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Abstract

Unmanned Aerial Vehicle (UAV) imagery is playing an important role in various remote sensing applications, including precision
agriculture, environmental monitoring, and urban planning. To construct a seamless and geometrically accurate mosaic from multiple
overlapping UAV images, it is essential to interpret the camera geometry accurately and extract tiepoints between images reliably. In
this study, we focus on evaluating the robustness and effectiveness of the combination of SIFT with LightGlue, a hybrid matching
approach that integrates the rotationally invariant properties of SIFT with the contextual matching capabilities of LightGlue. For
comparison, we tested two traditional methods, the SIFT with Brute-Force matcher and the SIFT with FLANN matcher, and one Al-
based method, the SuperPoint with LightGlue matcher. These matching algorithms were applied to UAV datasets covering both high-
texture regions, such as urban environments, and low-texture areas, such as agricultural fields. The performance evaluation was
conducted based on several criteria, including the number and spatial distribution of tiepoints, epipolar error, rotational robustness,
bundle adjustment stability, and mosaic completeness. Among all methods, the SIFT with LightGlue matcher consistently
demonstrated the most reliable performance. This approach not only achieved robust and accurate matching in low-texture and high-
rotation scenarios but also led to superior spatial consistency in bundle adjustment and final mosaics, confirming its suitability for

practical UAV image mosaicking tasks.

1. Introduction

Unmanned Aerial Vehicle (UAV) imagery is playing an
important role in various remote sensing applications, including
precision agriculture, environmental monitoring, and urban
planning. However, due to the limited field of view of UAV
platforms, image mosaicking, which integrates multiple
overlapping images into a single seamless composite, is an
essential preprocessing step. To achieve precise and gap-free
mosaicking, it is critical to accurately interpret the imaging
geometry of the camera during acquisition in order to estimate
ground coordinates with high accuracy. In photogrammetry, this
is typically accomplished through bundle adjustment. In this
process, tiepoints, feature points commonly observed between
image pairs, are key elements that significantly affect both the
accuracy and precision of the adjustment. The accuracy and
spatial distribution of tiepoints are critical for stabilizing camera
parameter estimation and minimizing geometric distortion in the
resulting mosaic. The choice of tiepoint extraction algorithm has
a substantial impact on the quality of UAV mosaicking.

Traditionally, descriptor-based feature extraction algorithms
such as SIFT, SURF, and ORB combined with Brute-Force or
FLANN matcher have been widely used for tiepoint extraction
(Zhang et al., 2018). Among these, SIFT has shown favorable
performance for UAV imagery acquired from various viewing
angles, as it structurally ensures rotational invariance by
computing the dominant orientation during feature detection
(Lowe, 2004). However, these traditional methods tend to
concentrate tiepoints along edges, resulting in an uneven spatial
distribution across the image. This limitation becomes more
pronounced in textureless regions such as farmlands areas, where
reliable tiepoint extraction is particularly challenging (Wu et al.,
2021).

Recently, LightGlue has been proposed as a method that employs
self-attention and cross-attention mechanisms to learn contextual
relationships between feature points and perform precise
matching (Lindenberger et al., 2023). LightGlue is typically used
in conjunction with SuperPoint, a CNN-based feature detector,
and has achieved state-of-the-art results across several
benchmarks (Morelli et al., 2024). However, detectors such as
SuperPoint are generally robust to translation but relatively
vulnerable to rotation and scale variations (Mo and Zhao, 2024).
This weakness can lead to matching errors in UAV imagery,
where flight directions and camera poses frequently change. In
fact, several studies have reported that the SuperPoint with
LightGlue combination produces larger geometric errors than
SIFT-based methods (Song et al., 2024). Therefore, combining
SIFT with LightGlue may offer a promising approach to
compensate for the respective weaknesses of each method.

