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Abstract

Studying the effects of climate change is essential to understanding the impact of human activities on the environment and to
developing effective mitigation and adaptation strategies. This is the objective of the ACLIMO project, which applies a multi-sensor
and multiscale approach to analyse the effects of climate change on a border alpine area and specific ecosystems. In this contribution,
we focus on the large-scale objectives, analysing vegetation coverage around two alpine lakes (Lake Brocan and Lake Vej del Bouc)
and their bathymetry. In particular, through automatic classification of drone imagery with an Object-Based Image Analysis (OBIA)
workflow, five machine learning algorithms (Bayesian, Random Forest, Support Vector Machine, K-Nearest Neighbours, Decision
Tree) were tested for automatic classification of vegetation. Field surveys were conducted to collect in situ vegetation data, providing
ground-truth points for classification validation. In addition, bathymetric mapping was carried out using a USV (Uncrewed Surface
Vessel) equipped with a single-beam echo sounder, serving as ground-truth for bathymetric models derived via Structure-from-
Motion analysis of UAV images. This integrated and in-depth methodology enabled the generation of detailed land cover maps
highlighting dominant vegetation species and accurate 3D bathymetric models, allowing for a comprehensive ecological assessment
of this alpine environment under ongoing climate change conditions and establishing a starting point (to data) for future monitoring

and change detection analyses.

1. Introduction

Studying the effects of climate change is essential to
understanding the impact of human activities on the
environment and developing effective mitigation and adaptation
strategies. These changes negatively affect places with fragile
climates and conditions, such as mountain areas. A thorough
understanding can thus allow us to protect the communities and
environments most vulnerable to the effects of global warming.
This contribution describes the methodology developed for a
multiscale study and monitoring of a part of the Italian
northwest border alpine region.

The ACLIMO project arises from the collaboration between the
Politecnico di Torino and APAM (Management Body of Aree
Protette Alpi Marittime - protected areas Maritime Alps) within
the France-Italy ALCOTRA (Alpi Latine COoperazione
TRAnsfrontaliera) European 2021/2027 project, which involves
several Italian-French parks and bodies such as the Parc
National du Mercantour, Parc National des Ecrins, Gran
Paradiso National Park, Regional Natural Park of Alpi Liguri.
The objectives of this collaboration include the analysis of the
impacts of climate change on the mountain regions of the
Maritime Alps park, with particular attention to glaciers, forests,
grasslands, peat bogs, wetlands and water resources (Mauro,
2015). Furthermore, the project aims to support environmental
management through the study of risk and vulnerability
conditions, as well as the prediction of possible future dynamic
evolutions.

As mentioned, we performed a multiscale and multi-sensor
analysis of this mountain area, but this contribution focuses on
the large-scale monitoring process, which consists of UAV
surveys of two alpine lakes. The aim is to establish an efficient
and effective method for mapping alpine vegetation types and
canopy land cover classes as derived from medium-resolution

Sentinel-2 data combined with high-resolution UAV
multispectral data, whose classification has been performed
with the application of artificial intelligence algorithms (Huang
et al., 2021). From the UAV surveys, we also carried out a
bathymetry analysis of lakes with a Structure-from-Motion
methodology, validated by a USV (Uncrewed Surface Vessel)
bathymetry survey. This multi-source, multi-resolution method
is significant for alpine regions, where spatial heterogeneity and
sparse in-situ measurements often restrict the application of
traditional remote sensing techniques.

The output is a transferable approach to monitoring vulnerable
alpine ecosystems.

2. Materials and methods
2.1 The ACLIMO project

The methodology of the ACLIMO project consists of a multi-
platform, multi-sensor and multiscale approach on three
different levels: small, medium and large scale, applying
consolidated and robust algorithms for supporting monitoring
and decision processes by APAM.

