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Abstract

Advanced Air Mobility (AAM) aims to revolutionize transportation by enabling on-demand, low-altitude movement of people and
goods using Vertical Take-Off and Landing (VTOL)-capable vehicles (VCAs), but achieving precise and reliable navigation remains a
key challenge. The navigation of UAVs typically relies on the integration of GNSS and IMU measurements. When GNSS positioning
is degraded or unavailable due to factors such as jamming, spoofing, and multipath effects, these approaches become unreliable.
Perception-based methods, such as SLAM based on a combination of RGB camera, event camera, LiDAR, and IMU can lead to
resilient navigation with loop closure for drift correction. However, loop closure is often impractical for a point-to point AAM flight.
To tackle these challenges, this ongoing research work proposes a multi-modal navigation framework that integrates map-based
navigation and semantic SLAM. For the development of this framework, we designed a conceptual setup, which will be presented in
this paper. Additionally, we focus on the selection of sensors, their spatio-temporal calibration, and their integration into a holistic
onboard system.

1. Introduction

Advanced Air Mobility (AAM)1 is a comprehensive concept
introduced by the National Aeronautics and Space Administra-
tion (NASA) that signifies a transformative evolution in aviation.
It centers on the integration of next-generation aircrafts, includ-
ing remotely piloted and autonomous Vertical Take-Off and
Landing (VTOL)-capable vehicles. These aircrafts, collectively
known as VTOL-Capable Aircrafts (VCAs)2, are broadly cat-
egorized into two groups: Standard-Performing Vehicles (SPVs)
- typically small Uncrewed Aerial Systems (UASs), and High-
Performing Vehicles (HPVs) - such as air taxis and larger cargo
aircraft (EASA, 2024b, Altun et al., 2023). AAM’s advanced
aircraft technologies redefine aviation and create efficient air
services that connect diverse communities.

AAM aims to provide consumers with access to on-demand
air travel, package delivery, and emergency services by lever-
aging a connected, multi-modal transportation network (Goyal
et al., 2021). It is designed to operate in variety of environments,
including urban, suburban, and rural - with local missions typ-
ically ranging within 50 miles (80 km), and regional missions
extending to several hundred miles (Goyal et al., 2021). Urban
Air Mobility (UAM)3 and Regional Air Mobility (RAM)4 are
both key components under the broader AAM umbrella. The
overarching vision of AAM is to develop a safe, accessible, and
sustainable air transportation ecosystem capable of reaching

1 AAM: https://www.nasa.gov/mission/aam/
2 VCA: https://www.easa.europa.eu/en/document-library/easy-access-

rules/easy-access-rules-small-category-vca
3 UAM:https://www.easa.europa.eu/en/what-is-uam
4 RAM:https://sacd.larc.nasa.gov/ram/

areas that are currently under-served or congested by traditional
transport modes. Realizing this vision requires collaborative
efforts across industry, academia, and regulatory authorities to
advance enabling technologies and infrastructure (Xiang et al.,
2024).

AAM is reshaping how low-altitude airspace is utilized and man-
aged (Konert and Kasprzyk, 2024). Traditionally, airspace below
3,000 m served as a transition zone, mainly near airports dur-
ing takeoff and landing. AAM use cases now operate directly
within this layer. A key focus is the Very Low Level (VLL)
airspace—up to 150 m above ground level (Pongsakornsathien
et al., 2025). Its close proximity to people and ground infrastruc-
ture adds further safety and regulatory challenges, especially for
autonomous systems (EASA, 2021a). To maximize the capa-
city of the sub-120m airspace, tighter separations between UAS
are desirable. Classifying UAS under traditional Visual Flight
Rules (VFR) or Instrument Flight Rules (IFR) becomes less rel-
evant in this context (Konert and Kasprzyk, 2024). Additionally,
the existing technological infrastructure of traditional aviation
faces challenges in this new and highly complex operating zone.
Furthermore, given the increased risk due to high proximity to
terrestrial infrastructure, dependence on radio signals prone to
shadowing can make the system vulnerable. Thus, to realize safe
autonomous UAS operations, there is a need for a real-time and
onboard navigation system with sufficient redundancy (Siciliano
and Khatib, 2016, p. 660).

