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Abstract 

 

Studying the effects of climate change is essential to understanding the impact of human activities on the environment and to 

developing effective mitigation and adaptation strategies. This is the objective of the ACLIMO project, which applies a multi-sensor 

and multiscale approach to analyse the effects of climate change on a border alpine area and specific ecosystems. In this contribution, 

we focus on the large-scale objectives, analysing vegetation coverage around two alpine lakes (Lake Brocan and Lake Vej del Bouc) 

and their bathymetry. In particular, through automatic classification of drone imagery with an Object-Based Image Analysis (OBIA) 

workflow, five machine learning algorithms (Bayesian, Random Forest, Support Vector Machine, K-Nearest Neighbours, Decision 

Tree) were tested for automatic classification of vegetation. Field surveys were conducted to collect in situ vegetation data, providing 

ground-truth points for classification validation. In addition, bathymetric mapping was carried out using a USV (Uncrewed Surface 

Vessel) equipped with a single-beam echo sounder, serving as ground-truth for bathymetric models derived via Structure-from-

Motion analysis of UAV images. This integrated and in-depth methodology enabled the generation of detailed land cover maps 

highlighting dominant vegetation species and accurate 3D bathymetric models, allowing for a comprehensive ecological assessment 

of this alpine environment under ongoing climate change conditions and establishing a starting point (t0 data) for future monitoring 

and change detection analyses. 

 

 

1. Introduction 

Studying the effects of climate change is essential to 

understanding the impact of human activities on the 

environment and developing effective mitigation and adaptation 

strategies. These changes negatively affect places with fragile 

climates and conditions, such as mountain areas. A thorough 

understanding can thus allow us to protect the communities and 

environments most vulnerable to the effects of global warming. 

This contribution describes the methodology developed for a 

multiscale study and monitoring of a part of the Italian 

northwest border alpine region.  

 

The ACLIMO project arises from the collaboration between the 

Politecnico di Torino and APAM (Management Body of Aree 

Protette Alpi Marittime - protected areas Maritime Alps) within 

the France-Italy ALCOTRA (Alpi Latine COoperazione 

TRAnsfrontaliera) European 2021/2027 project, which involves 

several Italian-French parks and bodies such as the Parc 

National du Mercantour, Parc National des Ecrins, Gran 

Paradiso National Park, Regional Natural Park of Alpi Liguri. 

The objectives of this collaboration include the analysis of the 

impacts of climate change on the mountain regions of the 

Maritime Alps park, with particular attention to glaciers, forests, 

grasslands, peat bogs, wetlands and water resources (Mauro, 

2015). Furthermore, the project aims to support environmental 

management through the study of risk and vulnerability 

conditions, as well as the prediction of possible future dynamic 

evolutions.  

 

As mentioned, we performed a multiscale and multi-sensor 

analysis of this mountain area, but this contribution focuses on 

the large-scale monitoring process, which consists of UAV 

surveys of two alpine lakes. The aim is to establish an efficient 

and effective method for mapping alpine vegetation types and 

canopy land cover classes as derived from medium-resolution 

Sentinel-2 data combined with high-resolution UAV 

multispectral data, whose classification has been performed 

with the application of artificial intelligence algorithms (Huang 

et al., 2021). From the UAV surveys, we also carried out a 

bathymetry analysis of lakes with a Structure-from-Motion 

methodology, validated by a USV (Uncrewed Surface Vessel) 

bathymetry survey. This multi-source, multi-resolution method 

is significant for alpine regions, where spatial heterogeneity and 

sparse in-situ measurements often restrict the application of 

traditional remote sensing techniques. 

 

The output is a transferable approach to monitoring vulnerable 

alpine ecosystems. 

 

2. Materials and methods 

2.1 The ACLIMO project 

The methodology of the ACLIMO project consists of a multi-

platform, multi-sensor and multiscale approach on three 

different levels: small, medium and large scale, applying 

consolidated and robust algorithms for supporting monitoring 

and decision processes by APAM. 