The small-scale analysis focuses on studying the trends and
variations of snow and the vegetation coverage. For this
purpose, satellite images from Copernicus Land Monitoring
Service (CLMS), Landsat and Sentinel satellites are used,
covering a period of 20-25 years on three months, in particular:
April (maximum snow cover period according to the Regional
Agency for Environmental Protection - ARPA), June
(maximum vegetation bloom and maximum water level in lakes
due to snowmelt peak), August (for analysing perennial and
residual snowfields and water level at the end of the summer
period). Spatial trends of land cover will then be compared with
data from weather stations located inside APAM territory.
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In the medium scale, the focus is on the vegetation, wetlands
and glaciers/snow. Multispectral aerial orthophotos are used to
create a land cover and land use map with a higher resolution
than the Corine Land Cover dataset. The map was classified
automatically and semi-automatically through artificial
intelligence (Al) techniques, particularly deep learning (DL)
algorithms.

Two lakes have been considered large-scale indicators of
climate change (Chungqiao et al., 2014) since they can constitute
an example for studying vegetation and water level change over
the years. Bathymetry and drone surveys with RGB and
multispectral sensors were carried out for both lakes. In this
case, machine learning-based (ML) recognition of elements of
interest has been carried out to generate classification maps.
These maps and the proposed methodology should then be
adopted by APAM to continue the monitoring phases in the
next years. This is one of the main reasons for the choice of ML
algorithms, to have a simple and user-friendly methodology to
be applied also by non-expert users.

2.2 The case study

More specifically, the Maritime Alps are located in the West-
South portion of the Alpine Arc, south of the Piedmont region,
Italy, and they are protected by the Protected Areas of Maritime
Alps (APAM) body. The overall protected territory extends
over 38.290 hectares and involves 16 municipalities, and the
altitude ranges from 645 to 3297 m a.s.l. The main activities in
this area are tourism and energy production, with the presence
of the biggest hydropower plant in Italy, Luigi Einaudi plant,
which has three reservoirs in Piastra, Rovina and Chiotas lakes.
The latter is particularly important since it is next to one of the
two lakes of analysis (the Lake Brocan, Figure 1).

For the multiscale approach of the ACLIMO project, three areas
of analysis were chosen (Figure 1):
. for the small scale, we considered the entire area
managed by APAM, namely the Alpine arc from Val
Varaita to Alpi Liguri, crossing a portion of the plain
close to Cuneo (Figure 1 - red area).
. a single and smaller valley for the medium scale
(Valle Gesso, Figure 1 - blue area).
. two alpine lakes for the large scale: Lake Brocan
(2004 m a.s.l.) and Lake Vej del Bouc (2054 m a.s.1.)
(Figure 1 - yellow points)
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Figure 1. Surfaces of the areas of interest at the small scale
(red), medium scale (blue) and large scale with lakes (yellow).

These two lakes were mainly chosen since Lake Brocan is
characterised by a strong presence of anthropic activities, due to
the hydropower plant, while Lake Vej del Bouc by pasture
activities.

The vegetation of both lake basins is highly heterogeneous,
comprising natural grasslands, mixed deciduous—conifer forests,
and shrublands that differ in species abundance according to
altitude, soil type, and available soil moisture. These plant
assemblages are excellent indicators of environmental change
and provide valuable information on alpine ecological
mechanisms under climatic and anthropogenic stress.

As regards the bathymetry, the level of the two lakes is highly
variable according to the year and, of course, season. For this
reason, two survey campaigns are foreseen during the year: one
during June-July and the other by September-October.

This contribution will mainly present the results of the large-
scale analyses in which UAVs and USV have been involved.

2.3 Dataset

The UAV data acquisitions took place in July and October
2024. Two photogrammetric flights were carried out with DJI
Mavic 3M (multispectral) and RTK module, for a total of 4947
images acquired for Lake Vej del Bouc and 6116 for Lake
Brocan. The processing was carried out both with software DJI
Terra and Agisoft Metashape, resulting in dense point clouds, as
shown in Figure 2, with 28.083.475 points for Vej del Bouc and
32.467.868 points for Brocan, with RMSE of 2-3 cm (7 GCPs
for lake Vej del Bouc and 10 GPCs for lake Brocan).

Figure 2. UAV images acquired and point clouds. Lake Brocan
on the left, Lake Vej del Bouc on the right.

