
Tree Species Classification Using Majority Voting Approach on UAV Raw Images 
 

Tomohiro Mizoguchi1, Daisuke Tsukano2, Hideki Ogawa3 

 
1Department of Informatics and Data Science, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, 

Japan - mizoguchi@rs.socu.ac.jp 
2Owada Survey & Design, Futaba-gun, Fukushima, Japan - d_tsukano@geo999.com 

3Fukushima Prefectural Forestry Research Center, Koriyama City, Fukushima, Japan - ogawa_hideki_01@pref.fukushima.lg.jp 

 

Keywords: Tree Species, UAV, Deep Learning, Raw Image, Majority voting. 

 

 

Abstract 

 

In recent years, the widespread availability of relatively low-cost cameras and unmanned aerial vehicles (UAVs) has made it easier to 

acquire high-resolution images of forests rich in texture information. In forest resource surveys, a common approach for tree species 

classification involves applying Structure from Motion (SfM) to the collected raw image set and using the resulting orthophotos for 

classification through deep learning techniques. This study proposes a novel tree species classification framework that aims to improve 

accuracy by utilizing UAV-acquired raw images, which are of high quality, can be captured in large volumes, and include diverse 

viewing angles. In the proposed method, tree species classification is first performed on each aerial image using a convolutional neural 

network (CNN) and a sliding window approach. Next, SfM processing is applied to the image set to generate a 3D point cloud and 

orthophotos. The classification results from the aerial images are then projected onto the point cloud, and finally, these projected results 

are mapped onto the orthophoto and aggregated to derive the final species classification by majority voting approach. The effectiveness 

of the proposed method is validated through experiments targeting four representative tree types in Japan: Cryptomeria japonica 

(Japanese cedar), Chamaecyparis obtusa (Japanese cypress), Pinus densiflora (Japanese red pine), and broadleaf trees. 

 

1. Introduction 

1.1 Background 

Accurate tree species classification is a fundamental and 

critically important process for the sustainable management and 

efficient utilization of forest resources. Traditionally, tree species 

classification has been conducted through field surveys by 

experts or visual interpretation of aerial photographs. However, 

field surveys are often associated with significant time, cost, and 

labor, posing substantial operational burdens. Moreover, visual 

interpretation is highly dependent on factors such as image 

quality and resolution, as well as the experience and skill of the 

analyst, which can lead to inconsistencies in results (Lee, 2023). 

 

In recent years, unmanned aerial vehicles (UAVs) equipped with 

consumer-grade cameras have become widely used in forest 

surveys. UAVs can fly at low altitudes at relatively slow speeds, 

allowing for efficient capture of high-resolution images rich in 

texture information over large areas spanning several hectares. 

Compared with other platforms, UAVs offer greater flexibility 

and fewer constraints in terms of time and location for data 

acquisition. As a result, UAVs are becoming essential tools for 

tree species classification, which requires capturing fine-scale 

features of tree crowns. 

 

In addition, the rapid advancement of deep learning technologies 

in recent years has enabled high performance across a wide range 

of image processing tasks. One of the key advantages of deep 

learning lies in its powerful feature extraction capabilities, which 

allow it to effectively capture species-specific characteristics, 

even in fine-grained classification problems such as tree species 

identification. Consequently, many studies have reported higher 

classification accuracy compared to conventional methods. Thus, 

the approach of acquiring images from UAV-mounted consumer 

cameras, constructing large-scale training datasets, and applying 

deep learning for tree species classification is increasingly being 

established as a promising and practical solution. 

 

1.2 Related Works 

In recent years, tree species classification using convolutional 

neural networks (CNNs) applied to UAV imagery has emerged 

as a prominent research topic, with various methods being 

proposed. One of the most fundamental approaches involves 

applying Structure from Motion (SfM) processing to RGB 

images acquired at a specific time to generate orthophotos, 

followed by tree species classification using deep learning 

techniques. Classification methods based on deep learning can 

generally be categorized into two groups: semantic segmentation 

and classification. Semantic segmentation (SS) methods, such as 

U-Net and DeepLabv3, aim to assign tree species labels to each 

pixel of the orthophoto with high accuracy (Schiefer, 2020; Popp, 

2023). In contrast, classification approaches typically involve 

segmenting the image into individual tree crowns in advance, and 

then applying a CNN model (e.g., ResNet) to classify each crown, 

enabling tree-level species identification. Segmentation methods 

used in this context include the watershed algorithm (Natesan, 

2019) and auxiliary segmentation techniques based on LiDAR 

point clouds (Ma, 2024). Additionally, a simpler approach has 

been reported in which the image is divided into small, regularly 

spaced regions, and classification is performed for each region 

independently (Huang, 2023). 