 

The small-scale analysis focuses on studying the trends and 

variations of snow and the vegetation coverage. For this 

purpose, satellite images from Copernicus Land Monitoring 

Service (CLMS), Landsat and Sentinel satellites are used, 

covering a period of 20-25 years on three months, in particular: 

April (maximum snow cover period according to the Regional 

Agency for Environmental Protection - ARPA), June 

(maximum vegetation bloom and maximum water level in lakes 

due to snowmelt peak), August (for analysing perennial and 

residual snowfields and water level at the end of the summer 

period). Spatial trends of land cover will then be compared with 

data from weather stations located inside APAM territory.  
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In the medium scale, the focus is on the vegetation, wetlands 

and glaciers/snow. Multispectral aerial orthophotos are used to 

create a land cover and land use map with a higher resolution 

than the Corine Land Cover dataset. The map was classified 

automatically and semi-automatically through artificial 

intelligence (AI) techniques, particularly deep learning (DL) 

algorithms. 

 

Two lakes have been considered large-scale indicators of 

climate change (Chunqiao et al., 2014) since they can constitute 

an example for studying vegetation and water level change over 

the years. Bathymetry and drone surveys with RGB and 

multispectral sensors were carried out for both lakes. In this 

case, machine learning-based (ML) recognition of elements of 

interest has been carried out to generate classification maps. 

These maps and the proposed methodology should then be 

adopted by APAM to continue the monitoring phases in the 

next years. This is one of the main reasons for the choice of ML 

algorithms, to have a simple and user-friendly methodology to 

be applied also by non-expert users. 

 

2.2 The case study  

More specifically, the Maritime Alps are located in the West-

South portion of the Alpine Arc, south of the Piedmont region, 

Italy, and they are protected by the Protected Areas of Maritime 

Alps (APAM) body. The overall protected territory extends 

over 38.290 hectares and involves 16 municipalities, and the 

altitude ranges from 645 to 3297 m a.s.l. The main activities in 

this area are tourism and energy production, with the presence 

of the biggest hydropower plant in Italy, Luigi Einaudi plant, 

which has three reservoirs in Piastra, Rovina and Chiotas lakes. 

The latter is particularly important since it is next to one of the 

two lakes of analysis (the Lake Brocan, Figure 1). 

 

For the multiscale approach of the ACLIMO project, three areas 

of analysis were chosen (Figure 1): 

• for the small scale, we considered the entire area 

managed by APAM, namely the Alpine arc from Val 

Varaita to Alpi Liguri, crossing a portion of the plain 

close to Cuneo (Figure 1 - red area). 

• a single and smaller valley for the medium scale 

(Valle Gesso, Figure 1 - blue area). 

• two alpine lakes for the large scale: Lake Brocan 

(2004 m a.s.l.) and Lake Vej del Bouc (2054 m a.s.l.) 

(Figure 1 - yellow points) 

 

 
 

Figure 1. Surfaces of the areas of interest at the small scale 

(red), medium scale (blue) and large scale with lakes (yellow). 

These two lakes were mainly chosen since Lake Brocan is 

characterised by a strong presence of anthropic activities, due to 

the hydropower plant, while Lake Vej del Bouc by pasture 

activities. 

 

The vegetation of both lake basins is highly heterogeneous, 

comprising natural grasslands, mixed deciduous–conifer forests, 

and shrublands that differ in species abundance according to 

altitude, soil type, and available soil moisture. These plant 

assemblages are excellent indicators of environmental change 

and provide valuable information on alpine ecological 

mechanisms under climatic and anthropogenic stress. 

As regards the bathymetry, the level of the two lakes is highly 

variable according to the year and, of course, season. For this 

reason, two survey campaigns are foreseen during the year: one 

during June-July and the other by September-October. 

 

This contribution will mainly present the results of the large-

scale analyses in which UAVs and USV have been involved. 

 

2.3 Dataset 

The UAV data acquisitions took place in July and October 

2024. Two photogrammetric flights were carried out with DJI 

Mavic 3M (multispectral) and RTK module, for a total of 4947 

images acquired for Lake Vej del Bouc and 6116 for Lake 

Brocan. The processing was carried out both with software DJI 

Terra and Agisoft Metashape, resulting in dense point clouds, as 

shown in Figure 2, with 28.083.475 points for Vej del Bouc and 

32.467.868 points for Brocan, with RMSE of 2-3 cm (7 GCPs 

for lake Vej del Bouc and 10 GPCs for lake Brocan).  

