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Abstract

Spatial knowledge for supporting precise N fertilization is of key interest in crop management. Therefore, accurate and reliable data
on crop dry biomass (DB) and N concentration (Nconc), and N-uptake (Nup) are needed considering spatial heterogeneity. While N
uptake in field experiments is computed using in-situ data of DB and Nconc, it also can be directly estimated with remote sensing
methods. Usually, these crop traits are derived by using optical remote or proximal sensing approaches. In this contribution, we
investigate a paradigm change in providing non-destructive DB, Nconc, and Nup estimates by using non-optical data analyses but
structural information extraction. Numerous studies proofed UAV-derived crop height can serve as a robust estimator for biomass.
Due to the well-known negative correlation between biomass and N concentration over the growing season crop height might be
used as an estimator for Nconc as well. Based on these correlations we investigate three key hypotheses: (i) crop height from UAV
images using a Structure from Motion and Multiview Stereopsis (SFM/MVS) workflow serves as a very robust estimator for DB, (ii)
Nconc is correlated over the growing season to DB, and (iii) DB is the dominating parameter in determining Nup. Hence, the main
research question of this contribution is if UAV-derived crop height (UAV-CH) serves as a robust estimator for DB, it also can be
used to directly estimate Nconc and Nup, UAV-CH in ultra-high spatial resolution (< 3 cm) is a mixed signal of crop height and
density for a given spatial unit, eg. a square meter or a research plot, and therefore provides valuable crop canopy information. We
present results from a 3-years effort in UAV- and in-situ data acquisition and analyses which partly support the proposed paradigm
change. For each of the three years 2020, 2021, and 2022, DB can be robustly estimated using UAV-CH, having a R? of 0.89, 0.91,
and 0.92, respectively. For Nconc and Nup the results are not as promising on a yearly analysis having R? for Nconc of 0.57, 0.21,
and 0.41, and for Nup of 0.72, 0.61, and 0.48, respectively, but are comparable to optical approaches. However, for fertilizer
recommendation, the performance on growing stage specific level is of more importance. Surprisingly, the proposed approach seems
to provide similar or better results compared to optical sensing analysis showing R? for campaign specific days (approx. every 14
days over 3 growing periods) for N uptake between 0.57 and 0.82, and for Nconc between 0.24 and 0.78. We conclude that UAV-CH
can be used as a very good and robust estimator for DB, as a moderate for Nconc, and as a moderate but robust estimator for Nup
having the advantage of being more flexible in terms of less effected by weather conditions. Finally, the STM/MVS workflow to
derive UAV-CH has the potential to be fully or semifully automated from data acquisition to fertilizer recommendation.

1. Introduction (Zhang and Kovacs, 2012). UAV-based spectral sensing
approaches also have limitations due to cloud cover and
The non-destructive estimation of crop traits like dry biomass ~ changing  illumination.  Hence,  photogrammetric  and

(DB) and N concentration (Nconc) are needed to compute N laserscanning data analysis workflows were introduced to
uptake (Nup) during the growing season. The latter is of  provide structural canopy data like crop height (Bendig et al.,
importance in the context of precision agriculture (Mulla et al., 2013; Tilly et al., 2014). Numerous studies proofed UAV-
2013) for e.g. precision N management which optimizes N derived crop height can serve as a robust estimator for biomass
fertilization in context of crop demand and development. (Bareth, 2021; Nasi et al. 2018). Due to the well-known
Spectral approaches, like the Yara N Sensor, to enable such a  negative correlation between biomass and N concentration over
precise N management were introduced decades ago (Reusch,  the growing season, Tilly and Bareth (2019) investigated crop
2003). However, such spectrometer-based data acquisition does  height from terrestrial laserscanning as an estimator for biomass
not provide spatially continuous coverage on field-level.  and Nconc for barely. In Fig. 1, the results clearly indicate the
Therefore, data acquisition approaches using Unmanned aerial potential of using CH as a proxy for Nconc.

