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Abstract: Forest inventory underpins every facet of ecosystem management and monitoring by providing accurate, spatially explicit 

data on stand structure, species composition, and site conditions. Yet traditional inventories are frequently constrained by logistical 

challenges, financial limitations, methodological inconsistencies, and institutional hurdles that undermined the accuracy, completeness, 

and timeliness of these essential datasets. Over the past two decades, close-range sensing technologies have markedly reduced manual 

field effort while enhancing the digitization and automation of plot-level measurements. However, these systems remain reliant on 

human operators for deployment, limiting their ability to fully overcome logistical and technical constraints. Recent advances in under-

canopy unmanned aerial vehicles (UAVs) have begun to address these limitations by integrating lightweight, UAV-borne LiDAR and 

photogrammetric sensors capable of semi-autonomous or autonomous flights beneath dense canopy cover. Such platforms extend the 

reach of close-range sensing into previously inaccessible forest interiors, enabling rapid, repeatable acquisition of tree- and stand-level 

metrics without the need for extensive ground crews. In this review, we dissect the technical architectures, sensor configurations, and 

performance metrics of emerging under-canopy UAV systems for forest inventory. We further identify the principal engineering and 

operational challenges to guide future research directions and accelerate the adoption of UAV-based forest monitoring solutions. 

 

1. Introduction 

Forest in-situ observations have witnessed remarkable progresses 

over the last two decades. The close-range sensing has been one 

of the main driven forces of this fast progress, with its capability 

to capture detailed object information in any contact mode or 

non-contact target-to-sensor distance up to several hundred 

meters or even more (Liang et al., 2022).  

 

In forest digitization, Terrestrial Laser Scanning (TLS) 

represents the most accurate 3D digitization of forest structures 

at a plot level, which automatically digitizes the objects in its 

surrounding space using millions to billions of three-dimensional 

(3D) points. The downside of TLS is its stationary perspective 

that limits the data coverage and the efficiency of data collection.  

Mobile Mapping Systems (MMS) speeds up the data acquisition 

by integrating positioning and data collection sensors on a 

kinematic platform. Low-altitude aerial systems, such as 

Unmanned Aerial Vehicles (UAVs) or drones, helicopters, and 

hybrid airships, provide the aerial observations to compensate the 

terrestrial perspectives of the stationary and mobile terrestrial 

systems with an even higher level of mobility. In addition, these 

systems are flexible and diverse in sizes and payload capacities, 

and have emerged with great popularity. 

 

However, many obstacles still block close-range sensing from 

practical field measurements as a reliable supplier of in situ 

reference information (Wang et al., 2021). Forest environments 

present formidable challenges for autonomous exploration due to 

their structural complexity: dense vegetation, heterogeneous 

architectures, and persistent occlusions degrade the performance 

of both vision- and LiDAR-based SLAM systems.  

 

Nevertheless, recent advancements in UAV systems have 

integrated lightweight LiDAR and photogrammetric sensors to 

enable close-range sub-canopy sensing. While UAV-based 

Structure-from-Motion (UAV-SfM) systems exhibit operational 

simplicity and leverage established computer vision pipelines, 

their efficacy diminishes in environments with limited surface 

textural variation, resulting in reduced positional accuracy 

relative to laser scanning (Yao and Liang, 2024). On the other 

hand, LiDAR systems directly digitize 3D forest structures, yet 

face the dilemma between high payload requirement and 

restricted platform size.  

 

This paper summarizes the technological architectures, sensor 

modalities, and quantitative performances of emerging under-

canopy UAV systems applied for forest inventory. We further 

elucidate core engineering and operational challenges to 

prioritize critical research trajectories for future developments. 

 

2. Emerging UAV Solutions 

Under-canopy UAV operations have caught attentions recently 

for their potential to efficiently collect complete and reliable data 

for forest in situ observations. 

