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Abstract

In recent years, the widespread availability of relatively low-cost cameras and unmanned aerial vehicles (UAVs) has made it easier to
acquire high-resolution images of forests rich in texture information. In forest resource surveys, a common approach for tree species
classification involves applying Structure from Motion (SfM) to the collected raw image set and using the resulting orthophotos for
classification through deep learning techniques. This study proposes a novel tree species classification framework that aims to improve
accuracy by utilizing UAV-acquired raw images, which are of high quality, can be captured in large volumes, and include diverse
viewing angles. In the proposed method, tree species classification is first performed on each aerial image using a convolutional neural
network (CNN) and a sliding window approach. Next, SfM processing is applied to the image set to generate a 3D point cloud and
orthophotos. The classification results from the aerial images are then projected onto the point cloud, and finally, these projected results
are mapped onto the orthophoto and aggregated to derive the final species classification by majority voting approach. The effectiveness
of the proposed method is validated through experiments targeting four representative tree types in Japan: Cryptomeria japonica
(Japanese cedar), Chamaecyparis obtusa (Japanese cypress), Pinus densiflora (Japanese red pine), and broadleaf trees.

1. Introduction
1.1 Background

Accurate tree species classification is a fundamental and
critically important process for the sustainable management and
efficient utilization of forest resources. Traditionally, tree species
classification has been conducted through field surveys by
experts or visual interpretation of aerial photographs. However,
field surveys are often associated with significant time, cost, and
labor, posing substantial operational burdens. Moreover, visual
interpretation is highly dependent on factors such as image
quality and resolution, as well as the experience and skill of the
analyst, which can lead to inconsistencies in results (Lee, 2023).

In recent years, unmanned aerial vehicles (UAVs) equipped with
consumer-grade cameras have become widely used in forest
surveys. UAVs can fly at low altitudes at relatively slow speeds,
allowing for efficient capture of high-resolution images rich in
texture information over large areas spanning several hectares.
Compared with other platforms, UAVs offer greater flexibility
and fewer constraints in terms of time and location for data
acquisition. As a result, UAVs are becoming essential tools for
tree species classification, which requires capturing fine-scale
features of tree crowns.

In addition, the rapid advancement of deep learning technologies
in recent years has enabled high performance across a wide range
of image processing tasks. One of the key advantages of deep
learning lies in its powerful feature extraction capabilities, which
allow it to effectively capture species-specific characteristics,
even in fine-grained classification problems such as tree species
identification. Consequently, many studies have reported higher
classification accuracy compared to conventional methods. Thus,
the approach of acquiring images from UAV-mounted consumer
cameras, constructing large-scale training datasets, and applying
deep learning for tree species classification is increasingly being
established as a promising and practical solution.

1.2 Related Works

In recent years, tree species classification using convolutional
neural networks (CNNs) applied to UAV imagery has emerged
as a prominent research topic, with various methods being
proposed. One of the most fundamental approaches involves
applying Structure from Motion (SfM) processing to RGB
images acquired at a specific time to generate orthophotos,
followed by tree species classification using deep learning
techniques. Classification methods based on deep learning can
generally be categorized into two groups: semantic segmentation
and classification. Semantic segmentation (SS) methods, such as
U-Net and DeepLabv3, aim to assign tree species labels to each
pixel of the orthophoto with high accuracy (Schiefer, 2020; Popp,
2023). In contrast, classification approaches typically involve
segmenting the image into individual tree crowns in advance, and
then applying a CNN model (e.g., ResNet) to classify each crown,
enabling tree-level species identification. Segmentation methods
used in this context include the watershed algorithm (Natesan,
2019) and auxiliary segmentation techniques based on LiDAR
point clouds (Ma, 2024). Additionally, a simpler approach has
been reported in which the image is divided into small, regularly
spaced regions, and classification is performed for each region
independently (Huang, 2023).