 

The introduction of deep learning has enabled higher 

classification accuracy compared to conventional methods; 

however, various efforts are being made to further improve 

performance. For example, extensive research has been 

conducted on the use of multispectral and hyperspectral imagery. 

While standard digital cameras capture three spectral bands, red, 

green, and blue, multispectral cameras can acquire 4 to 8 bands 

including near-infrared (NIR), and hyperspectral cameras can 

capture more than 100 bands, including NIR and shortwave 

infrared (SWIR) (Onishi, 2022). By incorporating these non-

visible spectral bands, it becomes possible to evaluate the 

characteristics of tree crowns in greater detail, leading to 

improved classification accuracy. In particular, studies have 

reported that integrating vegetation indices derived from NIR 

information as input features enhances classification 
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performance (Lee, 2023; Ma, 2024). However, a key challenge is 

the high cost associated with acquiring and processing high-

resolution hyperspectral and multispectral images. 

 

The use of UAV-mounted LiDAR has also been reported in 

recent studies. In recent years, relatively low-cost LiDAR sensors 

that can be mounted on UAVs have become available, and some 

research has utilized canopy height models (CHMs) generated 

from the acquired 3D point clouds for tree species classification 

(Lee, 2023). Because point cloud data allows for capturing the 

structural characteristics of trees, it contributes to improving 

classification accuracy. Furthermore, there are studies that have 

achieved high classification performance by integrating features 

extracted from point clouds, such as height, crown shape, and 

reflectance intensity, into machine learning models (Zhong, 

2022; Ma, 2024). However, UAV LiDAR still involves 

additional costs, and since it requires a separate flight from image 

acquisition, its application in the field remains subject to time-

related constraints. 

 

In addition, analysis methods using multi-temporal imagery have 

been proposed; however, issues such as extended acquisition 

periods and increased costs have been pointed out (Natesan, 

2019; Veras, 2022; Avtar, 2024). 

 

Given the above background, there is a continued strong demand 

for the development of a highly accurate tree species 

classification method that relies solely on single-date imagery 

captured using low-cost, easy-to-handle RGB cameras. 

 

1.3 Key observation 

This section compares the characteristics of orthophotos and raw 

aerial images. First, compared to orthophotos, raw images are 

significantly more numerous, resulting in a much larger volume 

of information. Moreover, as shown in Figure 1, raw images offer 

greater diversity in terms of viewing angles. Specifically, they 

include not only nadir (directly overhead) views but also oblique 

views taken from various angles, providing a wide range of 

perspectives. In particular, oblique images capture the three-

dimensional structure of tree crowns more clearly. Due to their 

high resolution, these images also contain features, such as the 

arrangement of leaves on the sides of tree crowns, that are 

difficult to observe from overhead views alone. Additionally, 

because of the complex structure and appearance of trees, the 

quality of orthophotos is sometimes insufficient. From the 

perspective of image quality as well, raw images have been 

reported to offer superior visual information (Avtar, 2024). 

 

Based on the above, raw aerial images are superior to orthophotos 

in terms of information content, diversity of viewing angles, and 

image quality. By effectively leveraging these advantages, 

higher-accuracy tree species classification can be expected 

compared to conventional methods that rely solely on 

orthophotos. 

 

1.4 Purpose 

In this study, we propose a novel tree species classification 

framework that generates a species map by performing 

classification on individual aerial images and aggregating the 

results onto a single orthophoto via a 3D point cloud. The 

objective is to experimentally validate the effectiveness of the 

proposed method. 

 

The proposed framework consists of the following four steps, as 

illustrated in Figure 2. In Step 1, tree species classification is 

performed on multiple aerial images using a sliding window 

approach combined with deep learning. In Step 2, a point cloud 

and an orthophoto are generated from the aerial images using 

Structure from Motion (SfM) and Multi-View Stereo (MVS) 

processing, and camera parameters, including the position and 

orientation of each image, are estimated. In Step 3, the tree 

species scores computed from the aerial images are assigned to 

the corresponding 3D points based on image geometry. In Step 4, 

the species scores associated with each point are orthogonally 

projected onto the orthophoto, and the scores are aggregated for 

each pixel. The tree species label with the highest score is then 

assigned to each pixel, resulting in the final species map. 