In this study, we apply the SIFT with LightGlue combination to
TIN-based UAV image mosaicking algorithm (Yoon and Kim.,
2024) and evaluate the robustness of the SIFT with LightGlue by
comparing it with both Al-based and traditional matching
methods. The experiments were conducted using UAV images
acquired over both complex urban environments, which contain
various artificial structures and open areas, and low-texture
regions such as farmlands. The goal was to analyze the
performance of each algorithm in terms of tiepoint extraction and
mosaic generation. In addition, considering the characteristics of
UAV imaging, we evaluated the matching performance under
both nearly non-rotated conditions and extreme cases with nearly
180-degree image rotations. For comparative analysis, we used
the previously mentioned SIFT algorithm with Brute-Force and
FLANN matchers, as well as the SuperPoint with LightGlue
matcher, which is known for its high accuracy among LightGlue-
based methods.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-169-2025 | © Author(s) 2025. CC BY 4.0 License. 169


mailto:22241153@inha.edu

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

This paper is structured as follows: we first present the analysis
methodology for the mosaicking algorithm and tiepoint
extraction performance. We then evaluate the performance at
each stage, including tiepoint extraction, bundle adjustment, and
image mosaicking. Finally, the main findings are summarized in
the conclusion.

2. Methodology
2.1 Mosaicking Process

Figure 1 illustrates the overall workflow of the proposed UAV
image mosaicking pipeline. First, the algorithm selects image
matching pairs and extracts initial tiepoints. These tiepoints are
refined using a relative geometric model to retain only
geometrically accurate triplet points, feature points commonly
observed between three images (Yoon and Kim., 2023). Bundle
adjustment is performed using the selected tiepoints and
coplanarity constraints to optimize the camera poses and 3D
point coordinates. Finally, using the optimized 3D points, the
method corrects image distortions through a TIN (Triangulated
Irregular Network)-based image warping technique, and
generates a high-resolution, geometrically precise mosaic image.

start

Tiepoint Extraction

'
Bundle Adjustment

!
TIN Based Image Mosaicking

Figure 1. Flowchart of the proposed method
2.2 Evaluation Method for Tiepoint Extraction Performance

Tiepoints are a critical component for performing bundle
adjustment and generating image mosaics, as they play a key role
in accurately determining the geometric relationships between
images. In this study, we focus on evaluating the performance of
the hybrid matching method, SIFT with LightGlue, and compare
it with traditional approaches (SIFT with Brute-Force, SIFT with
FLANN) and deep learning-based methods (SuperPoint with
LightGlue), as summarized in Table 1. The performance
evaluation is conducted in terms of the number and spatial
distribution of triplets, matching accuracy, and robustness to
rotation. Emphasis is placed on verifying the performance of the
SIFT with LightGlue combination under various conditions.

gz:; Type Detector Matcher

1 Traditional SIFT Brute-Force
2 Traditional SIFT FLANN

3 Al-Based SuperPoint LightGlue
4 Hybrid SIFT LightGlue

Table 1. Matching Algorithm using Experiment

The number of tiepoints is the most fundamental metric for
evaluating matching performance, as a higher number of
tiepoints provides more observations for subsequent bundle
adjustment. In particular, triplets play a crucial role in ensuring
geometric consistency. Because they satisfy the epipolar
geometry across all three image pairs, triplets serve as a key
indicator for accurate bundle adjustment. Accordingly, this study
uses both the total number of tiepoints and the number of triplet
points as separate evaluation metrics.

In addition to the number of tiepoints, the uniformity of their
spatial distribution within each image is also a critical factor in
establishing accurate geometry (Vahid Mousavi et al., 2021). To
quantitatively evaluate this aspect, each image is divided into a
20 x 20 grid, and the coverage ratio is computed as the proportion
of grid cells containing at least one tiepoint, as defined in
Equation (1), where Ny grig refers to the number of cells
containing tiepoints and N¢tq; grig to the number of total cells
within one image.

Nocc grid

Coverage Ratio(%) = * 100 )

Ntotal grid

To qualitatively examine how tiepoints are distributed within
each image, we visualize the spatial locations of the extracted
tiepoints. This analysis focus on evaluating whether tiepoints are
evenly distributed not only in high-texture areas such as buildings
and roads, but also in low-texture regions with minimal
brightness variation, such as within agricultural fields.

Even if a large number of tiepoints are extracted and their
distribution is uniform across the image, geometric analysis may
still be compromised if the tiepoints are not located at
geometrically accurate positions. This is because inaccurate
tiepoints can introduce errors in the bundle adjustment process,
leading to incorrect estimation of camera poses and 3D scene
structure, ultimately degrading the geometric accuracy of the
entire image. In this study, epipolar error was used as a
quantitative metric to evaluate the geometric accuracy of
tiepoints. The epipolar condition is a fundamental condition that
describes the geometric relationship between stereo image pairs.
In our approach, the fundamental matrix was estimated from the
set of tiepoints, and epipolar lines were generated on the right
image based on this matrix. The epipolar error was then defined
as the perpendicular distance between each corresponding
tiepoint and its associated epipolar line.