These point clouds were then processed to obtain orthophotos of
the two lakes, used as a base for automatic vegetation
classification.

Beyond high-resolution UAV-derived multispectral images,
medium resolution Sentinel-2 MSI (Multispectral Instrument)
data were also exploited for an initial large-scale analysis. The
images have a 10 m resolution, providing a balance between
detail and regional coverage. Images were obtained monthly,
with a focus on the months of June, August, and September in
the respective years. Twenty-four multispectral images were
then chosen to represent the period from June 2017 to
September 2023 and support multi-annual monitoring of
vegetation and water-body trends.
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Concerning the bathymetry, for the survey in Lake Vej del
Bouc, the Alpha Wi STX-EchoS single-beam echo sounder was
used. It was installed on the BlueBoat USV to collect data and
transported in situ thanks to its small size (Table 1 and Figure
3). Table 1 resumes the instruments employed for in situ
surveys and their characteristics:

Sentinel-2
Images from the months of April, June, and
August (2017-2024)
Spatial resolution: 10 m
Spectral resolution: 13 bands
DJI Mavic 3M
GNSS RTK, 5 sensors, RGB 4/3 (17.3 x 13
mm), 20 MP, 5280 x 3956,
Pixel size: 3.3 x 3.3 pm
Focal length: 13 mm, Multispectral 1/2.8",
6.058 x 4.415 mm, 5 MP, 2592 x 1944
Bands: Green (G): 560 = 16 nm, Red (R): 650
+ 16 nm, Red Edge (RE): 730 + 16 nm, Near-
Infrared (NIR): 860 + 26 nm Weight: 951 g

Satellite

UAV

Bathymetry

BlueBoat USV, Blue Robotics
Maximum velocity 3 m/s, Weight 14,5 kg,
Control length 250 m, Autonomy with 8
batteries: 62 hours

Echosounder STX-Echos
Depth range 0.2 — 200 m, Resolution 8 mm,
Acquisition angle 8°
GNSS: GPS, GLONASS, BDS, GALILEO,
QZSS
Weight 1200 g

Table 1. Sensors and dataset

Figure 3. BlueBoat USV, BlueRobotics, equipped with STX-
Echos Echosounder (left); point acquisition on shallow water
through GNSS receivers for validation (right).

3. Methodology for large-scale monitoring

The GNNS measuring of GCPs, UAVs surveys and USV
surveys constitute an integrated system for analysing both the
vegetation in the area of interest, generating land cover maps
though automatic classification, and for reconstructing the
bathymetry of water bodies from USV surveys and drones'
images. Figure 4 shows the workflow of this study.
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Figure 4. Methodological workflow.

3.1 Vegetation classification methodology

For the large-scale analysis with UAVs, a systemic approach
was applied, including satellite imagery, UAV imagery, remote
sensing indices, and state-of-the-art ML algorithms to classify
alpine vegetation. In this way, a link between the small and
medium scale analysis and the large scale one will be easily
conducted in the project's next phases, allowing the
identification of patterns, trends and effects of climate change.

3.1.1  Satellite data

The satellite-based part of this study was used as a coarse-
resolution tool to monitor long-term changes in vegetation and
water conditions over the two alpine lakes, Lake Brocan and
Lake Vej del Bouc.

All pre-processing and analyses were conducted in Google
Earth Engine (GEE): Sentinel-2 collections were sub-set by
date, cloud cover, clipped spatially to the exact AOI extents,
and quality was restored based on the QA60 band for cloud
masking. For Level-1C products, atmospheric correction tasks
in GEE were performed to normalise reflectance values and to
cancel out atmospheric noise.