The introduction of deep learning has enabled higher
classification accuracy compared to conventional methods;
however, various efforts are being made to further improve
performance. For example, extensive research has been
conducted on the use of multispectral and hyperspectral imagery.
While standard digital cameras capture three spectral bands, red,
green, and blue, multispectral cameras can acquire 4 to 8 bands
including near-infrared (NIR), and hyperspectral cameras can
capture more than 100 bands, including NIR and shortwave
infrared (SWIR) (Onishi, 2022). By incorporating these non-
visible spectral bands, it becomes possible to evaluate the
characteristics of tree crowns in greater detail, leading to
improved classification accuracy. In particular, studies have
reported that integrating vegetation indices derived from NIR
information as input features enhances classification
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Figure 1. Visual features captured from raw aerial images.

performance (Lee, 2023; Ma, 2024). However, a key challenge is
the high cost associated with acquiring and processing high-
resolution hyperspectral and multispectral images.

The use of UAV-mounted LiDAR has also been reported in
recent studies. In recent years, relatively low-cost LIDAR sensors
that can be mounted on UAVs have become available, and some
research has utilized canopy height models (CHMs) generated
from the acquired 3D point clouds for tree species classification
(Lee, 2023). Because point cloud data allows for capturing the
structural characteristics of trees, it contributes to improving
classification accuracy. Furthermore, there are studies that have
achieved high classification performance by integrating features
extracted from point clouds, such as height, crown shape, and
reflectance intensity, into machine learning models (Zhong,
2022; Ma, 2024). However, UAV LiDAR still involves
additional costs, and since it requires a separate flight from image
acquisition, its application in the field remains subject to time-
related constraints.

In addition, analysis methods using multi-temporal imagery have
been proposed; however, issues such as extended acquisition
periods and increased costs have been pointed out (Natesan,
2019; Veras, 2022; Avtar, 2024).

Given the above background, there is a continued strong demand
for the development of a highly accurate tree species
classification method that relies solely on single-date imagery
captured using low-cost, easy-to-handle RGB cameras.

1.3 Key observation

This section compares the characteristics of orthophotos and raw
aerial images. First, compared to orthophotos, raw images are
significantly more numerous, resulting in a much larger volume
of information. Moreover, as shown in Figure 1, raw images offer
greater diversity in terms of viewing angles. Specifically, they
include not only nadir (directly overhead) views but also oblique
views taken from various angles, providing a wide range of
perspectives. In particular, oblique images capture the three-
dimensional structure of tree crowns more clearly. Due to their
high resolution, these images also contain features, such as the
arrangement of leaves on the sides of tree crowns, that are
difficult to observe from overhead views alone. Additionally,
because of the complex structure and appearance of trees, the
quality of orthophotos is sometimes insufficient. From the
perspective of image quality as well, raw images have been
reported to offer superior visual information (Avtar, 2024).

Based on the above, raw aerial images are superior to orthophotos
in terms of information content, diversity of viewing angles, and
image quality. By effectively leveraging these advantages,
higher-accuracy tree species classification can be expected
compared to conventional methods that rely solely on
orthophotos.

1.4 Purpose

In this study, we propose a novel tree species classification
framework that generates a species map by performing
classification on individual aerial images and aggregating the
results onto a single orthophoto via a 3D point cloud. The
objective is to experimentally validate the effectiveness of the
proposed method.

The proposed framework consists of the following four steps, as
illustrated in Figure 2. In Step 1, tree species classification is
performed on multiple aerial images using a sliding window
approach combined with deep learning. In Step 2, a point cloud
and an orthophoto are generated from the aerial images using
Structure from Motion (SfM) and Multi-View Stereo (MVS)
processing, and camera parameters, including the position and
orientation of each image, are estimated. In Step 3, the tree
species scores computed from the aerial images are assigned to
the corresponding 3D points based on image geometry. In Step 4,
the species scores associated with each point are orthogonally
projected onto the orthophoto, and the scores are aggregated for
each pixel. The tree species label with the highest score is then
assigned to each pixel, resulting in the final species map.

As shown in Figure 1, the classification targets in this study
include four representative tree types in Japan: Cryptomeria
Jjaponica (Japanese cedar), Chamaecyparis obtusa (Japanese
cypress), Pinus densiflora (Japanese red pine), and broadleaf
trees.