For matching algorithms applied to UAV imagery, where
frequent rotations occur, robustness to rotation is essential. UAV
platforms typically capture images in one direction and then
rotate nearly 180° to capture the next flight strip in the opposite
direction. As a result, image pairs are often composed of one
image from one flight strip and one image from an adjacent flight
strip and have opposite viewing directions. This characteristic
provides a valuable experimental condition for evaluating the
rotational robustness of tiepoint matching algorithms.

To analyze this aspect, we categorized the image pairs into two
types based on the UAV flight pattern. Intra-strip pairs refer to
image pairs captured within the same flight strip and generally
exhibit similar viewing directions. In contrast, inter-strip pairs
refer to pairs composed of images from adjacent flight strips,
which typically have opposite viewing directions due to the
platform's rotation between strips.
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To quantitatively assess the rotational robustness of each
matching algorithm, we measure the number of matches for both
intra-strip and inter-strip image pairs. In addition, we conduct a
qualitative evaluation by visualizing the matching results for
representative scenes that reflect the characteristics of the dataset.

2.3 Evaluation Method for Bundle Adjustment

For precise UAV image mosaicking, accurate estimation of cam-
era parameters and reconstruction of ground coordinates based
on geometric alignment between overlapping images is essential.
In this study, we evaluated the performance of the bundle adjust-
ment model established through tiepoints using two key indica-
tors: reprojection error and the number of reconstructed 3D
ground points.

Reprojection error refers to the distance between the actual tie-
points and the reprojected points when the reconstructed 3D
points, obtained through bundle adjustment, are projected back
onto the original images. It serves as a primary metric for as-
sessing the precision of camera parameter estimation.

Meanwhile, the reconstructed 3D ground points are derived from
overlapping stereo images using the refined tiepoints. The num-
ber and spatial distribution of these points are used as qualitative
indicators of mosaic quality and geometric stability.

2.4 Evaluation Method for Mosaic quality Performance

The quality of the mosaic was qualitatively evaluated based on
visual continuity across image boundaries, the presence or
absence of gaps between adjacent images, and the completeness
of the mosaic area without missing regions (holes). Specifically,
visual inspection was conducted to identify discontinuities,
geometric distortions, and inconsistencies along the seams of the
mosaic generated by each algorithm, thereby assessing the
overall mosaic completeness.

3. Experimental Environment and Dataset
3.1 Experimental Environment

All experiments were conducted on a Windows system equipped
with an 11th Gen Intel 17-11700, 32 GB RAM, and an NVIDIA
RTX 3070 GPU (24 GB memory). The algorithms were
implemented using C++, Python 3.10 and OpenCV 4.5. The
LightGlue algorithm was adopted from official GitHub
implementation, released in August 2023 (Lindenberger et al.,
2023).

3.2 Experimental Dataset

The datasets used in the experiments are summarized in Table 2.
Each dataset consists of UAV images with approximately 70 to

80% overlap and can be categorized into two environmental
types. The first type is a mixed environment that includes both
artificial structures and low-texture areas such as sports fields and
grassy regions. The second type is dominated by low-texture
areas, such as agricultural fields. Considering these differing
texture characteristics, this study quantitatively analyzed tiepoint
extraction performance across distinct zones. The objective is to
compare algorithm performance under diverse scene conditions
and to identify a robust and generalizable tiepoint extraction

method applicable to both complex and low-texture
environments.

Dataset Name Dataset 1 Dataset 2
Flight Type Fixed Wing Fixed Wing
Image Num 60 171
Image Size 7,952 x 5,304 4,896 x3,672

Overlap Epd 80% 85%
Side 70% 75%
GSD 0.0242m 0.0482m
Mixed-Texture Low-Texture
Characters Ar@a (e.g., Area
buildings, (e.g., rural,
ground,etc) grasslands, etc.)