 

 

 
 

Figure 2. UAV images acquired and point clouds. Lake Brocan 

on the left, Lake Vej del Bouc on the right. 

 

These point clouds were then processed to obtain orthophotos of 

the two lakes, used as a base for automatic vegetation 

classification.  

 

Beyond high-resolution UAV-derived multispectral images, 

medium resolution Sentinel-2 MSI (Multispectral Instrument) 

data were also exploited for an initial large-scale analysis. The 

images have a 10 m resolution, providing a balance between 

detail and regional coverage. Images were obtained monthly, 

with a focus on the months of June, August, and September in 

the respective years. Twenty-four multispectral images were 

then chosen to represent the period from June 2017 to 

September 2023 and support multi-annual monitoring of 

vegetation and water-body trends. 
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Concerning the bathymetry, for the survey in Lake Vej del 

Bouc, the Alpha Wi STX-EchoS single-beam echo sounder was 

used. It was installed on the BlueBoat USV to collect data and 

transported in situ thanks to its small size (Table 1 and Figure 

3). Table 1 resumes the instruments employed for in situ 

surveys and their characteristics:  

 

Satellite Sentinel-2 

Images from the months of April, June, and 

August (2017–2024) 

Spatial resolution: 10 m 

Spectral resolution: 13 bands 

UAV DJI Mavic 3M 

GNSS RTK, 5 sensors, RGB 4/3 (17.3 × 13 

mm), 20 MP, 5280 × 3956, 

Pixel size: 3.3 × 3.3 µm 

Focal length: 13 mm, Multispectral 1/2.8", 

6.058 × 4.415 mm, 5 MP, 2592 × 1944 

Bands: Green (G): 560 ± 16 nm, Red (R): 650 

± 16 nm, Red Edge (RE): 730 ± 16 nm, Near-

Infrared (NIR): 860 ± 26 nm Weight: 951 g 

 
Bathymetry BlueBoat USV, Blue Robotics 

Maximum velocity 3 m/s, Weight 14,5 kg, 

Control length 250 m, Autonomy with 8 

batteries: 62 hours 

 
Echosounder STX-Echos 

Depth range 0.2 – 200 m, Resolution 8 mm, 

Acquisition angle 8° 

GNSS: GPS, GLONASS, BDS, GALILEO, 

QZSS 

Weight 1200 g 

 

Table 1. Sensors and dataset 

 

   
 

Figure 3. BlueBoat USV, BlueRobotics, equipped with STX-

Echos Echosounder (left); point acquisition on shallow water 

through GNSS receivers for validation (right). 

 

3. Methodology for large-scale monitoring 

The GNNS measuring of GCPs, UAVs surveys and USV 

surveys constitute an integrated system for analysing both the 

vegetation in the area of interest, generating land cover maps 

though automatic classification, and for reconstructing the 

bathymetry of water bodies from USV surveys and drones' 

images. Figure 4 shows the workflow of this study. 

 

 
 

Figure 4. Methodological workflow. 

 

3.1 Vegetation classification methodology 

For the large-scale analysis with UAVs, a systemic approach 

was applied, including satellite imagery, UAV imagery, remote 

sensing indices, and state-of-the-art ML algorithms to classify 

alpine vegetation. In this way, a link between the small and 

medium scale analysis and the large scale one will be easily 

conducted in the project's next phases, allowing the 

identification of patterns, trends and effects of climate change. 

 

3.1.1 Satellite data 

 

The satellite-based part of this study was used as a coarse-

resolution tool to monitor long-term changes in vegetation and 

water conditions over the two alpine lakes, Lake Brocan and 

Lake Vej del Bouc. 

All pre-processing and analyses were conducted in Google 

Earth Engine (GEE): Sentinel-2 collections were sub-set by 

date, cloud cover, clipped spatially to the exact AOI extents, 

and quality was restored based on the QA60 band for cloud 

masking. For Level-1C products, atmospheric correction tasks 

in GEE were performed to normalise reflectance values and to 

cancel out atmospheric noise. 