Following pre-processing, each of the images was resampled to
an RGB composite and analysed for four important spectral
indices that yield complementary information on surface
conditions and ecological processes: NDVI (Normalised
Difference Vegetation Index), NDWI (Normalised Difference
Water Index), EVI (Enhanced Vegetation Index), and SAVI.
Land cover mapping was performed only with Random Forest
(RF) in the Google Earth Engine (GEE) cloud computing
platform. The criteria for this selection were the efficiency of
the method in high-dimensional feature spaces and the
robustness of the approach against overfitting. The training
samples were manually digitised with reference to the UAV
orthophotos and visual interpretation of Sentinel-2 scenes. Four
major land cover types were classified, including open water,
bare soil or rock, sparse, and dense vegetation.
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The RF classifier was trained based on Sentinel-2 spectral bands
and calculated indices as input features. The model was then
applied in all the chosen scenes to produce consistent land cover
maps at a 10-m interval. Classification products were exported
from GEE as GeoTIFF and analysed in GIS for comparison and
validation compared to UAV derived outputs.

3.1.2 UAVsimagery

The acquired images of the July and October UAV surveys
carried out by Politecnico di Torino were elaborated with
Agisoft Metashape. The orthophoto production was conducted
independently for each of the five spectral bands (RGB, Red,
Green, RedEdge, and NIR) with a photogrammetric processing
at a high resolution (Figure 5 and 6). This was made to avoid
co-registration error.

DSMs were also calculated from the dense clouds to represent
changes in elevation of both vegetated and non-vegetated
surfaces.

The so-produced multispectral orthophotos have been used as a
base for automatic vegetation classification with eCognition
software, through the object-based image analysis (OBIA)
workflow. In order to increase the discriminative power of the
classification, spectral indices NDVI and NDWI were
calculated directly in eCognition with the help of the process
tree module.

An initial multi-threshold segmentation was tried using index
values to distinguish water, soil/rock, and vegetation. As the
accuracy was not acceptable, the workflow was altered towards
multi-resolution segmentation with customised weights per
spectral band, resulting in a much-increased segmentation
accuracy.

RGB Red-Edge Green

NIR Red

Figure 5. Five bands orthophotos for Lake Vej del Bouc

RGB Red-Edge Green

NIR Red

Figure 6. Five bands orthophotos for Lake Vej del Bouc

After obtaining the optimal segmentation, a large training set
was created for the supervised classification. These samples
spanned spectral variability across the lakes and in the
surrounding terrain, which experienced shadow, variable
vegetation coverage, and mixed pixels.

These samples were then subjected to five supervised machine-
learning algorithms in eCognition: Bayesian, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Random Tree,
and Random Forest. Each classifier was trained separately and
operated independently, and classification performance was
evaluated by matching outputs to known object classes and
through visual validation.

After the overall land-cover classification (with general classes
vegetation, rock/soil and water), a second classification step was
implemented to obtain vegetation types. This second-level
classification was performed on only the "vegetation class"
derived from the first-step classification.

In addition, field activities and surveys on the shores of both
lakes during in situ campaigns (Figure 7) served as ground-truth
samples of the dominant plant species and vegetation clusters.
These samples were used to determine the training set for
vegetation sub-classes.
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Figure 7. Definition of the ground truth for the species
identification surveyed with GNSS receivers.

Table 2 shows the main vegetation species that were recorded
with GNSS in the area of interest. These data and points were

used to train the second-step algorithms.

Latin name English name Code
Rumex Alpinus Alpine Dock ADO001
Rumex Romice Sorrel S0002
Festula Rubra; o Festuca | Red Fescue RF003
Trichophorum cespitosum | Deergrass DG004
Carex nigra Black Sedge BS006
Nardus Matgrass MGO007
Nardus Stricta Upright Matgrass UMO008
Janiperus nana Dwarf Juniper DJ009
Rhododendron Rusty-Leaf RRO10
Ferrugineum Rhododendron

Festuca Paniculata Tussock Fescue TFO11
Rubus Idaeus Red Raspberry RIO12
Athurrium Filixoideas Lady Fern AF013
Dryopteris Flix-max Male Fern DF014
Vaccinium Mirtillus Bilberry VMO15
Alnus Viridis Green Alder AVO016

Table 2. Vegetation types and codes.