 

As shown in Figure 1, the classification targets in this study 

include four representative tree types in Japan: Cryptomeria 

japonica (Japanese cedar), Chamaecyparis obtusa (Japanese 

cypress), Pinus densiflora (Japanese red pine), and broadleaf 

trees. 

 

1.5 Test Site 

In this study, aerial images acquired in the Kawauchi 

Experimental Forest, located in Kawauchi Village, Fukushima 

Prefecture, were used. Image acquisition was conducted using a 

drone equipped with a camera, flying at a speed of approximately 

5.5 m/s. Images were captured at a frequency of one frame every 

two seconds. The UAV used was the DJI Matrice 210 RTK, as 

shown in Figure 3, and the camera was the DJI Zenmuse X5S. 

The data were collected in May 2022 under mostly cloudy 

weather conditions. The acquired images had a resolution of 

5,280 × 3,956 pixels, with an overlap and sidelap rate of 80% and 

70%, respectively.  

 
Figure 1. Visual features captured from raw aerial images. 
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2. Proposed Method 

2.1 Tree Species Classification using Deep Learning 

In the proposed method, tree species classification is first 

performed on raw aerial images using deep learning. The deep 

learning model employed is VGG16 (Simonyan, 2015), a type of 

convolutional neural network (CNN). A CNN is a neural network 

architecture composed of multiple functional layers, such as 

convolutional and pooling layers. Among CNN models, VGG16 

is widely used as a classical model due to its relatively simple 

structure and stable classification performance. 

 

Tree species classification is performed using a sliding window 

approach. Specifically, a target region of size n × n and a 

surrounding context region of size N × N, centered on the target 

region, are defined. During classification, the window is slid 

across the image at intervals of n pixels. At each position, the 

corresponding N × N context region is extracted and used as input 

for deep learning-based classification. The resulting prediction is 

then assigned to the associated n × n target region. In this study, 

the parameters were set to N = 224 and n = 56. As a result of this 

process, each pixel is assigned a set of class probabilities for tree 

species, obtained through the softmax function. In general, each 

pixel is classified into the class with the highest score. In this 

paper, we refer to these probabilities as “scores.” Examples of a 

raw aerial image and the corresponding tree species classification 

result are shown in Figures 4(a) and 4(e), respectively. In Figure 

4(e), the colors are assigned based on the label of the class with 

the highest score. 

 

2.2 3D Reconstruction and Orthophoto Creation 

For 3D reconstruction and orthophoto generation, the 

photogrammetry software Agisoft Metashape was used. By 

inputting multiple aerial images, the software automatically 

estimates camera parameters, including position and orientation 

at the time of capture, and performs 3D point cloud and 

orthophoto creation. 

 

Figure 4(b) shows the generated point cloud, while Figure 4(c) 

presents the resulting orthophoto. The point cloud was uniformly 

downsampled at 2 cm spatial intervals, and the spatial resolution 

of the orthophoto was set to 2 cm/pixel. Figure 4(d) shows the 

height map of the study area, which has an elevation difference 

of up to approximately 74 meters. 

 

2.3 Mapping of Classification Score on Point Cloud 

This section describes the method for mapping tree species 

classification results obtained from aerial images onto a 3D point 

cloud. The mapping process is carried out based on the principles 

of the pinhole camera model (Saovana, 2021; Hartley, 2023). 

 

Ideally, one possible approach involves generating a mesh from 

the point cloud, identifying the corresponding point on the mesh 

for each pixel, assigning the tree species score to that point, and 

finally projecting the score-assigned points onto the orthophoto 

for aggregation. However, this method requires constructing a 

high-density mesh to ensure accurate score assignment, resulting 

in a large data volume. Moreover, searching for corresponding 

points on the mesh entails a high computational cost. 

 

To address these issues, this study adopts a reverse approach: for 

each 3D measurement point, the corresponding pixel on each 

aerial image is identified, and the tree species scores assigned to 

that pixel are then transferred to the 3D point. This approach 

allows for reduced data volume and more efficient processing. 

 

The specific procedure leading to the final projection onto the 

orthophoto begins with computing the corresponding pixel for 

each point in the point cloud on each aerial image. For this 

purpose, the coordinates of the 3D points are transformed 

 
Figure 2. Overview of our proposed framework. 
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Figure 3. UAV used in this study. 
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according to the following steps. This section focuses on the 

processing steps for a single aerial image. Subsequently, we 

describe how the classification results from multiple images are 

aggregated on the point cloud and finally projected and 

visualized on the orthophoto. An overview of the entire process 

is shown in Figure 5. 