 

2.1 Observation perspectives 

2.1.1 Under-canopy observation: Under-canopy UAV 

technology brings benefits to forest management and ecological 

conservation. Compared to TLS, which is limited by its static 

observation perspective and time-consuming operation, under-

canopy UAVs enable dynamic and multi-angle data acquisition 

through autonomous flight, thereby greatly improving data 

collection efficiency. Moreover, under-canopy UAVs exhibit 

superior manoeuvrability in complex sub-canopy environments, 

allowing them to penetrate canopy gaps and capture more 

complete structural information of tree stems. This capability 

provides more comprehensive data support for forest parameters 

such as diameter at breast height (DBH) and stem curve (Liang 

et al., 2024; Muhojoki et al., 2024). Most recent studies focus on 

the under-canopy fly mode (Chisholm et al., 2013, 2021; 

Krisanski et al., 2020; Hyyppä et al., 2020a, 2020b, 2021; Liu et 

al., 2022; Shimabuku et al., 2023; Muhojoki et al., 2024; Trybała 

et al., 2024; Liang et al., 2024; Yao and Liang, 2024; Zhao et al., 

2025). 

 

2.1.2 Integrating above- and under-canopy observations 

at data level: Integrating above- and under-canopy flies through 

data fusion is a common way to improve the completeness and 

the comprehensiveness of the forest representation, and 

consequently, to enable a comprehensive analysis of individual 

tree structural parameters at tree-, branch-, and leaf- scales. 

 

Sujaswara and Hasegawa (2023) conducted separate UAV flights 

above and beneath the forest canopy to capture imagery of the 

tree crowns, stems, and understory vegetation. SfM was applied 

independently to each image set, generating two dense point 

clouds representing the over- and under-canopy structures. By 
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identifying and aligning overlapping regions between two point 

clouds, the datasets were registered and merged into a unified 

forest scene. The registration process consisted of two stages: key 

points were first automatically extracted and matched across 

images to achieve an initial alignment of the point clouds, and, 

subsequently, ground control points (GCPs) measured with a 

total station were used to align the above- and under-canopy point 

clouds into a unified coordinate system.  

 

2.1.3 Integrating above- and under-canopy observations 

at trajectory-level : Wang et al. (2021) proposed and validated 

a novel approach that integrates the above- and under-canopy 

data collection in one mission via trajectory design. The UAV-

LiDAR system performed an above-canopy LiDAR scan at an 

altitude of 50 meters, and then descended through canopy gaps to 

a low altitude of 1.5 meters and continued to fly under the canopy 

along a predefined path. The approach coordinated data 

collection from both above- and under-canopy perspectives and 

enabled the acquisition of multi-perspective point cloud data by 

optimal trajectory design. The flight relied on Global Navigation 

Satellite System (GNSS) and Inertial Measurement Unit (IMU) 

for platform positioning and data generation.  

 

2.2 Operation mode 

2.2.1 Manual operations 

Under-canopy UAV is at an early stage of development. Manual 

operation is currently popular (Chisholm et al., 2013; Hyyppä et 

al., 2020b; Kuželka and Surový, 2018; Muhojoki et al., 2024; 

Shimabuku et al., 2023; Sujaswara and Hasegawa, 2023; Wang 

et al., 2021). Operators can precisely navigate around small 

branches or vines and respond swiftly to unexpected events such 

as startled wildlife or sudden gusts of wind. More importantly, 

manual operation does not rely on GNSS or vision-based 

localization systems, which often fail in dense forest conditions.  

 

Some manual operations rely on virtual reality (VR) systems.. 

Hyyppä et al. (2020) utilized first-person view (FPV) for manual 

UAV control, and further integrated VR headsets to enable 

immersive real-time flight path control under the canopy, 

facilitating obstacle avoidance through intuitive navigation. The 

built-in anti-collision function was turned off. The operator used 

manual planning while also disabling the obstacle avoidance 

function, and controlled the drone to fly at a low speed of 0.5 m/s 

(Krisanski et al., 2020). Hyyppä et al. (2021) used a FPV system 

on the UAV to enable more intuitive and effective manual control.  