Table 2. Dataset Information

=)
(b) Images from Dataset 2
Figure 2. Dataset Example

. . Feature Tiepoint Num Coverage Ratio (% Epipolar Error
D Matching Algorithm Num (Tot];l / Triplet) (Tota%/ Triplei) ) ’ rEpixel)

SIFT/Brute-Force 1,788,603 158,919/ 71,260 80.39 /7691 1.09

Dataset] SIFT/FLANN 1,788,603 158,075/ 69,034 81.06/77.24 1.13
Superpoint/LightGlue 230,574 52,341/ 26,286 87.78 / 78.83 1.41
SIFT/LightGlue 495,504 73,388 /32,320 90.36 / 83.56 1.20
SIFT/Brute-Force 1,260,069 111,718 /38,442 42.52/31.28 1.01

Dataset2 SIFT/FLANN 1,260,069 112,067 / 37,843 42.77/31.36 1.02
Superpoint/LightGlue 399,590 81,411/ 28,003 69.35/45.70 1.36
SIFT/LightGlue 1,129,681 233,102 /92,094 82.41/65.92 1.20

Table 3. Tipoint Extraction Result
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4. Experimental Result
4.1 Tiepoint Extraction Result
To evaluate the tiepoint extraction performance of each matching

algorithm, we applied the methods to the UAV datasets and as-
sessed them based on the number and spatial distribution of tie-

points and triplet points, epipolar error, and robustness to rotation.

Table 3 summarizes the results related to tiepoint quantity, distri-
bution uniformity, and geometric accuracy, while Table 4 pre-
sents the evaluation of rotational robustness using intra-strip and
inter-strip image pair configurations.

In Dataset 1, the traditional methods, SIFT with Brute-Force and
SIFT with FLANN, extracted more keypoints and tiepoints than
the LightGlue-based methods (SIFT with LightGlue and Super-
Point with LightGlue). However, in terms of coverage ratio, the
SIFT with LightGlue outperformed the traditional ones, indicat-
ing better spatial uniformity in tiepoint distribution.

Figure 3 visualizes the spatial distribution of tiepoints across the
datasets. As shown, traditional methods failed to extract tiepoints
in low-texture regions such as sports field interiors or grassy ar-
eas, instead concentrating most of the matches along strong linear
boundaries or artificial edges. In contrast, LightGlue-based meth-
ods produced more evenly distributed tiepoints, even within tex-
ture-poor areas. The results in Figure 3 are consistent with the
coverage ratio results in Table 3.

This difference of tiepoint extraction in spatial distribution be-
came more pronounced in Dataset 2, which mainly consists of
low-texture environments such as agricultural fields. Although
the SuperPoint with LightGlue extracted fewer tiepoints overall
due to the limited number of keypoints initially detected by Su-
perPoint, the SIFT with LightGlue method yielded more than
twice the number of tiepoints and triplet points compared to tra-
ditional methods. Moreover, the coverage ratio was also signifi-
cantly higher for SIFT with LightGlue.

As shown in Figure 3, the traditional methods tended to extract
tiepoints only along strong edges such as field boundaries or
ridges, and failed to detect tiepoints in the central low-texture ar-
eas of the farmland. On the other hand, LightGlue-based methods
were able to extract a dense and spatially uniform set of tiepoints
even in these low-texture regions.

SIFT with FLANN

Superpoint with LightGue SIFT with LightGle
(a) Results from Dataset 1

SIFT with Brute-Force SIFT with FLANN

e o

Superpoint with LightGlue SIFT with LightGlue
(b) Results from Dataset 2

Figure 3. Tiepoint/Triplet Distribution Result
*Red Point : Tiepoint, Yellow Point : Triplet

Building on the previous findings regarding quantity and distri-
bution, we further analyzed the geometric accuracy of the ex-
tracted tiepoints. A more comprehensive evaluation of tiepoint
extraction must also consider the epipolar error, which we used
to assess geometric accuracy, as presented in Table 1.

The results show that traditional methods consistently produced
lower epipolar errors across all datasets compared to LightGlue-
based methods. In particular, the Al-based SuperPoint with
LightGlue exhibited relatively high errors, with differences ex-
ceeding 0.3 pixels on average compared to traditional methods.
On the other hand, the SIFT with LightGlue showed only a minor
difference of approximately 0.1 pixels, indicating negligible deg-
radation in accuracy.

These findings are consistent with previous studies (Ye et al.,
2023; Wang et al., 2023; Luo et al., 2024), which have also re-
ported that traditional algorithms tend to yield higher geometric
accuracy than LightGlue-based approaches.