 

2.3.1 Mapping of Classification Scores of a Single Image 

The coordinates 𝐩𝑖
𝑊 of each point in the point cloud 𝑃𝑊, defined 

in the reference world coordinate system W, are transformed into 

coordinates 𝐩𝑖
𝐶 = (𝑥𝑖

𝐶 , 𝑦𝑖
𝐶 , 𝑧𝑖

𝐶) in the camera coordinate system 

C, where the camera position c= (𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧) at the time of image 

capture is set as the origin. This transformation is performed 

using a rotation matrix R and a translation vector t, as expressed 

in Equation (1). 

𝐩𝑖
𝐶 = 𝐑𝐩𝑖

𝑊 + 𝐭 (1) 

The rotation matrix R, translation vector t, and camera position c 

are all exported as output files from the SfM processing 

performed using Metashape. 

 

Next, the 3D coordinates 𝐩𝑖
𝐶 in the camera coordinate system C 

are projected onto the normalized image coordinate system N as 

2D coordinates 𝐪𝑖
𝑁 = (𝑢𝑖

𝑁 , 𝑣𝑖
𝑁). The coordinate system N can be 

considered to lie on a virtual image plane placed at 𝑧 = 1 in the 

camera coordinate system C. The transformation from to 𝐪𝑖
𝑁 is 

performed according to Equation (2).  

(𝑢𝑖
𝑁, 𝑣𝑖

𝑁) = (
𝑥𝑖
𝐶 − 𝑐𝑥

𝑧𝑖
𝐶 − 𝑐𝑧

,
𝑦𝑖
𝐶 − 𝑐𝑦

𝑧𝑖
𝐶 − 𝑐𝑧

) (2) 

Finally, the projected point 𝐪𝑖
𝑁 , expressed in the normalized 

image coordinate system N, is transformed into the coordinate 𝐪𝑖
𝐼 

in the intrinsic image coordinate system I, which is specific to the 

camera used for image acquisition. This transformation is 

represented by Equation (3). 

(𝑢𝑖
𝐼 , 𝑣𝑖

𝐼) = (
𝑓𝑢𝑖

𝑁

𝑠
+ 𝑢0,

𝑓𝑣𝑖
𝑁

𝑠
+ 𝑣0) (3) 

Here, f denotes the focal length, and s represents the image size. 

The parameters 𝑢0 and 𝑣0 correspond to the coordinates of the 

intersection point between the camera’s optical axis and the 

image plane, commonly referred to as the principal point 

(typically located at the center of the image). 

 

Through the above process, the corresponding pixel on the image 

can be determined for each point 𝑝𝑖  in the point cloud. This 

enables the assignment of the tree species classification results 

obtained from the aerial images in Section 2.1 to the 3D point 

cloud. Figure 4(f) shows the result of assigning the classification 

outputs from Figure 4(e) onto the point cloud. 

 

2.3.2 Computation of Score of Multiple Images 

Since multiple aerial images are available, each measurement 

point may have up to as many tree species scores as the number 

of images. The final label is determined through weighted 

majority voting based on these class scores. In a simple majority 

voting scheme, the class with the highest number of votes is 

assigned as the final label for the point; however, cases may occur 

where multiple classes receive the same number of votes, 

resulting in a tie (Kokkinos, 2014; Misra, 2020). To avoid such 

ambiguity, this study employs a method in which the outputs of 

the softmax function are accumulated with weights, and the final 

label is determined based on the aggregated scores. 

 

Here, for each measurement point 𝑝𝑖 , the corresponding pixel 

𝑞𝑗,𝑐(𝑖) is identified from each of the aerial image 𝐼𝑗 . The score 

corresponding to class k, obtained from the softmax output of the 

 
Figure 4. Tree species classification process based on proposed method. 
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Figure 5. Coordinate transformation. 
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CNN at this pixel, is denoted as 𝑟𝑗,𝑐(𝑖),𝑘. The weighted sum of 

these scores is then calculated according to Equation (4). 

𝑅𝑖,𝑘 =∑𝑤𝑗,𝑐(𝑖)𝑟𝑗,𝑐(𝑖),𝑘

𝑀

𝑗=1

 (4) 

Here, 𝑤𝑗,𝑐(𝑖) represents a weight, which is being considered for 

calculation based on factors such as the distance from the image 

capture location to each point and a shadow region index. Pixels 

that are located far from the capture position, making high-

resolution classification difficult, or that fall within shadowed 

areas are assigned lower weights to reduce their influence on the 

final classification result. Currently, all weights are set uniformly 

as 𝑤𝑗,𝑐(𝑖) = 1.  