A redundant onboard navigation system must therefore not only
ensure operational reliability in the face of potential failures, but
also align with the evolving regulatory emphasis on performance-
based criteria. Civil aviation has evolved over the decades with
radio, inertial, and satellite navigation, leading to a regulation
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that focuses on the required performance of the used system.
Performance Based Navigation (PBN) enables using multiple
navigation systems, until the metrics like availability, continuity,
integrity, and accuracy are met for 95% of the flight time (ICAO,
2012). For UAS operations in urban scenarios, radio navigation
with ground beacons is not an option due to the upcoming obsol-
escence, required obstacle clearance or altitude, and insufficient
ground beacons in urban areas (EUROCONTROL, 2021). Iner-
tial navigation remains a viable but only short-term positioning
source. Global Navigation Satellite System (GNSS)-based satel-
lite navigation is susceptible to spoofing, jamming, and space
weather effects (EASA, 2021b, EASA, 2024a). Additionally,
in UAM operations, urban canyons have a detrimental effect
on GNSS accuracy due to multipath propagation and satellite
occlusion. PBN provides a framework to achieve the required
navigation performance, independent of the navigation system
used. However, the accuracy and integrity requirements should
be adapted for the dense AAM airspace.

In order to achieve the adapted requirements, GNSS positioning
performance enhancements play a crucial role for safe operations
in complex AAM airspace. GNSS positioning is improved when
receivers can access multiple satellite constellations (e.g., GPS,
GLONASS, Galileo, BeiDou) and multiple frequency bands
(e.g., L1, L2, L5) (Zidan et al., 2020). The application of dif-
ferential GNSS (DGNSS), which uses pseudo-range corrections,
can further improve the accuracy to a submeter-level. Real-Time
Kinematics (RTK) positioning, a more advanced differential
technique, is able to provide centimeter-level accuracy by resolv-
ing the carrier phase ambiguities. However, RTK positioning
depends on continuous correction streams from a local base
station or a Continuously Operating Reference Station (CORS)
network. These corrections must be transmitted to the aircraft
via a reliable communication link (e.g., radio or cellular), and
any interruption or latency in this link can limit overall usability
and degrade real-time performance (Nex et al., 2022).

An independent (isolated) navigation system faces challenges in
AAM scenarios. This research addresses the limitations of tradi-
tional GNSS and inertial navigation systems by incorporating
perception-based solutions, such as Simultaneous Localization
and Mapping (SLAM) and map-based navigation, which are
effective in complex flight environments. We propose a multi-
modal navigation system to improve accuracy, redundancy and
operational resilience to promote safe and reliable autonomous
flight in the AAM ecosystem. By leveraging a robust wire-
less communication system in dense airspace, we fulfill multi-
modal navigation system requirements for Uncrewed Aerial
Vehicle (UAV) and enable effective ground-based monitoring.

The remainder of this paper is organized as follows. Firstly, Sec-
tion 2 outlines the background of perception-based navigation
along with our contributions to the field. Section 3 discusses in
detail the sensor choices for the multi-modal navigation systems,
highlighting the advantages and limitations of each modality.
The integration strategy, calibration procedures, and the design
of our conceptual setup are detailed in Section 4. Section 5
concludes with a concise discussion and potential future steps
of the multi-modal navigation system for AAM operations.

2. Background: Perception-based Navigation

Safe UAV operations demand a perception-based onboard navig-
ation system for localization and environment sensing (Siciliano
and Khatib, 2016). Navigation systems, absolute or relative,

depend on their reference coordinate system, e.g. GNSS uses
the Earth’s coordinate system (namely WGS84) as an absolute
reference. Conversely, dead reckoning approaches like inertial,
visual, or LiDAR odometry deliver position estimates relative
to the known start position. However, relative localization ap-
proaches suffer from the estimates drifting over time due to the
accumulated errors, which are commonly corrected using an
absolute position estimate. In this paper, we discuss real-time
onboard navigation approaches for the multi-modal UAV testbed
with map-based navigation and semantic SLAM.

2.1 Simultaneous Localization and Mapping (SLAM)

SLAM provides a navigational foundation for higher-level task
planning in unknown environments where absolute localization
methods are degraded or unavailable. Unlike odometry, SLAM
incorporates a globally optimized map and loop closure to cor-
rect drift. With the created map, loop closure can alleviate
odometry drift errors by detecting and validating location revis-
its, ensuring consistency in observations. The SLAM front-end
estimates relative poses using the sensor observations, while the
back-end encompasses loop closure detection as well as map-
ping (Cadena et al., 2016). Depending on the combination of
sensors, some pivotal SLAM algorithms are discussed below.