 

Shimabuku et al. (2023) and Kuželka et al. (2018) conducted 

manual flight control using the DJI Mini 3 Pro and DJI Phantom 

4 Pro combined with DJI Mavic Pro, respectively. 

 

Flight can have complex routes through manual control to 

achieve full-area coverage beneath the canopy (Hyyppä et al., 

2020b, 2021; Krisanski et al., 2020; Muhojoki et al., 2024). Wang 

et al. (2021) conducted manual flights both above and below the 

canopy in sequence, completing full-scene data acquisition. 

Some studies manually operated UAVs to follow grid-like (#-

shaped) paths (Kuželka and Surový, 2018; Shimabuku et al., 

2023). 

 

2.2.2 Automated operations: Automated operation is 

currently rare. The objectives of automated flight are also diverse. 

The study focused on city parks and those focused on natural 

forests.  

 

Urban park plots are typically characterized by simple terrain, 

open space, and planted trees, which make UAV flight missions 

easier to execute. Chisholm et al. (2021) conducted their 

experiments in an open parkland area in Singapore, where the 

UAV flew in a straight-line flight pattern, with the start and end 

points located at the same position, forming a closed-loop 

trajectory. During the flight, the UAV operated autonomously 

using a real-time SLAM algorithm for navigation and 

localization. LiDAR data were collected and was later used for 

estimating DBH. Zhao et al. (2025) evaluate system performance 

in a subtropical evergreen broad-leaved city forest in four flights. 

 

In comparison to urban park environments, studies in natural 

forests involve greater complexity and difficulty. First, natural 

forests are unmanaged environments characterized by irregular 

terrain, densely and unevenly distributed vegetation, diverse tree 

species, and varied growth forms. These conditions greatly 

complicate UAV obstacle avoidance and trajectory planning. In 

contrast, urban parks are typically maintained landscapes, where 

trees are regularly spaced and pruned, the understory is more 

open, and the terrain is generally flat, making flight operations 

considerably easier to carry out. Second, natural forests often 

lack man-made trails or clearings, which means that UAVs 

cannot rely on predefined routes and must instead perceive their 

surroundings in real time, perform mapping and obstacle 

avoidance on the fly, and maintain safe and stable flight while 

collecting data. In urban parks, by contrast, the vegetation 

structure is relatively simple, and GNSS signals are generally 

more stable, which facilitates UAV localization and control 

(Chisholm et al., 2021; Yao and Liang, 2024).  

 

Fully automated under-canopy system is emerging in recent years. 

Liang et al. (2024) first developed a fully autonomous UAV 

flight system to achieve collect data that comprehensively cover 

entire forest scenes beneath the canopy with dense plot traversal 

trajectory design, addressing the challenge of automatic data 

acquisition in the complex forest understory.  

 

2.3 Trajectory design 

Trajectory design is often neglected in the studies of under-

canopy UAV operations, however, it actually determines the 

quality, i.e., the completeness and the geometric accuracy of the 

final data and products. In general, the denser is the traverse 

trajectory within a forest plot, the better is the data quality. Yet, 

due to the structural complexity of the forest understory and the 

high risk of collisions, the trajectory design always needs to be 

adaptive and adjustable according to on-site conditions. 

 

Flight path strategies can generally be classified into two types: 

linear trajectory and full-coverage trajectory. To ensure 

comprehensive data acquisition under the canopy, most 

operations still favour manual UAV flights over autonomous 

navigation while using full-coverage trajectory.  

 

2.3.1 Linear flight trajectory: For automated operations, the 

simplest and safest approach is to carry out a linear flight 

throughout a forest plot. Trybała et al. (2024) presents a typical 

case where a UAV conducted a one-way linear flight through a 

forested area without returning. Chisholm et al. (2013) performed 

a manually controlled straight-line flight.  

 

A special case of linear flight involves closed-loop trajectories, 

where the UAV’s starting and ending points coincide. Sujaswara 

et al. (2023) utilized circular flights around individual trees to 

form closed loops. In addition, some studies conducted field tests 
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using linear flight paths that ultimately formed closed-loop 

trajectories (Chisholm et al., 2021; Liu et al., 2022; Zhao et al., 

2025). 