Following pre-processing, each of the images was resampled to 

an RGB composite and analysed for four important spectral 

indices that yield complementary information on surface 

conditions and ecological processes: NDVI (Normalised 

Difference Vegetation Index), NDWI (Normalised Difference 

Water Index), EVI (Enhanced Vegetation Index), and SAVI. 

Land cover mapping was performed only with Random Forest 

(RF) in the Google Earth Engine (GEE) cloud computing 

platform. The criteria for this selection were the efficiency of 

the method in high-dimensional feature spaces and the 

robustness of the approach against overfitting. The training 

samples were manually digitised with reference to the UAV 

orthophotos and visual interpretation of Sentinel-2 scenes. Four 

major land cover types were classified, including open water, 

bare soil or rock, sparse, and dense vegetation. 
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The RF classifier was trained based on Sentinel-2 spectral bands 

and calculated indices as input features. The model was then 

applied in all the chosen scenes to produce consistent land cover 

maps at a 10-m interval. Classification products were exported 

from GEE as GeoTIFF and analysed in GIS for comparison and 

validation compared to UAV derived outputs. 

 

3.1.2 UAVs imagery 

 

The acquired images of the July and October UAV surveys 

carried out by Politecnico di Torino were elaborated with 

Agisoft Metashape. The orthophoto production was conducted 

independently for each of the five spectral bands (RGB, Red, 

Green, RedEdge, and NIR) with a photogrammetric processing 

at a high resolution (Figure 5 and 6). This was made to avoid 

co-registration error. 

DSMs were also calculated from the dense clouds to represent 

changes in elevation of both vegetated and non-vegetated 

surfaces. 

 

The so-produced multispectral orthophotos have been used as a 

base for automatic vegetation classification with eCognition 

software, through the object-based image analysis (OBIA) 

workflow. In order to increase the discriminative power of the 

classification, spectral indices NDVI and NDWI were 

calculated directly in eCognition with the help of the process 

tree module.  

 

An initial multi-threshold segmentation was tried using index 

values to distinguish water, soil/rock, and vegetation. As the 

accuracy was not acceptable, the workflow was altered towards 

multi-resolution segmentation with customised weights per 

spectral band, resulting in a much-increased segmentation 

accuracy. 

 

 
 

Figure 5. Five bands orthophotos for Lake Vej del Bouc 

 

 

 
 

Figure 6. Five bands orthophotos for Lake Vej del Bouc 

 

After obtaining the optimal segmentation, a large training set 

was created for the supervised classification. These samples 

spanned spectral variability across the lakes and in the 

surrounding terrain, which experienced shadow, variable 

vegetation coverage, and mixed pixels. 

 

These samples were then subjected to five supervised machine-

learning algorithms in eCognition: Bayesian, Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Random Tree, 

and Random Forest. Each classifier was trained separately and 

operated independently, and classification performance was 

evaluated by matching outputs to known object classes and 

through visual validation. 

 

After the overall land-cover classification (with general classes 

vegetation, rock/soil and water), a second classification step was 

implemented to obtain vegetation types. This second-level 

classification was performed on only the "vegetation class" 

derived from the first-step classification.  

 

In addition, field activities and surveys on the shores of both 

lakes during in situ campaigns (Figure 7) served as ground-truth 

samples of the dominant plant species and vegetation clusters. 

These samples were used to determine the training set for 

vegetation sub-classes. 
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Figure 7. Definition of the ground truth for the species 

identification surveyed with GNSS receivers.  

 

Table 2 shows the main vegetation species that were recorded 

with GNSS in the area of interest. These data and points were 

used to train the second-step algorithms. 

 

Latin name English name Code 

Rumex Alpinus Alpine Dock AD001 

Rumex Romice Sorrel SO002 

Festula Rubra; o Festuca Red Fescue RF003 

Trichophorum cespitosum Deergrass DG004 

Carex nigra Black Sedge BS006 

Nardus Matgrass MG007 

Nardus Stricta Upright Matgrass UM008 

Janiperus nana Dwarf Juniper DJ009 

Rhododendron 

Ferrugineum 

Rusty-Leaf 

Rhododendron 

RR010 

Festuca Paniculata Tussock Fescue TF011 

Rubus Idaeus Red Raspberry RI012 

Athurrium Filixoideas Lady Fern AF013 

Dryopteris Flix-max Male Fern DF014 

Vaccinium Mirtillus Bilberry VM015 

Alnus Viridis Green Alder AV016 

 

Table 2. Vegetation types and codes. 