Visual (inertial) SLAM (VSLAM) algorithms combine mon-
ocular (or stereo, depth) cameras with an IMU for increased
robustness, notably VINS-Mono (Qin et al., 2018) and ORB-
SLAM3 (Campos et al., 2021). Using feature correspondences
or pixel intensities for pose estimation and tracking, VSLAM
provides good performance with enough illumination, even on-
line on a Central processing Unit (CPU). However, they do
not perform well in low illumination, long-term scenarios, or
dynamic environments due to tracking failure and scale drift (Ma-
cario Barros et al., 2022).

The forte of LiDAR SLAM algorithms lies in the accurate dis-
tance measurements to map the geometry of the environment
and due to active sensing, LiDAR-based approaches outperform
visual methods in low illumination environments. LiDAR-based
PIN-SLAM (Pan et al., 2024) is robust to slow-moving dynamic
objects and KISS-SLAM (Guadagnino et al., 2025) can sustain
in large outdoor scenarios, while accurately running in real-time
on a CPU. However, rapid motion and environments with sparse
or repetitive structure still pose a challenge (Yin et al., 2021).

In contrast to visual-only approaches, LiDAR-Visual (Inertial)
SLAM approaches have performed well in large outdoor scen-
arios, profiting from LiDAR’s accurate distance measurements
combined with texture information from the camera. This multi-
modal information helps to withstand unstructured or feature-
poor scenarios, as shown with LVI-SAM (Shan et al., 2021) and
FAST-LIVO2 (Zheng et al., 2025). In this study, depth cameras,
stereo cameras and also monocular depth estimation are not con-
sidered as they are limited by their range for AAM operations.
Furthermore, LiDAR-Visual approaches are promising in large-
scale outdoor scenarios, but they are ill-suited for high-speed
flights and fast dynamic objects (Macario Barros et al., 2022,
Cheng et al., 2025).

The SLAM approaches developed in the last decade depended on
features, texture, or structure between data samples, also known
as short-term data association. This works on the assumption
of having a sufficiently static environment for reliable tracking,
while the dynamic objects are discarded or tracked (Cadena et
al., 2016). Using deep learning-based segmentation models, the
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semantic information about object can add meaningful context
for odometry, loop closure (Pan et al., 2024, Conclusion) and
also help to deal with dynamic objects (Chen et al., 2019, Our
Approach), giving rise to semantic SLAM approaches. Thus, the
shift in focus, from feature or geometry-only methods towards
semantics aligned with human perception, is crucial for future
SLAM implementations.

Event cameras are bio-inspired, neuromorphic sensors that func-
tion like the human retina. Rather than frames of a common RGB
camera, it delivers asynchronous pixel-level event streams for
brightness changes at a high temporal rate of microseconds. It
brings immense potential to perception-based systems due to its
temporal resolution, high dynamic range (alleviates under/over-
exposure) and resilience to motion blur (Gehrig and Scaramuzza,
2024). UltimateSLAM (Vidal et al., 2018) demonstrates the
potential of frame-event SLAM pipelines in flight scenarios to
combat large illumination differences and enable high-speed
flights. Thus, the UAV testbed in this paper is designed with the
combination of LiDAR, frame-based RGB camera, event camera,
and Inertial Measurement Unit (IMU) for semantic SLAM.

2.2 Map-based Navigation

In AAM scenarios, the drone will point-to-point fly as fast as
possible to its destination. A loop closure for drift correction is
therefore difficult to realize. Drift correction with GNSS meas-
urements is one solution, but is not always available. Map-based
navigation aims to obtain a global position or pose by localizing
local sensor observations to a map of the environment, similar
to how we would try to match what we perceive with an analog,
digital or internal map. This requires a prior map of the scene,
which can be 2 D or 3 D. While many approaches require a rough
initial pose estimate, (Kinnari et al., 2023) propose a solution that
works from an uncertain prior position. They matched orthopro-
jected UAV images to satellite imagery by transforming the UAV
observations and satellite image patches into descriptor vectors.
Through these transformations, their method also works even
when significant seasonal changes are present. Other approaches
transform 2 D geodata such as OpenStreetMap maps (Sarlin et
al., 2023a), Street View images or aerial orthophotos (Sarlin et
al., 2023b) into neural maps to enable cross-modal alignment.
Other methods use digital elevation models as a 2 D map rep-
resentation so that corresponding topographic features must be
found (Wan et al., 2022).