 

2.3.2 Full-coverage trajectory: The full-coverage trajectory 

strategy is much more challenging for automated operations. 

Such strategy involves intricate flight paths back and forth within 

a single forest plot to capture complete understory data. Liang et 

al. (2024) employed a zigzag trajectory to scan the entire forest 

scene in a complex environment. Karjalainen et al. (2024) 

achieved full forest coverage by designing an “M-shaped” flight 

path. Yao et al. (2024) investigated the potentials of 3D trajectory 

verities, aiming at improving the completeness of data collection.  

 

2.4 Source for positioning and data collection  

2.4.1 Camera images: Most under-forest canopy UAVs are 

equipped with cameras to collect spatial information. Camera-

equipped UAVs collect photos (Kuželka and Surový, 2018; 

Krisanski et al., 2020; Sujaswara and Hasegawa, 2023) or videos 

(Shimabuku et al., 2023) and then recover the 3D point cloud 

scene under the canopy based on visual SLAM (Trybała et al., 

2024; Zhao et al., 2025) or SfM (Kuželka and Surový, 2018; 

Krisanski et al., 2020; Sujaswara and Hasegawa, 2023) 

algorithms. The advantage of image-based solutions is that 

cameras have a low hardware cost and fairly mature UAV 

equipment.  

 

Kuželka et al. (2018) used two commercial UAVs (DJI Phantom 

4 Pro and DJI Mavic Pro) to map forest structures at an 8m flight 

height. The estimation accuracy from the UAV-SfM-based 

system was reported to be comparable to that of the terrestrial 

SfM approaches reported in (Liang et al., 2015; Mokroš et al., 

2018). Krisanski et al. (2020). also used commercial UAV (DJI 

Phantom 4 Pro V2) to obtain under-canopy images located on 

sloping slopes. Trybała et al. (2024) used stereo camera and 

visual SLAM algorithms to localize and reconstruct the 3D 

environment under the forest canopy. Zhao et al. (2025) use depth 

camera and visual SLAM algorithms to provide support for 

autonomous navigation. 

 

Dionisio-Ortega et al. (2018) developed an autonomous under-

canopy navigation framework for UAVs utilizing an AlexNet-

based convolutional neural network (CNN). The CNN model was 

fine-tuned through transfer learning to output three classes—left, 

right, and straight operation. During flight, images captured by 

the onboard camera are fed into the trained network, which 

outputs a probability distribution over the three classes. The 

action corresponding to the highest probability is then executed 

by the UAV as the next movement command. Prakash et al. 

(2019) proposed an optimization framework for deep neural 

networks that integrates sparsification with architecture search, 

aiming to enable high-speed autonomous navigation on low-

power edge devices in GNSS-denied environments. The 

framework starts from a dense, pre-trained model and performs 

pruning to reduce its size, while exploring structurally superior 

and more effective sub-networks under the same sparsity 

constraints.  

 

Trybała et al. (2024) employed UAV-based localization 

techniques to support wild berry collection under forest canopies. 

In their experiment, a stereo image sequence and sparse GNSS 

positions were collected for visual SLAM reconstruction. The 

forward-looking images were processed using COLMAP-SLAM 

to generate the UAV flight trajectory and a sparse point cloud, 

successfully reconstructing scenes with clearly defined tree trunk 

structures. The visual trajectory was then aligned with the sparse 

GNSS control points to achieve global coordinate 

transformation. Finally, berry positions were manually annotated 

in the downward-looking images and projected onto the 

orthophoto through coordinate transformation. Karjalainen et al. 

(2024) developed an autonomous UAV system, combining 

image collection, planning and control that link the perception to 

support trajectory adjustments. 

 

2.4.2 LiDAR: A moving camera taking photos with rapidly 

changing perspectives produces blurred photos. The robustness 

and accuracy of the system and the produced point cloud data is 

significantly reduced (Zhao et al., 2025). Compared with camera 

images, LiDAR can provide direct 3D information about the 

surrounding environment, making it more popular. LiDAR has 

the advantage of high robustness. In under-canopy environments 

with significant lighting variations, visual-based localization has 

lower accuracy in navigation, especially in turning place (Yao 

and Liang, 2024).  