Total Inlier Num Average Inlier
Dataset | Matching Num
ID Algorithm Intra Inter Intra Inter
g Strip Strip Strip Strip
Pair Pair Pair Pair
SIET/ 247,806 136,188 4,589 2,522
Brute-Force
SIFT/
Dataset | FLANN 241,326 | 133,002 | 4,469 | 2,466
1 Superpoint/
LightGlue 94,230 1350 | 1,745 25
SIFT/
LightGlue | 225072 | 89802 | 4168 | 1663
SIFT/
Brute-Force 115,280 71,808 655 408
SIFT/
Dataset | FLANN 114,048 71,456 648 406
2 Superpoint/
LightGlue 129,008 | 2,112 733 12
SIFT/
LightGlue 355,520 | 95920 | 2,020 545

Table 4. Matching performance by rotation.
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Intra Strip Pair

4.2. Bundle Adjustment Result

Dataset Matching Repg;):(:)(;tlon 3D Point
ID Algorithm . Num
(pixel)
SIFT/
SIFT with SIFT Superpoint SIFT with Brute-Force 222 13,789
Brute-Force with FLANN  with LightGlue LightGlue SIFT/
Inter Strip Pair FLANN 2.23 13,673
Datasetl SIFT/
. 2.25 10,128
LightGlue
Superpoint/
LightGlue 3.35 937
SIFT with SIFT with Superpoint SIFT with EIF T v 183 9.997
Brute-Force FLANN with LightGlue LightGlue Tute-Force
(a) Results from Dataset 1 SIFT/ 1.84 8,953
FLANN
Dataset2
Intra Strip Pair SI.FT/ 1.88 19.176
' LightGlue ) >
Superpoint/
LightGlue 3.33 3,549

Table 5. Bundle Adjustment Result.

ST
| 4l L1

SIFT with SIFT with Superp‘(.)int SIFT \Tvith
Brute-Force FLANN with LightGlue LightGlue
. _ I Inter StriiPair

SIFT with SIFT with Superpoint SIFT with
Brute-Force FLANN with LightGlue LightGlue

(b) Results from Dataset 2
Figure 4. Comparison of tiepoint performance under different
rotation conditions. The figure shows intra-strip matching re-
sults (approx. 0° difference) and inter-strip matching results
(approx. 180° rotation) for each algorithm.

In UAV imagery, significant variations in imaging direction fre-
quently occur between flight strips. Therefore, the rotational ro-
bustness of tiepoint matching algorithms is a critical factor in de-
termining their practical applicability. Table 4 presents the results
of matching performance under different rotational conditions by
comparing the number of RANSAC-based inliers between intra-
strip pairs (with approximately 0° rotation difference) and inter-
strip pairs (with approximately 180° rotation difference).

i
Superpoint with LightGlue
(a) Results from Dataset 1

SIFT with LightGlue

The analysis shows that matching algorithms using SIFT experi-
enced some performance degradation in inter-strip matching
compared to intra-strip matching. However, they consistently
maintained more than 400 inliers across all datasets, demonstrat-
ing strong robustness to rotational variation.

E—— =

SIFT with FLANN
In contrast, SuperPoint with LightGlue exhibited a substantial !
drop in the number of tiepoints when transitioning from intra-
strip to inter-strip matching. This trend is also qualitatively evi-
dent in Figure 4, where the SuperPoint with LightGlue combina-
tion shows significantly lower performance than SIFT-based al-
gorithms in both the number of tiepoints and geometric accuracy {
under inter-strip conditions. it | - ‘ [P
Superpoint with LightGlue SIFT with LightGlue
(b) Results from Dataset 2

These results indicate that the SuperPoint with LightGlue combi-
nation is highly vulnerable to large rotational changes, such as

180°, leading to severe degradation in matching performance. Figure 5. 3D Point Distribution by Algorithm.
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Bundle adjustment was performed using the tiepoints extracted
by each matching algorithm, and the results were analyzed both
quantitatively and qualitatively. The performance of the bundle
adjustment was assessed based on the reprojection error as well
as the quantity and spatial distribution of the reconstructed 3D
points, as summarized in Table 5.

In terms of reprojection error, SIFT with Brute-Force showed the
highest accuracy in both Dataset 1 and Dataset 2, yielding the
lowest error values. The other traditional method, SIFT with
FLANN, also achieved a comparable level of accuracy. In con-
trast, the SuperPoint with LightGlue resulted in a significantly
higher reprojection error, increasing by more than 1 pixel com-
pared to the traditional methods. Although SIFT with LightGlue
produced slightly higher reprojection errors than the traditional
methods, the difference from SIFT with Brute-Force—the best-
performing method—was within 0.03 pixels, indicating that the
actual performance degradation was negligible.