These approaches determine the pose only in SE(2). Other
approaches try to determine the pose in SE(3) through the use
of 3D map representations. The authors (Merat et al., 2024) use
the point-to-plane ICP algorithm to find the transformation that
aligns a local point cloud created with their VSLAM system and
a global point cloud representing the environment. Instead of
aligning sensor observations and the map in 3D space, (Zhang
et al., 2024) render RGB and depth images from a 3D colorized
map represented in the form of a mesh, point cloud or NeRF
to establish 2D-3D correspondences. The rendered images are
converted into global descriptors, which are stored in a visual
database to enable fast image retrieval. Once an image is found
covering the same part of the scene, matching is done in 2D
while the corresponding depth images provide the necessary 3D
information to determine the pose via a PnP algorithm. A similar
concept is used by (Vultaggio et al., 2024), who render images
of aerial meshes to find corresponding points and additionally
use GNSS positioning as a pose prior. Integration with SLAM
(Merat et al., 2024) would help to narrow down the search space
and accelerate these approaches.

2.3 Need for a UAV Testbed

The motivation for the UAV testbed arises from the lack of a
dataset for AAM navigation which ideally covers:

1. Very Low Level (VLL) perspective in dynamic urban scen-
arios (<120 m)

2. The complete sensor suite (RGB and event camera, LiDAR,
IMU, RTK-GNSS) and

3. Semantic annotations.

Another motivation is that the real-time system performance can
be evaluated using the onboard computing resources. Ample of
datasets are available for the autonomous driving domain or for
ground robots with a wide variety of sensors, particularly LiDAR,
multi-view cameras, IMU, and GNSS; like KITTI (Geiger et
al., 2013), nuScenes (Caesar et al., 2020). Also, M2DGR (Yin
et al., 2021) and VECtor (Gao et al., 2022) include the event
camera, but these datasets only have the sensor suite and lack
(1) and (3). Most datasets with UAVs are indoors or close to the
ground, which lacks the required aerial perspective for AAM,
like EuRoC MAV (Burri et al., 2016) or UZH FPV (Delmerico
et al., 2019). To enable more research with semantic labels and
panoptic tracking, Cityscapes (Cordts et al., 2016) and Panop-
tic Nuscenes (Fong et al., 2022) exist for autonomous driving
((2) unsatisfied), whereas UAVid (Lyu et al., 2020) and Rur-
alscapes (Marcu et al., 2019) don’t include the event camera
(see (2)). To train segmentation models without needing a large
number of real images, (Hinniger and Rüter, 2023) demonstrate
how models trained on a synthetic dataset, created using a game
engine, require a small set of real images to eliminate the do-
main gap with fine-tuning. Our UAV testbed aims to facilitate
algorithmic development, real-time onboard evaluation, and to
generate a small, real-world dataset for fine-tuning.

2.4 Research Contribution

Safe operation of the UAS in the VLL airspace relies on the
precise positioning performance of the underlying navigation
system. The system must be sophisticated and resilient to enable
autonomous flight operation. The contributions of this paper are
as follows:

1. We highlight the existing navigation challenges of AAM
pertaining to complex VLL airspace. Then, we analyse
the difficulties involved in selecting suitable sensors for
perception-based navigation. A comprehensive overview
is presented, along with key parameters that meet the per-
formance requirements.

2. We propose a reliable, spoof-resistant multi-modal naviga-
tion architecture along with an associated methodology for
integration and calibration.

3. We address the communication and synchronization re-
quirements for UAS operations encompassing reliable data
exchange and coordination in dense AAM environments.