1.5 Test Site

In this study, aerial images acquired in the Kawauchi
Experimental Forest, located in Kawauchi Village, Fukushima
Prefecture, were used. Image acquisition was conducted using a
drone equipped with a camera, flying at a speed of approximately
5.5 m/s. Images were captured at a frequency of one frame every
two seconds. The UAV used was the DJI Matrice 210 RTK, as
shown in Figure 3, and the camera was the DJI Zenmuse X5S.
The data were collected in May 2022 under mostly cloudy
weather conditions. The acquired images had a resolution of
5,280 x 3,956 pixels, with an overlap and sidelap rate of 80% and
70%, respectively.
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Figure 2. Overview of our proposed framework.

Figure 3. UAV used in this study.

2. Proposed Method
2.1 Tree Species Classification using Deep Learning

In the proposed method, tree species classification is first
performed on raw aerial images using deep learning. The deep
learning model employed is VGG16 (Simonyan, 2015), a type of
convolutional neural network (CNN). A CNN is a neural network
architecture composed of multiple functional layers, such as
convolutional and pooling layers. Among CNN models, VGG16
is widely used as a classical model due to its relatively simple
structure and stable classification performance.

Tree species classification is performed using a sliding window
approach. Specifically, a target region of size n X n and a
surrounding context region of size N x N, centered on the target
region, are defined. During classification, the window is slid
across the image at intervals of n pixels. At each position, the
corresponding N x N context region is extracted and used as input
for deep learning-based classification. The resulting prediction is
then assigned to the associated n X n target region. In this study,
the parameters were set to N = 224 and n = 56. As a result of this
process, each pixel is assigned a set of class probabilities for tree
species, obtained through the softmax function. In general, each
pixel is classified into the class with the highest score. In this
paper, we refer to these probabilities as “scores.” Examples of a
raw aerial image and the corresponding tree species classification
result are shown in Figures 4(a) and 4(e), respectively. In Figure

4(e), the colors are assigned based on the label of the class with
the highest score.

2.2 3D Reconstruction and Orthophoto Creation

For 3D reconstruction and orthophoto generation, the
photogrammetry software Agisoft Metashape was used. By
inputting multiple aerial images, the software automatically
estimates camera parameters, including position and orientation
at the time of capture, and performs 3D point cloud and
orthophoto creation.

Figure 4(b) shows the generated point cloud, while Figure 4(c)
presents the resulting orthophoto. The point cloud was uniformly
downsampled at 2 cm spatial intervals, and the spatial resolution
of the orthophoto was set to 2 cm/pixel. Figure 4(d) shows the
height map of the study area, which has an elevation difference
of up to approximately 74 meters.

2.3 Mapping of Classification Score on Point Cloud

This section describes the method for mapping tree species
classification results obtained from aerial images onto a 3D point
cloud. The mapping process is carried out based on the principles
of the pinhole camera model (Saovana, 2021; Hartley, 2023).

Ideally, one possible approach involves generating a mesh from
the point cloud, identifying the corresponding point on the mesh
for each pixel, assigning the tree species score to that point, and
finally projecting the score-assigned points onto the orthophoto
for aggregation. However, this method requires constructing a
high-density mesh to ensure accurate score assignment, resulting
in a large data volume. Moreover, searching for corresponding
points on the mesh entails a high computational cost.

To address these issues, this study adopts a reverse approach: for
each 3D measurement point, the corresponding pixel on each
aerial image is identified, and the tree species scores assigned to
that pixel are then transferred to the 3D point. This approach
allows for reduced data volume and more efficient processing.