 

3.2 Bathymetry methodology 

3.2.1 USV Bathymetry 

 

During the survey with the USV, 2972 points were acquired 

through a manual path (Figure 8a). The maximum registered 

depth is 8,59 m, at the centre of the lake. With MATLAB 

R2023a software, DTM and three-dimensional models of the 

bottom were recreated (Figure 8b) to be used as ground truth for 

the AI algorithms currently tested on the orthophotos. 

 

 

Figure 8. Lake Vej del Bouc: (left) points collected by the echo 

sounder; (right) reconstruction of the DTM with linear 

interpolation and 3D reconstruction of the lake bottom. 

The generated 3D model of the lake bottom and the points 

acquired with the USV serve as ground truth for the validation 

of the bathymetry built with the Structure-from-Motion method 

on shallow water. 

 

3.2.2 Bathymetry Structure-from-Motion 

 

Bathymetry was calculated not only from the USV survey, but 

also through a Bathymetric Structure-from-Motion (SfM) 

methodology using the point cloud generated by UAVs survey 

(Dietrich, 2016). The main issue with this method is the 

refraction correction of light when it passes through two 

different media, air and water. This phenomenon 

underestimated the real depth of the water body, measuring a so 

called "apparent depth" (Figure 9).  

 

To correct this error, an iterative algorithm is applied, which 

calculates a series of equations for the correction of the light 

refraction for every point/camera in the point cloud. 

 

 
 

Figure 9. Trigonometry of the refraction.Variables are explained 

in Table 3: 

 

Variables Description 

Xa, Ya, Za Apparent coordinates of SfM point 

Xp, Yp, Yp Real coordinates of the point 

D Euclidean distance between camera and SfM 

point 

dH Flight height over SfM point 

r Angle of refraction 

i Angle of incidence 

x Distance between SfM point and interface 

point water-air 

ha Apparent depth of SfM point 

h Real depth of P point 

n1 Refractive index of water (1.337) 

n2 Refractive index of air (1.0) 

 

Table 3. Description of variables in Figure 9. 

 

The base equation is the Snell law, a formula used to describe 

the relationship between the angles of incidence and refraction, 

when referring to light or other waves passing through a 

boundary between two different isotropic media: 

 

 (1) 

 

The aim is to solve a system of equations in order to define the 

effective depth, h. 
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Having different camera views for every point, it is very 

difficult to apply Snell law, since there are many cameras for 

each point and, as a result, different angles of incidence and of 

refraction and different apparent depth, ha. This great quantity 

of values would create a noisy point cloud.  

It is then necessary to apply this correction iteratively, for every 

combination point-camera, exploiting the trigonometry laws 

regarding refraction of light.  

 

The first step is to test the visibility of points from all cameras 

to built the SfM cloud. This step has been carried out in Agisoft 

Metashape software. Once all visible points are found, the 

refraction angle is calculated as follows: 

 

 
(2) 

 

The apparent depth is calculated as: 

 

 (3) 

 

Once we know r and ha, there are other variables to be 

computed in order to define h: 

 

 
(4) 

 

 (5) 

 

 
(6) 

 

 
(7) 

 

The corrected value of Zp is given as the mean of all values of 

the real depth. It is subtracted by the surface of the water in 

order to obtain the real elevation, since our goal is to correct the 

DTM of lakes. 

The surface of the water is obtained by the Kriging interpolation 

with the DTM of a series of points along the border of tha lake. 

 

For our purposes, we applied a Python py_sfm_depth algorithm 

(1). This Python script requires three .csv input files: 

• Dense Cloud File, containing the point cloud to be 

corrected with coordinates, the SfM bathymetric 

height and the height of the surface water. 

• Camera File, with the coordinates and orientation 

parameters (pitch, roll, yaw) of cameras in the same 

reference system. 

• Sensor File, with the focal length of the camera and 

the physical dimensions of the sensor, both in 

millimiters. 

 

Before applying the algorithm, it is necessary to define the area 

of interest and to create the shapefile containing only the points 

of the reservoir where water flows. 