3.2 Bathymetry methodology

3.2.1 USV Bathymetry

During the survey with the USV, 2972 points were acquired
through a manual path (Figure 8a). The maximum registered
depth is 8,59 m, at the centre of the lake. With MATLAB
R2023a software, DTM and three-dimensional models of the
bottom were recreated (Figure 8b) to be used as ground truth for
the Al algorithms currently tested on the orthophotos.

ms.L.m.

Vej del Boue

Figure 8. Lake Vej del Bouc: (left) points collected by the echo
sounder; (right) reconstruction of the DTM with linear
interpolation and 3D reconstruction of the lake bottom.

The generated 3D model of the lake bottom and the points
acquired with the USV serve as ground truth for the validation
of the bathymetry built with the Structure-from-Motion method
on shallow water.

3.2.2 Bathymetry Structure-from-Motion

Bathymetry was calculated not only from the USV survey, but
also through a Bathymetric Structure-from-Motion (SfM)
methodology using the point cloud generated by UAVs survey
(Dietrich, 2016). The main issue with this method is the
refraction correction of light when it passes through two
different media, air and water. This phenomenon
underestimated the real depth of the water body, measuring a so
called "apparent depth" (Figure 9).

To correct this error, an iterative algorithm is applied, which
calculates a series of equations for the correction of the light
refraction for every point/camera in the point cloud.

X.Y.Z.)
ny,=1.0
; X
dH —_— Ws.
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h
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(X, Y, Z,)

Figure 9. Trigonometry of the refraction. Variables are explained
in Table 3:

Variables Description

Xa, Yo, Za Apparent coordinates of SfM point

X, Yo, Vp Real coordinates of the point

D Euclidean distance between camera and SfM
point

dH Flight height over SfM point

r Angle of refraction

i Angle of incidence

X Distance between SfM point and interface
point water-air

ha Apparent depth of SfM point

h Real depth of P point

ni Refractive index of water (1.337)

n2 Refractive index of air (1.0)

Table 3. Description of variables in Figure 9.

The base equation is the Snell law, a formula used to describe
the relationship between the angles of incidence and refraction,
when referring to light or other waves passing through a
boundary between two different isotropic media:

1y sini = nosinr N

The aim is to solve a system of equations in order to define the
effective depth, h.
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Having different camera views for every point, it is very
difficult to apply Snell law, since there are many cameras for
each point and, as a result, different angles of incidence and of
refraction and different apparent depth, ha. This great quantity
of values would create a noisy point cloud.

It is then necessary to apply this correction iteratively, for every
combination point-camera, exploiting the trigonometry laws
regarding refraction of light.

The first step is to test the visibility of points from all cameras
to built the SfM cloud. This step has been carried out in Agisoft
Metashape software. Once all visible points are found, the
refraction angle is calculated as follows:

. D
T = ta‘n'lﬁ (2)

The apparent depth is calculated as:
hy= WS, —Z, A3)

Once we know r and ha, there are other variables to be
computed in order to define h:

LM
i=sin™! (ﬂ—: sin ?') 4)
x =h tanr %)
= (6)

tani
Z,=WSs,—h o

The corrected value of Z; is given as the mean of all values of
the real depth. It is subtracted by the surface of the water in
order to obtain the real elevation, since our goal is to correct the
DTM of lakes.

The surface of the water is obtained by the Kriging interpolation
with the DTM of a series of points along the border of tha lake.

For our purposes, we applied a Python py_sfm_depth algorithm
(1). This Python script requires three .csv input files:

e Dense Cloud File, containing the point cloud to be
corrected with coordinates, the SfM bathymetric
height and the height of the surface water.

e  Camera File, with the coordinates and orientation
parameters (pitch, roll, yaw) of cameras in the same
reference system.

e  Sensor File, with the focal length of the camera and
the physical dimensions of the sensor, both in
millimiters.

Before applying the algorithm, it is necessary to define the area
of interest and to create the shapefile containing only the points
of the reservoir where water flows.

The output is a .csv file containing the planimetric coordinates,
the geodetic height to be corrected, the surface water level, the
apparent depth, the mean corrected depth and, with the
subtraction of the water level, we finally obtain the correct
geodetic height for each point.