 

With manual UAV operations, Chisholm et al. (2013) operated a 

UAV equipped with a 2D horizontally scanning LiDAR (Hokuyo 

UTM-30LX) to reconstruct horizontal cross-sectional maps 

through post-processing algorithms. Later, Chisholm et al. 

(2021) integrated LiDAR-based SLAM for real-time localization 

with optimization algorithms, enabling end-to-end stem diameter 

measurement in a park woodland environment. In (Hyyppä et al., 

2020b, 2020a, 2021), UAVs equipped with commercial 3D 

LiDAR sensors were used to collect under-canopy point clouds. 

Wang et al. (2021) developed a seamless above- and under-

canopy flight method using a UAV equipped with a Riegl 

miniVUX LiDAR scanner.  

 

With automated UAV operations, Tian et al. (2020) developed a 

UAV search and rescue system that can operate under forest 

canopy primarily based on a LiDAR sensor. This system operates 

in collaboration with a ground station architecture, where the 

ground station receives submaps uploaded by multiple UAVs, 

performs map fusion and global optimization, and accomplishes 

collaborative simultaneous localization and mapping (CSLAM) 

among the UAVs.  

 

Liu et al. (2022) proposed an autonomous UAV flight under the 

forest canopy. The system integrates a semantic SLAM module 

(SLOAM) with the deep learning segmentation model 

RangeNet++ to perform semantic segmentation of tree trunks and 

ground from point clouds. Key features are extracted through 

cylindrical fitting of trunks and ground plane modelling. 

Subsequently, an optimization algorithm associates the current 

observations with the historical semantic map to correct the 

UAV’s pose and update the map content. This method integrates 

deep learning and machine learning to enable UAV control and 

planning. Specifically, deep learning is primarily responsible for 

semantic segmentation of point clouds, while machine learning 

is applied to process the segmentation results for cylindrical 

modelling, real-time map construction, and localization.  

 

In addition, some studies also explored similar approaches across 

forest plots of varying structural complexity. Chisholm et al. 

(2021) described an end-to-end system, equipped with a 

horizontally scanning LiDAR. The UAV autonomously 

navigates beneath the forest canopy, generating a real-time 

SLAM trajectory. The collected LiDAR point clouds are then 

used to automatically estimate tree diameters at breast height 

(DBH).  
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Most Recently, Yao et al. (2024) and Liu et al. (2022) achieved 

autonomous under-canopy UAV localization and data collection 

using 3D LiDAR with complex 2D and 3D trajectory design to 

satisfy the required data quality for practical forest investigations.  

  

3. Performance 

3.1 Camera images  

Camera-equipped under-canopy UAVs have been used to 

reconstruct 3D point clouds from photographs, enabling the 

estimation of attributes, such as DBH and stem volume.  

 

Kuželka et al. (2018) conducted experiments on two 50 m × 50 

m homogeneous plots. These plots were in mature even-aged 

stands of Norway spruce (Picea abies) and European beech 

(Fagus sylvatica), lacking understory vegetation. All tree stems 

were detected, with a DBH bias of –1.17 cm (–3.14%) and RMSE 

of 3.21 cm (8.2%).  

 

Krisanski et al. (2020) detected the tree stems in two 13 m radius 

plots located in a native regrowth Eucalyptus Forest. The sites 

featured slope terrain (mean slope 24°) and understory 

vegetation. The DBH estimation biases were 1.1 cm and 2.1 cm, 

respectively. The stem detection rates were 86% and 89%, 

respectively. 

 

Shimabuku et al. (2023) evaluated two forest plots on Okinawa 

Island, Japan, reporting RMSEs of DBH measurements ranging 

from 0.4 to 0.7 cm, while per-tree stem volume RMSEs ranged 

from 0.0045 to 0.0147 𝑚3. The first plot, 10 m × 10 m in size, 

was located in a sparse Bischofia javanica forest. The second plot, 

with dimensions of 5 m × 5 m, was with a reduced visibility.  