The specific procedure leading to the final projection onto the
orthophoto begins with computing the corresponding pixel for
each point in the point cloud on each aerial image. For this
purpose, the coordinates of the 3D points are transformed

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-219-2025 | © Author(s) 2025. CC BY 4.0 License. 221



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

(a) Raw image

(e) Species scores on raw image

(d) Height map

(c) Orthophoto

W Japanese cedar
B Japanese cypress
M Japanese red pine
M broadleaf tree

(f) Scores mapping on point cloud  (g) Scores mapping on ortho image

Figure 4. Tree species classification process based on proposed method.
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according to the following steps. This section focuses on the
processing steps for a single aerial image. Subsequently, we
describe how the classification results from multiple images are
aggregated on the point cloud and finally projected and
visualized on the orthophoto. An overview of the entire process
is shown in Figure 5.

2.3.1 Mapping of Classification Scores of a Single Image
The coordinates p!” of each point in the point cloud P", defined
in the reference world coordinate system W, are transformed into
coordinates p§ = (xf,yf,z¢) in the camera coordinate system
C, where the camera position ¢= (cy, ¢y, ¢;) at the time of image
capture is set as the origin. This transformation is performed
using a rotation matrix R and a translation vector t, as expressed
in Equation (1).

p{ =Rp +1t (M

The rotation matrix R, translation vector t, and camera position ¢
are all exported as output files from the SfM processing
performed using Metashape.

Next, the 3D coordinates p{ in the camera coordinate system C
are projected onto the normalized image coordinate system N as
2D coordinates qY = (u, v!). The coordinate system N can be
considered to lie on a virtual image plane placed at z = 1 in the
camera coordinate system C. The transformation from to q is
performed according to Equation (2).

c_

C
xXf —c, yi —¢
o) = (B 22 @

)
Zi —C; Z{ — ¢

Finally, the projected point qY, expressed in the normalized
image coordinate system &, is transformed into the coordinate q!
in the intrinsic image coordinate system /, which is specific to the
camera used for image acquisition. This transformation is
represented by Equation (3).

N N
(ul,v)) = (f%+u0,f%+ vo) A3)

Here, f'denotes the focal length, and s represents the image size.
The parameters 1 and vy correspond to the coordinates of the
intersection point between the camera’s optical axis and the
image plane, commonly referred to as the principal point
(typically located at the center of the image).

Through the above process, the corresponding pixel on the image
can be determined for each point p; in the point cloud. This
enables the assignment of the tree species classification results
obtained from the aerial images in Section 2.1 to the 3D point
cloud. Figure 4(f) shows the result of assigning the classification
outputs from Figure 4(e) onto the point cloud.

2.3.2  Computation of Score of Multiple Images

Since multiple aerial images are available, each measurement
point may have up to as many tree species scores as the number
of images. The final label is determined through weighted
majority voting based on these class scores. In a simple majority
voting scheme, the class with the highest number of votes is
assigned as the final label for the point; however, cases may occur
where multiple classes receive the same number of votes,
resulting in a tie (Kokkinos, 2014; Misra, 2020). To avoid such
ambiguity, this study employs a method in which the outputs of
the softmax function are accumulated with weights, and the final
label is determined based on the aggregated scores.

Here, for each measurement point p;, the corresponding pixel
Qjc(iy s identified from each of the aerial image I;. The score
corresponding to class &, obtained from the softmax output of the
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Figure 7. Assignment of tree species classification results to orthophoto.

CNN at this pixel, is denoted as 7 ;) . The weighted sum of
these scores is then calculated according to Equation (4).

M
Rip = Z Wi ci)Tj,c(i) k 4
=1

Here, wj ¢(;) represents a weight, which is being considered for
calculation based on factors such as the distance from the image
capture location to each point and a shadow region index. Pixels
that are located far from the capture position, making high-
resolution classification difficult, or that fall within shadowed
areas are assigned lower weights to reduce their influence on the
final classification result. Currently, all weights are set uniformly
as Wj ey = 1.

2.4 Final Tree Species Classification by Majority Voting

Next, the classification results assigned to the point cloud are
aggregated onto the orthophoto through orthogonal projection to
obtain the final classification output. The xy-plane is divided into
a grid, and the point cloud is projected onto this plane. For each
projected point, the corresponding grid cell is identified, and the
scores of the points within each grid cell are summed. Figure 4(g)
shows the result of projecting the classification output from the
single aerial image in Figure 4(e) onto the orthophoto.