Vehicles (UAVs) emerged and fill this desired information gap
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Figure 1. “Blue triangles and green dots represent the values of 2013 and 2014, respectively, with linear (light grey) and the best-
fitting (black) regression lines. [D]-[F]: Crop traits plotted against each other” (Unchanged plots from Tilly et al., 2019).
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Based on the results shown in Fig.1, we investigate in this
contribution a paradigm change in providing non-destructive
estimations of DB, Nconc, and Nup by using non-optical data
analyses but structural information extraction from UAV-based
RGB imagery. The three key hypotheses are that (i) crop height
from UAV images using a Structure from Motion and
Multiview Stereopsis (SfM/MVS) workflow serves as a very
robust estimator for DB, (ii) Nconc is negatively correlated over
the growing season to DB, and (iii) CH is a robust estimator for
both, DB and Nconc, and can directly be used to estimate Nup.
To investigate the (iii) hypothesis which represents the main
objective of this study, we collected a multi annual dataset of
winter wheat over three years.

2. Study Area and Methods

Study Area
In Fig.2 the winter wheat field experiment is shown. It is

located at the Campus Klein-Altendorf, which is an experiment
farm of the University of Bonn, located in Western Germany.
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The investigated field experiment is carried out by the Institute
of Crop Sciences (INRES) since 2020. The field experiment has
a split-plot design with five replicates having three N-fertilizer
treatments (0, 120, and 240 kg/ha) and six different wheat
varieties. Plot size of the experiment plots is 7.0 x 1.5 m.
Winter wheat is sown with a row distance of 11.3 cm. While the
experiment layout is the same in all years, the location of the
experiment is changing from year to year on the Campus Klein-
Altendorf. In total, 18 plots per replicate and 90 plots for the
whole experiment are managed. Two of the five replicates are
selected for destructive sampling. In Fig.2, row 2 and 4 are
highlighted to indicate these replicates. In contrast to the
growing season 2020 with only one row used for destructive
sampling (n = 18), 36 plots were sampled for each UAV
campaign in 2021 and 2022. An area of 1 mby0.3m was
destructively sampled for each of the 36 plots directly after each
UAV campaign and laboratory analysis provide dry biomass
(DB) and nitrogen concentration (Nconc). From the latter two
nitrogen uptake (Nup) is calculated.

Campus Klein-Altendorf (CKA)
| Winter Wheat Field Trial 2020/2021

Nitrogen (N) fertilization locations and rates
T._1 N1 (0 kg/ha)

{1 N2 (120 kg/ha)

"1 N3 (240 kg/ha)

selected rows for destructive sampling during growing
season

[ locations for 2nd destructive sampling, May 12, 2021

Plot-IDs: 1 - 90 | numbering of individual plots

+ positions of permanent ground control
point for georeference

. coordinate system: ETRS89/ UTM zone 32 N
* RGB orthophoto field trial: DJI Mavic 2 Pro
background orthophoto: Geobasis NRW (GSD 10 cm)

Figure 2. Layout of the winter wheat experiment since 2020 at the Campus Klein-Altendorf (CKA). A Digital Orthophoto (DOP) of
12 May 2021, plot outlines and areas of destructive samplings in row 2 and 4 (black outlines) are shown. (Figure unchanged from
Jenal et al., 2025)

UAV-Based Image Acquisition and Analysis

A DJI Phantom 4 RTK (P4RTK) was flown in 2020, 2021, and
2022 for a total of 17 campaigns during the three growing
seasons: 26.03., 08.04., 28.04., 13.05., 26.05., and 12.06.2020;
25.02., 20.04., 12.05., 28.05., and 11.06.2021; 04.03.,12.04.,
28.04., 11.05., 25.05., 14.06.2022. The PARTK is equipped with
a fully gimbaled 1” 20 MP RGB sensor. Around 460 images
were collected during each campaign with a Ground Sampling
Distance (GSD) of 0.0067 m. Along- and across-track image

overlapping was > 80 % flying an orthogonal pattern which
resulted in a total image overlap of > 90 %. Flying altitude
above ground was between 25 and 28 m.

The image data was processed in a SfM/MVS analysis
workflow (Turner et al., 2012) using Agisoft Metashape. The
detailed analysis specifications for 2020 are described in Jenal
et al. (2021) while the analysis workflow for 2021 and 2022
followed the proposed method of Bareth et al. (2023). The
major difference in the two workflows is that Jenal et al. (2020)
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used ground control points (GCPs) while for 2021 and 2022 no
GCPs were used but direct RTK georeferencing as suggested by
Bareth and Huitt (2023). The GSD of the processed Digital
Orthophoto (DOP) is 0.0067 m and of the Digital Surface
Model (DSM) is 0.0137 m. For crop height analysis, the DSMs
were analysed according to the described crop height extraction
method by Bendig et al. (2013).