3. Design of Multi-Modal Sensor Setup

The impact of sensor selection on the fidelity of available meas-
urements and consequently the algorithm efficacy, cannot be
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Device Type Specifications Freq. (Hz) Weight (g)

RGB camera Sony IMX304
(16 mm C-Mount lens)

12.3 MP, 3.45 µm, 48.2° × 36.2°, 71.4 dB 22.6 90 (+89.8)

Event camera Sony, Prophesee IMX636
(6 mm C-Mount lens)

0.9 MP, 4.86 µm, 54.6°, >120 dB 1.06 giga events 90 (+67)

LiDAR Hesai XT32M2X Mechanical, 32-Channel, 360° × 40.3°,
0.5 to 300 m (80 m @10% reflectivity)

20 490

IMU (Pixhawk
6X Pro)

ADIS16470 ±2000°/sec, 8°/hr, 13 µ g, ±40g 250 50

RTK GNSS
Receiver

DroneCAN H-RTK
F9P Helical

Galileo, BeiDou, GLONASS, GPS (L1/L2),
1.5 m (3D FIX) / 0.01 m (RTK)

20 (raw),
8 (RTK)

58

RTK GNSS-
aided INS

Advanced Navigation
Certus Mini D

Galileo, BeiDou, GLONASS, GPS (L1/L5),
0.1° Roll, Pitch and Heading

1000
(processed)

55

Table 1. Specifications of onboard sensors.

overstated. RGB cameras offer high spatial resolution and ma-
ture semantic models, but lack direct depth sensing, are sensitive
to illumination, have a low temporal resolution, and introduce
scale ambiguity. Conversely, event cameras excel in high dy-
namic range and temporal resolution with sparse data throughput,
but offer low spatial resolution compared to frame-based RGB
cameras. These complementary features make fusion with these
two sensors appealing. LiDAR sensors provide accurate distance
measurements and are, due to their active sensing, independent
of illumination. Drawbacks entail the sparsity, the low sample
rate, and the algorithmic challenges in scenes with repetitive-
ness and few structures. While all the sensors mentioned above
are exteroceptive, IMUs are proprioceptive sensors that provide
high-frequency updates for ego-motion estimation, but accumu-
late drift errors over time.

As pointed out each sensor and the associated approaches have
their weaknesses. Therefore, we seek a multi-modal (multi-
sensor) approach which fuses data from cameras, LiDAR, IMU,
and GNSS. While well-engineered commercial-off-the-shelf
drones are increasingly available, they are not designed to integ-
rate this multitude of sensors, nor are they designed to process
large volumes of data in real-time directly onboard. However,
designing UAVs entirely from scratch is a complex and time-
intensive endeavour. As a practical compromise, we augment
commercially available development kits with additional peri-
pherals, enabling both flexibility in sensor integration (selection
and placement) and sufficient onboard computational capab-
ilities. The selected sensors and their key specifications are
summarized in Table 1. Hardware choices were made in accord-
ance with the Size, Weight, and Power-Cost (SWaP-C) principle
to account for payload constraints and to increase the achievable
flight time.

For the RGB camera, a balanced compromise was sought
between resolution and frame rate to facilitate vision-based nav-
igation. While a higher resolution provides more image detail
and increases the number of detectable features, it also imposes
greater demands on data bandwidth and processing, and there-
fore limits the frame rate, which is detrimental in high-speed
UAV operations. Additionally, there is a tradeoff between resol-
ution and pixel size. Larger pixels improve the signal-to-noise
ratio and enable shorter exposure times, which are advantageous
in dynamic flight scenarios but in turn reduce the resolution. The
eventually chosen camera features a fixed 16 mm focal length
lens. The resulting Field of View (FOV) is relatively narrow,
which reduces scene coverage and feature overlap but the larger
focal length leads to a sufficiently high resolution for distant

objects. If the camera with the given specifications is mounted
in nadir direction, then for a flight height of 50 m, the ground
sampling distance on a flat surface would be approximately
1.1 cm and for the maximum allowed flight height of 120 m,
according to European Union Aviation Safety Agency (EASA)’s
open category, 2.6 cm. Furthermore, the camera has a global
shutter and a moderate dynamic range.