 

Sujaswara et al. (2023) experiment in two plots of irregularly 

shaped: a sparse Metasequoia glyptostroboides stand covering 

634 𝑚2, and a pine forest covering 370 𝑚2. The reported DBH 

RMSEs ranged from 1.52 cm to 1.82 cm, respectively. 

 

3.2 LiDAR  

Early work by Chisholm et al. (2013), using a 2D LiDAR 

scanner, achieved a stem high detection accuracy of 73% for 

large stems (DBH > 20 cm) within a 3 m sensor range.  The 

RMSE and bias values were 25.1% and –1.2%, respectively. The 

study was conducted on a flat roadside area, planted mainly with 

Casuarina equisetifolia and featuring sparse understory 

vegetation.  

 

Chisholm et al. (2021) later reported DBH RMSE and bias values 

of 30.6% and 18.4% across all trees within a plot. The survey was 

conducted in a parkland, featuring scattered trees and palms.  

 

Subsequent research demonstrated that 3D LiDAR achieved 

superior tree-metric accuracy. Hyyppä et al. (2020) experimented 

in two single-layer boreal forest, with 32 m × 32 m size. The stem 

detection rates were 84–93% and DBH RMSEs of 0.60–0.92 cm 

(2.2–3.1%) using commercial SLAM technology. One site was a 

sparse, pine-dominated plot with low understory vegetation, 

while the other was a medium-difficulty site featuring moderate 

understory and mixed tree species including birches and spruces.  

 

Wang et al. (2021) developed a hybrid above- and under-canopy 

laser-scanning methodology, achieving relative root mean square 

errors (RMSEs) of 2.0–4.0 cm for diameter at breast height 

(DBH), 0.33–1.13m for tree height and 4.0–7.0 cm for stem 

curvature estimates. The experiment was conducted in a 

heterogeneous 120 m × 120 m boreal forest plot, dominated by 

silver birch (Betula pendula), Norway spruce (Picea abies), and 

Scots pine (Pinus sylvestris).  

 

Liang et al. (2024) conducted experiments in a 50 m × 30 m plot 

located in a subtropical urban forest. The RMSEs of the DBH and 

the stem curve estimates were 5.13 cm (22.01%) and 5.18 cm 

(22.49%), respectively.   

 

4. Applications 

Compared with traditional manned operations, under-canopy 

UAVs are safer and more cost-effective, resulting in substantial 

improvements in patrol efficiency.  

 

4.1 Forest inventory 

under-canopy UAVs provide significant benefits for forest 

management, ecological conservation, and emergency response. 

These UAVs enable precise monitoring of tree health, including 

early detection of pests and diseases and vegetation analysis, as 

well as efficient resource assessment such as forest inventory, 

timber volume estimation, and rare species localization. In 

addition, they support biodiversity studies by facilitating detailed 

habitat mapping 

 

Liang et al. (2024) collect tree attribute data, aiming to improve 

the efficiency and automation of in-situ forest observations. 

Hyyppä et al. (2021) employed LiDAR-based UAVs to measure 

parameters such as tree height and volume for individual trees. 

Chisholm et al. (2021) developed an end-to-end system using an 

autonomously flying UAV under tree canopies, aiming to 

automatically measure Diameter at Breast Height (DBH). 

Shimabuku et al. (2023) studied the efficiency of UAV-based 3D 

reconstruction in forests. Kuželka et al. (2018) tested the 

performance of consumer-grade UAVs equipped with vision-

based localization systems to acquire 3D structural data of 

forests.  

 

The scope of inventory expanded in recent years. Trybała et al. 

(2024) demonstrated a UAV-based system for initial berry 

harvesting under-canopy conditions.  

 

4.2 Search and rescue 

under-canopy UAVs equipped with thermal imaging can 

penetrate dense foliage to locate missing persons, assess disaster 

sites, and deliver emergency supplies.  

 

They also play a key role in innovative ecological conservation 

efforts, including precision seed dispersal, illegal logging 

surveillance, wildlife habitat monitoring and under-canopy 

resource inventories (Trybała et al., 2024). 