Finally, the tree species label corresponding to the class with the
highest aggregated score in each grid cell is assigned, and the
result is output as the final tree species map. In this study, the grid
size was set to 4 cm, taking point cloud density into account, in
order to minimize the occurrence of empty grid cells with no
included points.

3. Experimental Results
3.1 Data Set

Under the guidance of domain experts, tree species were
manually labelled through visual interpretation. Based on the
labelled data, regions corresponding to each species were
extracted from the aerial images and then divided into patches of
224 x 224 pixels. For the dataset, 2,000 image patches were
prepared for each of the four categories: Cryptomeria japonica
(Japanese cedar), Chamaecyparis obtusa (Japanese cypress),
Pinus densiflora (Japanese red pine), and broadleaf trees. Images
that spanned across boundaries of different tree species were
excluded, and only those containing a single species were
selected through manual inspection. Although both the training
and validation data were collected from the same area on the
same day, they were distributed across different forest stands to
ensure separation between the two sets.

3.2 Accuracy Evaluation on Single Raw Aerial Image

First, the classification performance on raw aerial images was
qualitatively evaluated through visual inspection. While good
results were obtained for some images, others exhibited
noticeable misclassifications. For example, as shown in Figure 6,
misclassification frequently occurred in certain areas on the right
side of the image where Pinus densiflora (Japanese red pine) was
densely distributed, and in the lower central area where
Chamaecyparis obtusa (Japanese cypress) was present, with
these regions often being misidentified as Cryptomeria japonica
(Japanese cedar). These errors were commonly observed in
boundary regions between adjacent trees. This area is located at
a high elevation and was captured at a relatively short distance,
resulting in large tree crowns appearing in the images.
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Consequently, individual trees did not fully fit within the 224 x
224 window used in Step 1, leading to inaccurate classification.
One possible countermeasure is to use multiple images with
different resolutions and aggregate the classification results.
Applying the same window size to lower-resolution images
would allow individual trees, or at least multiple trees, to be fully
contained within the window, potentially improving
classification accuracy. Similar misclassification was also
observed in shadowed regions. To address this, a promising
approach is to pre-identify shadow areas and assign them lower
weights during the voting process, thereby reducing their
influence on the final classification result. Additionally, the
classification accuracy for broadleaf trees tended to be lower,
which is expected to improve with the inclusion of more training
data.

3.3 Accuracy Evaluation on Orthophoto

Finally, the aggregated classification results on the orthophoto
were evaluated. As shown in Figure 7, apart from areas densely
populated by a single species, such as Chamaecyparis obtusa
(Japanese cypress) and Pinus densiflora (Japanese red pine), the
majority of regions were classified as Cryptomeria japonica
(Japanese cedar). As mentioned earlier, misclassification into
Cryptomeria japonica (Japanese cedar) was frequently observed
in the results on individual aerial images, and this trend persisted
in the final classification results on the orthophoto. Additionally,
during the mapping of classification results from the raw images
to the point cloud, points located behind foreground tree, thus not
actually visible in the images, were nonetheless associated with
visible regions due to the geometric projection process. This led
to inappropriate label assignments in those areas. To address this
issue, we aim to introduce a visibility check for the point cloud
in future implementations.

4. Conclusion and Future Works

In this study, we proposed a novel framework that integrates raw
UAYV images with 3D point clouds and orthophotos to accurately
aggregate tree species classification results. The effectiveness of
the proposed method was validated through experiments
targeting representative tree species.

Future work includes further improving classification accuracy
through the integrated use of multi-resolution images, detecting
shadow regions and estimating their influence on the final
classification results, and introducing visibility analysis for the
3D point cloud. We also plan to investigate the use of semantic
segmentation to enhance pixel-level classification performance.

Additionally, conducting validation experiments at multiple test
sites with varying geographic conditions and vegetation
compositions will be important for quantitatively evaluating the
generalizability and robustness of the proposed method.
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