Figure 3. DJI P4 RTK.
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3. Results

For each year, bivariate regression analysis was performed for
each investigated trait (DB, Nconc, and Nup) against CH with
18 destructive samplings in 2020 and 36 destructive samplings
in 2021 and 2022. Because the field experiment is not located in
the same place each year but at different sites with different
land use before and varying soil conditions, the data sets are
considered independent. In Fig 3, the results for 2021 and 2022
are visualized. The very good performance of CH to estimate
DB with a R? of 0.89 in 2020 (Jenal et al. 2020) is reproduced
with R? of 0.91 and 0.92 in 2021 and 2022, respectively. The
very promising performance of CH for Nconc (R? = 0.57) and
Nup (R? = 0.72) could not be found in 2021 and 2022. In both
years R? for Nconc (2021: 0.21; 2022: 0.41) and Nup (2021:
0.61; 2022: 0.48) were significantly lower compared to 2020
(Bareth et al. 2025). Summarizing the data of all three years
yielded R? of 0.89 for DB, 0.35 for Nconc, and 0.57 for Nup.
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Figure 4. UAV-derived crop height (CH) plotted vs. the investigated traits DB, Nconc, and Nup using annual data
for 2021 and 2022.
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While the performance on annual data sets is not overall
convincing, the analysis on date specific data is surprisingly
better and for practical crop management more important
(Bareth et al. 2025). Estimators have to work on a growing
stage specific temporal scale. Campaign specific data analysis
resulted in R? for DB between 0.22 and 0.83, for Nconc

UAV-derived Crop Height vs. Dry Biomass
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between 0.24 and 0.78, and for Nupe between 0.57 and 0.84. In
Fig.4, single date analysis for 12.05.2021 (Bareth et al. 2025)
and 11.05.2022 are shown. For both years, CH serves as a good
to very good estimator with moderate to high R? for DB (2021:
0.83; 2022: 0.68), Nconc (2021:0.73; 2022:0.70), and for Nup
(2021: 0.84; 2022: 0.75).
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Figure 5. Campaign specific analysis for two selected campaigns, 12 May 2021 and 11 May 2022.
For both dates, CH is plotted vs. DB, Nconc, and Nup.

Pooling the three years data for annual time windows of 5-10
days representing a first analysis of four growing stage-like
specific analysis yielded moderate to good R?. The results are
listed in Tab.1.

Annual time window DB Nconc Nup
Early May 0.47 0.48 0.63
Mid May 0.65 0.45 0.68
Early June 0.53 0.55 0.60
Mid June 0.69 0.47 0.61

Table 1. Grouping the date-specific campaigns into annual time
windows for 2020,2021, and 2022 for growing stage-like
regression analysis against UAV-derived crop height.

To investigate the potential of CH as an estimator for Nup, the
regression models for the different annual time windows
derived from the analysis presented in Tab.1 were applied to
crop height data of an independent dataset from 2023. The field
experiment as described above for the years 2020 to 2022 were
also investigated in 2023. The modelled results are validated
against destructive sampling and laboratory analysis of 2023.
The results are visualized in Fig.6. Corresponding RMSE values
are 101, 40, 56, and 53 kg/ha for the early May, mid May, early
June, and mid June, respectively.
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Early May Model 2020-2022
vs. Measured Nup 2023
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Figure 6. CH-based modelled Nup (y-axis) plotted versus measured Nup (x-axis) in kg/ha for the four
investigated annual time windows for 2023. UAV-derived CH for 2023 was generated according to the
analysis workflow without using GCPs applied for 2021 to 2022.

