,230 1,350 1,745 25 

SIFT/ 
LightGlue 

225,072 89,802 4,168 1,663 

Dataset 

2 

SIFT/ 

Brute-Force 
115,280 71,808 655 408 

SIFT/ 
FLANN 

114,048 71,456 648 406 

Superpoint/ 

LightGlue 
129,008 2,112 733 12 

SIFT/ 

LightGlue 
355,520 95,920 2,020 545 

Table 4. Matching performance by rotation. 
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Intra Strip Pair 

    
SIFT with 

Brute-Force 
SIFT  

with FLANN 
Superpoint 

with LightGlue  
SIFT with 

LightGlue 
Inter Strip Pair 

    
SIFT with 

Brute-Force 
SIFT with 

FLANN 
Superpoint 

with LightGlue  
SIFT with 

LightGlue 
(a) Results from Dataset 1 

 

Intra Strip Pair 

    
SIFT with 

Brute-Force 

SIFT with 

FLANN 

Superpoint 

with LightGlue  

SIFT with 

LightGlue 

Inter Strip Pair 

    
SIFT with 

Brute-Force 

SIFT with 

FLANN 

Superpoint 

with LightGlue 

SIFT with 

LightGlue 

(b) Results from Dataset 2 
Figure 4. Comparison of tiepoint performance under different 

rotation conditions. The figure shows intra-strip matching re-

sults (approx. 0° difference) and inter-strip matching results  

(approx. 180° rotation) for each algorithm. 

 

In UAV imagery, significant variations in imaging direction fre-

quently occur between flight strips. Therefore, the rotational ro-

bustness of tiepoint matching algorithms is a critical factor in de-

termining their practical applicability. Table 4 presents the results 

of matching performance under different rotational conditions by 

comparing the number of RANSAC-based inliers between intra-

strip pairs (with approximately 0° rotation difference) and inter-

strip pairs (with approximately 180° rotation difference). 

 

The analysis shows that matching algorithms using SIFT experi-

enced some performance degradation in inter-strip matching 

compared to intra-strip matching. However, they consistently 

maintained more than 400 inliers across all datasets, demonstrat-

ing strong robustness to rotational variation. 

 

In contrast, SuperPoint with LightGlue exhibited a substantial 

drop in the number of tiepoints when transitioning from intra-

strip to inter-strip matching. This trend is also qualitatively evi-

dent in Figure 4, where the SuperPoint with LightGlue combina-

tion shows significantly lower performance than SIFT-based al-

gorithms in both the number of tiepoints and geometric accuracy 

under inter-strip conditions. 

 

These results indicate that the SuperPoint with LightGlue combi-

nation is highly vulnerable to large rotational changes, such as 

180°, leading to severe degradation in matching performance. 

 

 

4.2. Bundle Adjustment Result 

 

Dataset 

ID 

Matching 

Algorithm 

Reprojection 

Error 

(pixel) 

3D Point 

Num 

Dataset1 

SIFT/ 

Brute-Force 
2.22 13,789 

SIFT/ 

FLANN 
2.23 13,673 

SIFT/ 

LightGlue 
2.25 10,128 

Superpoint/ 

LightGlue 
3.35 957 

Dataset2 

SIFT/ 

Brute-Force 
1.83 9,997 

SIFT/ 

FLANN 
1.84 8,953 

SIFT/ 

LightGlue 
1.88 19,176 

Superpoint/ 

LightGlue 
3.33 3,549 

Table 5. Bundle Adjustment Result. 

 

  
SIFT with Brute-Force SIFT with FLANN 

  
Superpoint with LightGlue  SIFT with LightGlue 

(a) Results from Dataset 1 

 

  
SIFT with Brute-Force SIFT with FLANN 

  
Superpoint with LightGlue  SIFT with LightGlue 

(b) Results from Dataset 2 

 

Figure 5. 3D Point Distribution by Algorithm. 
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Bundle adjustment was performed using the tiepoints extracted 

by each matching algorithm, and the results were analyzed both 

quantitatively and qualitatively. The performance of the bundle 

adjustment was assessed based on the reprojection error as well 

as the quantity and spatial distribution of the reconstructed 3D 

points, as summarized in Table 5. 

 

In terms of reprojection error, SIFT with Brute-Force showed the 

highest accuracy in both Dataset 1 and Dataset 2, yielding the 

lowest error values. The other traditional method, SIFT with 

FLANN, also achieved a comparable level of accuracy. In con-

trast, the SuperPoint with LightGlue resulted in a significantly 

higher reprojection error, increasing by more than 1 pixel com-

pared to the traditional methods. Although SIFT with LightGlue 

produced slightly higher reprojection errors than the traditional 

methods, the difference from SIFT with Brute-Force—the best-

performing method—was within 0.03 pixels, indicating that the 

actual performance degradation was negligible. 