(2) https://github.com/geojames/py_sfm_depth

4. Initial results
4.1 UAYV imagery vegetation classification

The classification with Random Forest algorithm of satellite
images gives back classification maps with three land cover
classes: open water, vegetation, bare soil/rock (Figure 10). They
were validated by reference data based on the UAV images: the
Random Forest model provided classification accuracies of 85
to 92%, depending on the year and cloudiness.

W

Figure 10. Random Forest classification in GEE

The post-classification change detection indicated that there has
been a gradual reduction in the extent of dense vegetation cover,
particularly at the edges of those on upper slopes. Reduced lake
extents were seen in the most arid years (e.g., 2022) and were
combined with declines of the NDWI. Vegetation belts seemed
to rise, most likely in response to glacial retreat and the warmer
climate developing.

The output produced after OBIA classification of UAVs
imagery was exported and compared among classifiers. The
highest classification accuracy was obtained using the Bayesian
classifier, particularly for spectral separation of similar types of
vegetation in complex terrain.

What we obtain is a high-resolution classification map of the
typical alpine vegetation of this area (Figure 11).

unclassified
water

Rumex Alpinus

8 Nardus
Janiperus Nana
Nardus Sticta

Rhododendron Ferrugineum
Festuca Paniculata

Alnus Viridis

Vaccinium Mitillus

Dryopteris Flix-max
Athurrium Filixoideas

W

Rubus Idaeus

Figure 11. Automatic classification of vegetation for the Lake
Brocan, Bayesan algorithm.
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Figure 12. Automatic classification of vegetation for the Lake
Vej del Bouc, Bayesan algorithm.

4.2 Bathymetry for shallow water

As explained in 3.2.2, the first step was to identify only those
reconstructed points of the SfM point cloud where there was
water (Figure 12).

Figure 13. Point cloud of Lake Vej del Bouc, water only (left)
and intersect plane for water surface (right).

This part is the only one of the SfM point cloud that is corrected
by the algorithm; in particular, the point belonging to the
shallow water class. Figure 14 shows the section (a) and the
profile (b) of the original and the corrected point clouds with the
real value for the geodetic height (marked in blue).

(b)

Figure 14. Section (a) and profile (b) of the corrected point
cloud, Lake Vej del Bouc.

The corrected points highlight displacements of less than 10 cm
for the points next to the lake shore, while higher values from
80 cm to 1,5 m for the points towards the centre of the lake
(Figure 14).

Figure 15. Cloud-to-cloud between the UAV SfM point cloud
and the corrected one.

5. Discussions
5.1 UAYV imagery classification

This investigation demonstrates the feasibility of multi-source
object-based classification in alpine vegetation and land cover
mapping from UAV images processed with GeoAl (Geospatial
Al) algorithms. With the combination of medium-resolution
Sentinel-2 satellite images and ultra-high-resolution UAV
orthophotos, we succeeded in meeting the spatial dimensions of
ecological monitoring in mountainous areas, while for the
temporal one, new time series will be collected this year and in
the future.

The integration of GEE for long-term processing of satellite
data together with eCognition Developer for fine-scale
classification of UAV-derived data enabled the achievement of
a complete framework for the environment of the Maritime
Alps. For satellite images classification, we registered overall
classification accuracy rates between 85% and 92%, depending
on the year and cloudiness; then compared with UAV-based
orthophotos. For UAV imagery classification, among the five
ML classifiers exploited, Bayesan algorithm performed best, all
yielding accuracies over 94% (Figure 14). Its performance was
especially strong in complex terrain or for spectral
discrimination of vegetation classes that are spectrally similar,
such as transient grassland types or mixed sedge communities.
This is likely due to the probabilistic nature of the Bayesian
model, which handles class uncertainty and overlapping spectral
features more effectively than ensemble or kernel-based
techniques.

90%

Overall Accuracy (%)
©
8
>
8
#

85%

Bayesian Random Forest SVM KNN Random Tree

Figure 15. Comparison of accuracies among ML classifiers for
the UAV fist-step classification (vegetation, soil, water).