 

The output is a .csv file containing the planimetric coordinates, 

the geodetic height to be corrected, the surface water level, the 

apparent depth, the mean corrected depth and, with the 

subtraction of the water level, we finally obtain the correct 

geodetic height for each point.  

 

(2) https://github.com/geojames/py_sfm_depth  

4. Initial results 

4.1 UAV imagery vegetation classification  

The classification with Random Forest algorithm of satellite 

images gives back classification maps with three land cover 

classes: open water, vegetation, bare soil/rock (Figure 10). They 

were validated by reference data based on the UAV images: the 

Random Forest model provided classification accuracies of 85 

to 92%, depending on the year and cloudiness. 

 

 
Figure 10. Random Forest classification in GEE 

 

The post-classification change detection indicated that there has 

been a gradual reduction in the extent of dense vegetation cover, 

particularly at the edges of those on upper slopes. Reduced lake 

extents were seen in the most arid years (e.g., 2022) and were 

combined with declines of the NDWI. Vegetation belts seemed 

to rise, most likely in response to glacial retreat and the warmer 

climate developing. 

 

The output produced after OBIA classification of UAVs 

imagery was exported and compared among classifiers. The 

highest classification accuracy was obtained using the Bayesian 

classifier, particularly for spectral separation of similar types of 

vegetation in complex terrain. 

What we obtain is a high-resolution classification map of the 

typical alpine vegetation of this area (Figure 11). 

 

  
 

 

 

 

 

Figure 11. Automatic classification of vegetation for the Lake 

Brocan, Bayesan algorithm. 
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Figure 12. Automatic classification of vegetation for the Lake 

Vej del Bouc, Bayesan algorithm. 

 

4.2 Bathymetry for shallow water 

As explained in 3.2.2, the first step was to identify only those 

reconstructed points of the SfM point cloud where there was 

water (Figure 12).  

 

 
 

Figure 13. Point cloud of Lake Vej del Bouc, water only (left) 

and intersect plane for water surface (right). 

 

This part is the only one of the SfM point cloud that is corrected 

by the algorithm; in particular, the point belonging to the 

shallow water class. Figure 14 shows the section (a) and the 

profile (b) of the original and the corrected point clouds with the 

real value for the geodetic height (marked in blue).  

 

 
(a) 

 
(b) 

 

Figure 14. Section (a) and profile (b) of the corrected point 

cloud, Lake Vej del Bouc. 

 

The corrected points highlight displacements of less than 10 cm 

for the points next to the lake shore, while higher values from 

80 cm to 1,5 m for the points towards the centre of the lake 

(Figure 14).  

 
 

Figure 15. Cloud-to-cloud between the UAV SfM point cloud 

and the corrected one.  

 

5. Discussions 

5.1 UAV imagery classification 

This investigation demonstrates the feasibility of multi-source 

object-based classification in alpine vegetation and land cover 

mapping from UAV images processed with GeoAI (Geospatial 

AI) algorithms. With the combination of medium-resolution 

Sentinel-2 satellite images and ultra-high-resolution UAV 

orthophotos, we succeeded in meeting the spatial dimensions of 

ecological monitoring in mountainous areas, while for the 

temporal one, new time series will be collected this year and in 

the future.  

 

The integration of GEE for long-term processing of satellite 

data together with eCognition Developer for fine-scale 

classification of UAV-derived data enabled the achievement of 

a complete framework for the environment of the Maritime 

Alps. For satellite images classification, we registered overall 

classification accuracy rates between 85% and 92%, depending 

on the year and cloudiness; then compared with UAV-based 

orthophotos. For UAV imagery classification, among the five 

ML classifiers exploited, Bayesan algorithm performed best, all 

yielding accuracies over 94% (Figure 14). Its performance was 

especially strong in complex terrain or for spectral 

discrimination of vegetation classes that are spectrally similar, 

such as transient grassland types or mixed sedge communities. 

This is likely due to the probabilistic nature of the Bayesian 

model, which handles class uncertainty and overlapping spectral 

features more effectively than ensemble or kernel-based 

techniques. 

 

 
 

Figure 15. Comparison of accuracies among ML classifiers for 

the UAV fist-step classification (vegetation, soil, water). 