The event camera was primarily chosen for its high resolution
compared to the popular DAVIS cameras in the literature. Fur-
thermore, the event camera as well as the RGB camera have
Power over Ethernet (PoE) and Robot Operating System (ROS2)
support, while only the latter applies to the chosen mechanical
LiDAR. Additionally, the LiDAR is lightweight, has a moderate
number of channels, offers a range that suffices for flight heights
up to 120 m, and therefore offers a good price-performance
ratio. The main drawback is the missing internal IMU, which
increases the requirements for an accurate LiDAR-IMU calib-
ration. For this, we use the embedded IMUs of the Pixhawk
flight controller. More specifically, we used the Pixhawk 6X
Pro, which features a high-quality miniature vibration-isolated
and temperature-controlled MEMS IMU. It has a wide dynamic
range and medium bias drift for the triaxial gyroscope and accel-
erometer. With the built-in u-blox ZED-F9P module, the RTK
GNSS receiver offers concurrent reception of multiple constella-
tions and dual-frequency RTK. Due to the helical antenna, the
receiver is lightweight and promises better signal reception. In
addition to the IMU built into the flight controller, a tactical-
grade GNSS-aided Inertial Navigation System (INS) will be
tested, which is able to receive GNSS Signals from L1 and L5
Bands. The latter are less susceptible to multipath effects and sig-
nal attenuation and therefore better suited in urban environments
(u-blox AG, 2023). Furthermore, the INS offers high-quality
roll, pitch and heading.

The mounting of the sensors and other relevant components such
as the flight controller, companion computer, and the battery on
the UAV will be realized as shown in Figure 1.
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Figure 1. CAD Design of the multi-modal sensor setup on the
UAV (blue - cameras, yellow - battery, green - companion
computer).

4. Integration

Our conceptual UAV setup, shown in Figure 2, is based on open
source projects supported by the Dronecode Foundation5 and
consists of four main blocks. The Multi-Modal Navigation sys-
tem encompasses a frame-based RGB camera, a Event camera,
a LiDAR, a GNSS receiver, a IMU (embedded in the flight con-
troller), and optionally a GNSS-aided INS. The Pixhawk flight
controller6 of our platform runs the PX4 Autopilot (Meier et al.,
2015) and together with the companion computer offers suffi-
cient computational resources for onboard processing. The com-
munication system handles the information exchange between
the UAV and the Ground Control Station (GCS), while the latter
serves as the central interface for the human operator for mission
planning, monitoring, and control.

Multi-modal navigation requires a companion computer with
enough computing power to run deep learning models in real-
time, while simultaneously managing other essential processes
such as sensor fusion, map optimization, and communication.
We selected the NVIDIA Jetson Orin family for sufficient AI
inference performance. The Jetson’s Linux operating system
enables the execution of ROS2, which is used to interact and
manage the perceptual sensors that have ROS2 driver support. In
addition, ROS2 enables a deep integration with PX4 via a bridge
realized by the uXRCE-DDS middleware7, facilitating efficient
information exchange between the companion computer and the
flight controller.

4.1 Temporal Synchronization

Precise temporal synchronization is critical for real-time, tightly-
coupled systems. Time synchronization between our system
components is realized using the Precision Time Protocol (PTP).
The companion computer acts as the grandmaster clock, distrib-
uting time via Ethernet to the sensors, which all support the PTP
protocol. The PX4-ROS 2 bridge (uXRCE-DDS) can be used
directly for convenient time synchronization between the com-
panion computer and the Pixhawk flight controller. Furthermore,
this bridge is also used to read the data of Pixhawk’s internal
IMU. Next to time synchronization with PTP, the use of ethernet

5 Dronecode Foundation : https://dronecode.org/
6 Pixhawk: https://pixhawk.org/
7 uXRCE-DDS: https://docs.px4.io/main/en/middleware/uxrce dds.html

allows fast data transfer and bypasses possible GNSS interfer-
ence problems that can occur with USB 3.0 (Intel Corporation,
2012).

4.2 Communication Systems: Multi-link, RTK, and GCS

Reliable wireless communication is essential for safe and effi-
cient data exchange among components in UAS operating within
AAM environments (Tomaszewski and Kołakowski, 2023). To
ensure continuous connectivity, a heterogeneous multi-link ap-
proach is recommended, leveraging Wi-Fi for local, low-latency
connections and 5G/LTE for high-bandwidth, real-time mobile
operations. Furthermore,we consider Low Earth Orbit (LEO)
satellite systems, which provide reliable global communication
in areas lacking terrestrial infrastructure (Becker and Schalk,
2024, Stouffer et al., 2020). The fundamental Internet Protocol
(IP) underpins all three technologies: WiFi, 5G/LTE, and Sat-
com, enabling seamless interoperability. Implementing relevant
computed redundancy mechanism across these communication
links is both practical and ideal for effective bandwidth utiliz-
ation. Several Ethernet- and IP-based network protocols fun-
damentally support the exchange of control signals, data, and
feedback between UAV onboard systems and the GCS. There-
fore, a multi-link approach aids the navigation system in our
setup.