4. Discussion

Bendig et al. (2013 and 2014) introduced UAV-derived crop
height (CH) as an estimator for dry biomass (DB) in barley.
Similar findings are published using terrestrial laserscanning to
derive CH as an DB-estimator by Tilly et al. (2014). Tilly and
Bareth (2019) further investigated CH as an estimator for N
concentration (Nconc) using biomass regression models and
documented very promising results. Similar findings are
reported by Nasi et al. (2018) and Jenal et al. (2025). In this
contribution, we investigated UAV-derived CH serving as a
direct predictor for N uptake (Nup) due to the correlation to DB
and Nconc. Precondition is the ability of CH to be a robust
estimator for DB and Nconc, both are used to compute Nup.
The performance of CH to estimate the three investigated traits
varies significantly over the years. However, CH serves as a
good and robust estimator for DB on annual data and for
growing stage specific analysis. For Nconc the performance is
moderate and seems not robust for both, annual and groing
stage specific analysis. Finally, for Nup the results are
promising reporting moderate and robust R? for annual and
growing stage specific analysis (0.47 to 0.74). Argento et al.
reported similar correlation for optical satellite and UAV-based
optical approaches (r > 0.8). Hdtt et al. (2023) reported similar
findings for UAV-based laserscanning and CH metrices.

Li et al. (2008) and Li et al. (2010) investigated spectral
vegetation indices (VIs) of the visible and near-infrared
(VIS/NIR) domain for Nconc in winter wheat for growing stage
specific analysis. The modelling performance of established VIs
like NDVI, REIP, OSAVI, MCARI etc. were not given and
only yielded R2 0.08 to 0.33 for an independent data set.
Moderate results were achieved by pooling the data on an
annual base. R? are ranging between 0.54 and 0.58 in 2006 and
between 0.39 and 0.44 for 2007 (Li t al. 2010). All three traits
(DB, Nconc, and Nup) were analysed by Li et al. (2008) as a
pooled dataset comprising 2006 and 2007 and resulted in R?
between 0.7 and 0.78 for DB, between 0.36 and 0.43 for Nconc,
and between 0.74 and 0.84 for Nup. Similar results were

reported by Nasi for spectral and CH analysis approaches.
Pooling the data of this study for 2021 and 2022 for CH-
analysis result in following R% 0.91, 0.92 for DB, 0.21 and 0.42
for Nconc, and 0.61 and 0.48 for Nup. Additionally, Jenal et al.
(2025) investigated differently acquired SfM/SVM CH data for
12 May 2021. Similar performance as presented in our study
using the P4ARTK data are reported.

Comparing our results to published findings using spectral data
analysis approaches, Nconc and Nup can be better estimated
using spectral sensing methods while CH-based modelling of
DB can compete or perform even better. However, to produce
good and robust results with spectral sensing methods, clear sky
weather conditions are required and data acquisition has to take
place around solar noon. Both limit the applicability severely in
management applications.

Cloud Fractional Cover
Reference Mean May (1991-2020)

Data: CM SAF, 2023

125 25 375 50 625 7% 875
(%]

Figure 7. Average May cloud cover in Europe (www.dwd.de).
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In Fig.7, average cloud cover is shown for Europe for May. It is
clearly visible that for most middle European countries severe
limitations for spectral sensing occur due to cloud cover values
between 62.5 and 87.5 % in average. In contrast, UAV-derived
CH can be derived under varying weather condition and enables
more flexible data acquisition. The latter is important for the
development for farming applications. Finally. The data
analysis workflow presented in this study not using GCPs but
direct RTK-based georeferencing could enable automized,
cloud-based data analysis and provision of N fertilization
recommendation maps within hours of image acquisition.

5. Conclusions

In our study we could show that UAV-derived crop height (CH)
is a robust estimator for dry biomass (DB) for winter wheat for
growing stage-like analysis. It clearly performs in linear
regression models as good as spectral approaches or even better.
For N concentration (Nconc) the performance is significantly
weaker and not comparable to spectral VIS/NIR approaches.
However, the correlation can only be as good as the correlation
between dry biomass and Nconc. Finally, CH performs as a
predictor for N uptake (Nup) weaker in comparison to dry
biomass but seems to be a moderate and robust estimator. In
general, a very good estimator for DB serves as a good to
moderate estimator for Nup. Further investigation will be
carried out focusing on Nup model development using CH and
validation. Besides, we already have collected a six years data
set of this winter wheat field experiment which will enable
intensive validations. Due to challenging weather conditions
during the growing season in many European countries, CH can
be used to fill data gaps of spectral approaches or for the
combination of spectral and structural analysis.
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