Regarding the number of 3D points, the LightGlue-based meth-
ods produced fewer 3D points than the traditional methods in Da-
taset 1, with SuperPoint with LightGlue generating the fewest.
However, as shown in Figure 5, the 3D points generated by the
traditional methods were mostly concentrated along high-con-
trast edges, such as field boundaries or lines on the sports ground.
In low-texture areas, such as the center of the sports field, few or
no 3D points were generated. This result is consistent with the
previously observed tiepoint distribution patterns.

The SuperPoint with LightGlue method yielded highly irregular
results, with 3D points either clustered along straight lines or
sparsely distributed in only limited regions, suggesting that bun-
dle adjustment was likely not performed successfully.
This can be attributed to the lack of sufficient and accurate tie-
points between inter-strip image pairs, as previously identified in
the rotational robustness analysis. On the other hand, the SIFT
with LightGlue method produced the most uniformly distributed
3D points among all tested combinations, with points also ap-
pearing in low-texture areas such as the central region of the
sports field.

In Dataset 2, SIFT with LightGlue generated more than twice as
many 3D points as the traditional methods. Moreover, unlike the
traditional methods, which produced 3D points primarily along
boundaries and edges, the LightGlue-based method resulted in a
more widespread distribution, extending into interior regions of
agricultural fields. A similar trend was partially observed in the
SuperPoint with LightGlue results as well.

4.3. Mosaic Result

SIFT with FLANN

SIFT with Brute-Force

‘\ Py |

Superpoint with LightGlue SIFT with LightGlue
(a) Mosaic Results from Dataset 1

SIFT with LightGlue
(b) Mosaic Results from Dataset2
Figure 6. Final Mosaic Result by Algorithm.

SIFT with LightGlue

For each algorithm, tiepoints were extracted and refined through
bundle adjustment to generate precise 3D ground coordinates,
which were then used to create mosaics. The resulting mosaics
were qualitatively evaluated based on visual completeness and
alignment gaps. Figure 6 presents the mosaic output generated by
each algorithm.

In Dataset 1, all algorithms except for SuperPoint with LightGlue
successfully produced seamless mosaics without noticeable gaps.
In contrast, the SuperPoint with LightGlue combination failed to
achieve stable bundle adjustment, leading to poor geometric
alignment between images. As a result, geometric distortions and
mosaic gaps were observed in the output.

In Dataset 2, due to the overall low image quality and weak tex-
ture characteristics, both traditional methods and SuperPoint-
based algorithms exhibited significant mosaic failures or missing
regions. On the other hand, SIFT with LightGlue succeeded in
generating a stable and extensive mosaic, outperforming other
methods under the same conditions.

These results are consistent with the earlier analyses of tiepoint
extraction and bundle adjustment accuracy, confirming that the
SIFT with LightGlue delivers the most reliable mosaic quality
among the evaluated algorithms.

5. Conclusion

In this study, we focused on evaluating the effectiveness of the
SIFT with LightGlue combination for tiepoint extraction, bundle
adjustment, and mosaic generation in UAV imagery, and com-
pared the performance with traditional and deep-learning-based
methods. Experimental results revealed that SIFT with LightGlue
achieved the most uniform spatial distribution of tiepoints, even
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in low-texture regions, despite extracting fewer tiepoints overall.
This led to superior spatial coverage compared to other methods.

In terms of geometric accuracy, SIFT with LightGlue achieved a
level of epipolar error comparable to traditional SIFT-based
methods. The SIFT with LightGlue also exhibited stable match-
ing performance under nearly extreme rotational conditions.
These results demonstrate the robustness of the SIFT with
LightGlue to challenging geometric variations.

Although the reprojection error during bundle adjustment was
slightly higher, the SIFT with LightGlue yielded the most evenly
distributed 3D ground points and enabled stable adjustments
even in low-texture areas. Final mosaic results further confirmed
this pattern, with the SIFT with LightGlue successfully generat-
ing seamlessly aligned mosaics, outperforming other methods in
terms of mosaic completeness.

Overall, the SIFT with LightGlue combination demonstrated the
best balance of accuracy, spatial coverage, and robustness, mak-
ing it the most reliable algorithm for UAV image alignment and
mosaicking. Future work should aim to extend the applicability
of this approach to more diverse and challenging environments,
including large-scale datasets and densely built-up urban areas.
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