 

Although in general the UAV workflow performed well, some 

problems occurred during data acquisition and processing. In a 

few of the north-facing or steeper slopes, shading led to 

underestimation of vegetation reflectance, with the consequence 
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of mistakenly assigning forested areas as exposed soil or even 

open water. In addition, some specific parts of the orthophoto 

mosaic (particularly in the area close to Lake Brocan) had 

visually degraded quality, possibly due to suboptimal flying 

conditions. Motion blur caused by wind-induced instability 

during data acquisition could have limited the quality of the 

final orthoimages, and on a few strips, the overlap between the 

images was lower than expected, weakening Metashape's ability 

to produce clean, radiometrically consistent products. 

Apart from the orthophoto quality, co-registering spectral bands 

errors were present in several images, leading to a certain 

amount of misalignment that could have decreased 

classification accuracy at object edges. 

Also of vital importance was the limited availability of ground-

truth data. Field validation in the two lakes was restricted to 

specific zones around both sites because of the rough terrain, 

the presence of snow cover, and limited accessibility.  

 

For the future, we intend to continue the in-situ surveys with the 

operators of APAM, who are currently validating the 

preliminary results of vegetation classification in order to 

improve the results and correct the misclassified elements. For 

the classification, we are going to implement topographic 

correction methods or shadow-invariant spectral indices to 

better discriminate classes.  

 

5.2 Bathymetry 

The result of the Python script for the correction of the depth is 

currently under validation with points registered with GNSS 

and USV during the surveys carried out in July (Figure 8).  

The comparison between the SfM cloud and the corrected one 

allowed to observe the variance between the two datasets in the 

order of decimetres. There were some limits in using the Python 

algorithm, particularly in the requested parameters. In fact, the 

script works well in good atmospheric conditions, with limpid 

water and minimal superficial waves, so as the flight must 

respect some requisites, such as the use of a polarised filter, to 

keep the sun behind the sensor, to survey during the day to 

reduce shadows, and to acquire images with adequate 

overlapping, convergence and with slanting angles. 

There were also some problems in acquiring images of the 

water surface from UAVs surveys, especially for higher depths, 

as we observed from point clouds (Figure 2). To reconstruct the 

orthophoto for Lake Brocan, patterns from shallow water were 

repeated in the central part of the lake. 

 

Looking ahead, the integration of AI methods for correcting 

refraction errors in SfM-derived bathymetric models will be 

carried out, representing a promising direction to enhance depth 

estimation accuracy, especially in turbid and variable light 

conditions. Machine learning algorithms can be trained on 

combined SfM and sonar-derived datasets to learn systematic 

underestimations and compensate for them, as demonstrated in 

recent studies (Agrafiotis et al., 2019). This approach could 

reduce dependence on strict acquisition conditions and improve 

the replicability of UAV-based bathymetric surveys across 

different lake morphologies and environmental contexts, 

especially in the mountain ones where the transportation of 

heavy sensors and instruments as the USV could be difficult. 

 

6. Conclusions 

This study demonstrated the effectiveness of a multiscale, 

multi-sensor, and ML-based approach to set up the starting 

point (t0 data) for monitoring climate change impacts in alpine 

lake environments, with a focus on vegetation dynamics and 

bathymetric reconstruction. The integration of high-resolution 

UAV multispectral imagery with medium-resolution satellite 

data enabled the production of detailed vegetation maps, 

essential for understanding local ecological processes in highly 

heterogeneous alpine regions. The application of object-based 

classification workflows and the testing of multiple ML 

classifiers highlighted the potential of Bayesian methods in 

achieving high classification accuracies, even in complex 

environments and under challenging illumination conditions. 

The bathymetric analysis using UAV-derived SfM methods, 

combined with USV surveys, will provide a replicable 

workflow for the generation of 3D lake bottom models, despite 

current limitations due to water refraction effects. 

Future developments will focus on enhancing bathymetric 

accuracy using AI models to correct systematic depth 

underestimations and on refining vegetation mapping through 

the experts’ validation. This integrated approach is a scalable 

and transferable method that can support protected area 

management in monitoring sensitive mountain ecosystems, 

contributing valuable data for climate adaptation strategies and 

sustainable management of alpine water resources. 
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