Although in general the UAV workflow performed well, some
problems occurred during data acquisition and processing. In a
few of the north-facing or steeper slopes, shading led to
underestimation of vegetation reflectance, with the consequence
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of mistakenly assigning forested areas as exposed soil or even
open water. In addition, some specific parts of the orthophoto
mosaic (particularly in the area close to Lake Brocan) had
visually degraded quality, possibly due to suboptimal flying
conditions. Motion blur caused by wind-induced instability
during data acquisition could have limited the quality of the
final orthoimages, and on a few strips, the overlap between the
images was lower than expected, weakening Metashape's ability
to produce clean, radiometrically consistent products.

Apart from the orthophoto quality, co-registering spectral bands
errors were present in several images, leading to a certain
amount of misalignment that could have decreased
classification accuracy at object edges.

Also of vital importance was the limited availability of ground-
truth data. Field validation in the two lakes was restricted to
specific zones around both sites because of the rough terrain,
the presence of snow cover, and limited accessibility.

For the future, we intend to continue the in-situ surveys with the
operators of APAM, who are currently validating the
preliminary results of vegetation classification in order to
improve the results and correct the misclassified elements. For
the classification, we are going to implement topographic
correction methods or shadow-invariant spectral indices to
better discriminate classes.

5.2 Bathymetry

The result of the Python script for the correction of the depth is
currently under validation with points registered with GNSS
and USV during the surveys carried out in July (Figure 8).

The comparison between the SfM cloud and the corrected one
allowed to observe the variance between the two datasets in the
order of decimetres. There were some limits in using the Python
algorithm, particularly in the requested parameters. In fact, the
script works well in good atmospheric conditions, with limpid
water and minimal superficial waves, so as the flight must
respect some requisites, such as the use of a polarised filter, to
keep the sun behind the sensor, to survey during the day to
reduce shadows, and to acquire images with adequate
overlapping, convergence and with slanting angles.

There were also some problems in acquiring images of the
water surface from UAVs surveys, especially for higher depths,
as we observed from point clouds (Figure 2). To reconstruct the
orthophoto for Lake Brocan, patterns from shallow water were
repeated in the central part of the lake.

Looking ahead, the integration of AI methods for correcting
refraction errors in SfM-derived bathymetric models will be
carried out, representing a promising direction to enhance depth
estimation accuracy, especially in turbid and variable light
conditions. Machine learning algorithms can be trained on
combined SfM and sonar-derived datasets to learn systematic
underestimations and compensate for them, as demonstrated in
recent studies (Agrafiotis et al., 2019). This approach could
reduce dependence on strict acquisition conditions and improve
the replicability of UAV-based bathymetric surveys across
different lake morphologies and environmental contexts,
especially in the mountain ones where the transportation of
heavy sensors and instruments as the USV could be difficult.

6. Conclusions

This study demonstrated the effectiveness of a multiscale,
multi-sensor, and ML-based approach to set up the starting
point (to data) for monitoring climate change impacts in alpine
lake environments, with a focus on vegetation dynamics and

bathymetric reconstruction. The integration of high-resolution
UAV multispectral imagery with medium-resolution satellite
data enabled the production of detailed vegetation maps,
essential for understanding local ecological processes in highly
heterogeneous alpine regions. The application of object-based
classification workflows and the testing of multiple ML
classifiers highlighted the potential of Bayesian methods in
achieving high classification accuracies, even in complex
environments and under challenging illumination conditions.
The bathymetric analysis using UAV-derived SfM methods,
combined with USV surveys, will provide a replicable
workflow for the generation of 3D lake bottom models, despite
current limitations due to water refraction effects.

Future developments will focus on enhancing bathymetric
accuracy using Al models to correct systematic depth
underestimations and on refining vegetation mapping through
the experts’ validation. This integrated approach is a scalable
and transferable method that can support protected area
management in monitoring sensitive mountain ecosystems,
contributing valuable data for climate adaptation strategies and
sustainable management of alpine water resources.
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