 

Tian et al. (2020) proposed a UAV rescue system under the 

canopy, based on 3D laser scanning and coordinated with ground 

infrastructure to enable real-time localization and mapping to 

support emergency missions.  

 

5. Challenges & Opportunities 

Narrow interstitial spaces between trees and low-hanging 

branches exacerbate flight instability and collision risks. Thus, 

the mobility of the under-canopy ULS system is expected to 

decrease as the forest difficulty level increases. The main 

challenges lie in obstacle avoidance and real-time operation, 

especially in GNSS signal loss and dense obstacles 
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5.1 Impact of forest conditions  

One main constrain factor for the applying under-canopy ULS 

system in a dense complex forest stand is the size of the UAV 

platform, because there is a trade-off between the payload and the 

mobility. Large UAV platforms can take more payloads that is 

particular important for LS-based systems as the current LS 

sensors are often heavier than optical sensors. A large size, 

however, requires more space for UAV to safely navigate itself 

through objects, which typically reduces the mobility of the 

under-canopy UAV system in forests. Nevertheless, because both 

platform and sensors are rapidly evolving, it can be anticipated 

that lighter sensors would become available and facilitated 

smaller system that can manoeuvre in dense and complex forest 

stands.  

 

In addition, forest plots are often characterized by highly variable 

terrain conditions, especially in mountainous regions, where 

steep slopes, dense vegetation, and complex ground structures 

pose significant challenges to UAV navigation and data 

acquisition. Therefore, it is necessary to develop under-canopy 

UAVs with terrain-following capabilities to ensure safe and 

efficient flight in complex forest environments (Krisanski et al., 

2020). 

 

5.2 Impact of trajectory planning 

From a methodology point of view, the current route planning 

methods for autonomous UAV navigation do not meet the forest 

observation and measurement requirements. The state-of-the-art 

autonomous exploration strategies typically take the greedy 

algorithm that makes locally or immediately optimal choices, 

which often overlook the capability of the platform movement 

that is not regarded as a constraining factor in controlled, limited, 

easy, and/or open space conditions.  

 

Forest plots are typically delimited with fixed areas, requiring 

UAVs to complete data acquisition within a bounded space. 

Liang et al., (2018) revealed that incomplete data acquisition 

significantly compromises the accuracy of tree attribute 

estimation. Owing to the complex understory structure and 

prevalent occlusions, UAV accessibility to target areas is 

restricted, rendering complete plot coverage highly challenging. 

Consequently, a key challenge in trajectory planning is to design 

a flight path that rigorously adheres to the UAV's manoeuvring 

constraints while simultaneously ensuring complete and efficient 

plot coverage. 

 

5.3 Other limitation factors  

In practice, autonomous platform endurance depends on battery 

power, and the energy requirements of a platform are constantly 

changing along with the flying conditions. To fully explore a 

space of complicated conditions, e.g., with varying structure and 

plenty of obstacles and occlusions, an autonomous platform 

requires more battery power because more redirection and 

restarting are required. Limited by the capacity of the onboard 

battery, e.g., typically 10-20 min flying time, the algorithms that 

prioritize excessive environmental exploration for covering the 

space do not support the exploration in an unknown challenging 

environment such as forests. 

 

5.4 Impacts to forest observations  

From perspectives of forest observations and inventories, the 

most concerned issues are the reliability and the richness of the 

achievable forest and tree attributes, on top of the cost of time, 

labour, and instruments for data collection and processing. In 

forest observation, the crucial point is to not only facilitate 

autonomous under-canopy UAV manoeuvre, but more 

importantly, to collect reliable data, thus, to meet the forest in situ 

measurement requirements. 

 

6. Summary 

Under-canopy UAV systems are revolutionizing forest 

investigation through multi-sensor fusion, autonomy, and 

advanced analytics. While challenges like occlusion and 

standardization persist, innovations in deep learning, SLAM, and 

hybrid workflows promise scalable, accurate solutions for 

sustainable forest management. 
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