RTK-based localization requires real-time correction data, which
can be determined on the basis of CORS networks. Operators
of these networks provide correction data via the Internet using
NTRIP (Networked Transport of RTCM via Internet Protocol)
caster, which then can be received via NTRIP clients. In our
experimental setup, the correction data can be received by the
GCS, equipped with a communication modem and can then
be further transmitted to the flight controller using MAVLink8.
Another option is to use the 5G/LTE modem on board the UAV,
which allows the companion computer to retrieve correction data
directly and bypass the GCS. Instead of using an NTRIP caster,
correction data can also be provided by a local base station.
Thus, communication plays a vital role in using RTK-GNSS as
ground truth for the evaluation of our navigation experiments.

The GCS serves as a central node in the multi-modal navigation
ecosystem, seamlessly integrating telemetry, control, and data
management functions for UAV operations. Our GCS setup
encompasses three main elements: communication system, GCS
application platform and ROS2 map visualization. Modern GCS
application platforms such as QGroundControl (QGC)9, Mission
Planner (MP)10. ROS-based clients provide intuitive interfaces
for monitoring and managing UAV missions. Equipped with a
unified map representation, it supports advanced multi-modal
navigation by aggregating and visualizing data from diverse
sources. The GCS also functions as a robust communication
hub, managing bidirectional data exchange between the UAV
and ground infrastructure. It continuously receives comprehens-
ive telemetry streams consisting of position, altitude, velocity,
battery health, and low-bandwidth sensor outputs. Thereby
enabling real-time situational awareness and informed decision-
making for operators.

4.3 Calibration

For real-time sensor fusion applications, spatiotemporal calib-
ration plays a crucial role. Inaccurate sensor calibration in-
8 PX4-RTK: https://docs.px4.io/main/en/advanced/rtk gps.html
9 QGC: https://docs.qgroundcontrol.com/master/en/
10 MP: https://ardupilot.org/planner/
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Figure 2. System design representation of the conceptual setup.

duces a large error due to sample mismatch (temporal) or mis-
alignment errors (spatial) and results in a large absolute traject-
ory error (ATE) in sensor fusion-based navigation approaches.
E2CALIB (Muglikar et al., 2021) and the DSEC dataset (Gehrig
et al., 2021, Synchronization and Calibration) provide an in-
trinsic and extrinsic calibration approach for the frame-based
and event camera. They propose using E2VID (Rebecq et al.,
2021) for event-to-frame reconstruction to get frames from the
event camera data. This allows the use of the Kalibr toolbox for
multi-camera calibration (Furgale et al., 2013). With the cameras
and IMU calibrated with Kalibr, LiDAR-camera calibration can
be performed with FAST-Calib11, as recommended by FAST-
LIVO2 (Zheng et al., 2025). To enable onboard operations with
the UAV testbed, temporal calibration is taken care of by PTP
and the uXRCE-DDS middleware.

5. Conclusion and Outlook

This paper highlights the unique navigation challenges faced
by UAS in AAM. Based on existing research, we proposed
a navigation pipeline that includes map-based navigation and
semantic SLAM on the basis of various sensors to address these
challenges. While datasets for ground vehicles that combine
multiple sensors already exist, there is a need for an aerial data-
set to develop and evaluate the proposed approaches. To fill
this gap, we presented a conceptual setup focused on both, indi-
vidual sensor performance and the comprehensive integration of
system components, laying the groundwork for advancing UAS
navigation in AAM contexts.

Future work will address key open challenges, including holistic
system calibration and a unified map representation capable of
seamlessly integrating data from diverse sensors. The creation of
such a common map framework is crucial for enabling reliable,
interoperable navigation for UAS Traffic Management (UTM)
surveillance. In the near future, we plan to perform flight tests
and to publish a comprehensive dataset to support open science
initiatives. We plan to continue refining our proposed methods
to advance the state of multi-sensor integration and mapping for
reliable navigation in AAM.

11 FAST-Calib: https://github.com/hku-mars/FAST-Calib
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