 

Regarding the number of 3D points, the LightGlue-based meth-

ods produced fewer 3D points than the traditional methods in Da-

taset 1, with SuperPoint with LightGlue generating the fewest. 

However, as shown in Figure 5, the 3D points generated by the 

traditional methods were mostly concentrated along high-con-

trast edges, such as field boundaries or lines on the sports ground. 

In low-texture areas, such as the center of the sports field, few or 

no 3D points were generated. This result is consistent with the 

previously observed tiepoint distribution patterns. 

 

The SuperPoint with LightGlue method yielded highly irregular 

results, with 3D points either clustered along straight lines or 

sparsely distributed in only limited regions, suggesting that bun-

dle adjustment was likely not performed successfully. 

This can be attributed to the lack of sufficient and accurate tie-

points between inter-strip image pairs, as previously identified in 

the rotational robustness analysis. On the other hand, the SIFT 

with LightGlue method produced the most uniformly distributed 

3D points among all tested combinations, with points also ap-

pearing in low-texture areas such as the central region of the 

sports field. 

 

In Dataset 2, SIFT with LightGlue generated more than twice as 

many 3D points as the traditional methods. Moreover, unlike the 

traditional methods, which produced 3D points primarily along 

boundaries and edges, the LightGlue-based method resulted in a 

more widespread distribution, extending into interior regions of 

agricultural fields. A similar trend was partially observed in the 

SuperPoint with LightGlue results as well. 

 

4.3. Mosaic Result 

 

  
SIFT with Brute-Force SIFT with FLANN 

 
 

Superpoint with LightGlue SIFT with LightGlue 

(a) Mosaic Results from Dataset 1 

 
 

SIFT with Brute-Force SIFT with FLANN 

  
SIFT with LightGlue SIFT with LightGlue 

(b) Mosaic Results from Dataset2 

Figure 6. Final Mosaic Result by Algorithm. 

 

For each algorithm, tiepoints were extracted and refined through 

bundle adjustment to generate precise 3D ground coordinates, 

which were then used to create mosaics. The resulting mosaics 

were qualitatively evaluated based on visual completeness and 

alignment gaps. Figure 6 presents the mosaic output generated by 

each algorithm. 

 

In Dataset 1, all algorithms except for SuperPoint with LightGlue 

successfully produced seamless mosaics without noticeable gaps. 

In contrast, the SuperPoint with LightGlue combination failed to 

achieve stable bundle adjustment, leading to poor geometric 

alignment between images. As a result, geometric distortions and 

mosaic gaps were observed in the output. 

 

In Dataset 2, due to the overall low image quality and weak tex-

ture characteristics, both traditional methods and SuperPoint-

based algorithms exhibited significant mosaic failures or missing 

regions. On the other hand, SIFT with LightGlue succeeded in 

generating a stable and extensive mosaic, outperforming other 

methods under the same conditions. 

 

These results are consistent with the earlier analyses of tiepoint 

extraction and bundle adjustment accuracy, confirming that the 

SIFT with LightGlue delivers the most reliable mosaic quality 

among the evaluated algorithms. 

 

5. Conclusion 

 

In this study, we focused on evaluating the effectiveness of the 

SIFT with LightGlue combination for tiepoint extraction, bundle 

adjustment, and mosaic generation in UAV imagery, and com-

pared the performance with traditional and deep-learning-based 

methods. Experimental results revealed that SIFT with LightGlue 

achieved the most uniform spatial distribution of tiepoints, even 
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in low-texture regions, despite extracting fewer tiepoints overall. 

This led to superior spatial coverage compared to other methods. 

 

In terms of geometric accuracy, SIFT with LightGlue achieved a 

level of epipolar error comparable to traditional SIFT-based 

methods. The SIFT with LightGlue also exhibited stable match-

ing performance under nearly extreme rotational conditions. 

These results demonstrate the robustness of the SIFT with 

LightGlue to challenging geometric variations. 

 

Although the reprojection error during bundle adjustment was 

slightly higher, the SIFT with LightGlue yielded the most evenly 

distributed 3D ground points and enabled stable adjustments 

even in low-texture areas. Final mosaic results further confirmed 

this pattern, with the SIFT with LightGlue successfully generat-

ing seamlessly aligned mosaics, outperforming other methods in 

terms of mosaic completeness. 

 

Overall, the SIFT with LightGlue combination demonstrated the 

best balance of accuracy, spatial coverage, and robustness, mak-

ing it the most reliable algorithm for UAV image alignment and 

mosaicking. Future work should aim to extend the applicability 

of this approach to more diverse and challenging environments, 

including large-scale datasets and densely built-up urban areas. 
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