 

2.4 Final Tree Species Classification by Majority Voting 

Next, the classification results assigned to the point cloud are 

aggregated onto the orthophoto through orthogonal projection to 

obtain the final classification output. The xy-plane is divided into 

a grid, and the point cloud is projected onto this plane. For each 

projected point, the corresponding grid cell is identified, and the 

scores of the points within each grid cell are summed. Figure 4(g) 

shows the result of projecting the classification output from the 

single aerial image in Figure 4(e) onto the orthophoto. 

 

Finally, the tree species label corresponding to the class with the 

highest aggregated score in each grid cell is assigned, and the 

result is output as the final tree species map. In this study, the grid 

size was set to 4 cm, taking point cloud density into account, in 

order to minimize the occurrence of empty grid cells with no 

included points. 

 

3. Experimental Results 

3.1 Data Set 

Under the guidance of domain experts, tree species were 

manually labelled through visual interpretation. Based on the 

labelled data, regions corresponding to each species were 

extracted from the aerial images and then divided into patches of 

224 × 224 pixels. For the dataset, 2,000 image patches were 

prepared for each of the four categories: Cryptomeria japonica 

(Japanese cedar), Chamaecyparis obtusa (Japanese cypress), 

Pinus densiflora (Japanese red pine), and broadleaf trees. Images 

that spanned across boundaries of different tree species were 

excluded, and only those containing a single species were 

selected through manual inspection. Although both the training 

and validation data were collected from the same area on the 

same day, they were distributed across different forest stands to 

ensure separation between the two sets. 

 

3.2 Accuracy Evaluation on Single Raw Aerial Image 

First, the classification performance on raw aerial images was 

qualitatively evaluated through visual inspection. While good 

results were obtained for some images, others exhibited 

noticeable misclassifications. For example, as shown in Figure 6, 

misclassification frequently occurred in certain areas on the right 

side of the image where Pinus densiflora (Japanese red pine) was 

densely distributed, and in the lower central area where 

Chamaecyparis obtusa (Japanese cypress) was present, with 

these regions often being misidentified as Cryptomeria japonica 

(Japanese cedar). These errors were commonly observed in 

boundary regions between adjacent trees. This area is located at 

a high elevation and was captured at a relatively short distance, 

resulting in large tree crowns appearing in the images. 

 
Figure 6. Tree species classification results on aerial image. 

 

 
Figure 7. Assignment of tree species classification results to orthophoto. 

(a) Raw image (b) Correct label (c) Classification results

■ Japanese cedar   ■ Japanese cypress   ■ Japanese red pine   ■ broadleaf tree

(a) Orthophoto (b) Correct label (c) Classification results
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Consequently, individual trees did not fully fit within the 224 × 

224 window used in Step 1, leading to inaccurate classification. 

One possible countermeasure is to use multiple images with 

different resolutions and aggregate the classification results. 

Applying the same window size to lower-resolution images 

would allow individual trees, or at least multiple trees, to be fully 

contained within the window, potentially improving 

classification accuracy. Similar misclassification was also 

observed in shadowed regions. To address this, a promising 

approach is to pre-identify shadow areas and assign them lower 

weights during the voting process, thereby reducing their 

influence on the final classification result. Additionally, the 

classification accuracy for broadleaf trees tended to be lower, 

which is expected to improve with the inclusion of more training 

data. 

 

3.3 Accuracy Evaluation on Orthophoto 

Finally, the aggregated classification results on the orthophoto 

were evaluated. As shown in Figure 7, apart from areas densely 

populated by a single species, such as Chamaecyparis obtusa 

(Japanese cypress) and Pinus densiflora (Japanese red pine), the 

majority of regions were classified as Cryptomeria japonica 

(Japanese cedar). As mentioned earlier, misclassification into 

Cryptomeria japonica (Japanese cedar) was frequently observed 

in the results on individual aerial images, and this trend persisted 

in the final classification results on the orthophoto. Additionally, 

during the mapping of classification results from the raw images 

to the point cloud, points located behind foreground tree, thus not 

actually visible in the images, were nonetheless associated with 

visible regions due to the geometric projection process. This led 

to inappropriate label assignments in those areas. To address this 

issue, we aim to introduce a visibility check for the point cloud 

in future implementations. 

 

4. Conclusion and Future Works 

In this study, we proposed a novel framework that integrates raw 

UAV images with 3D point clouds and orthophotos to accurately 

aggregate tree species classification results. The effectiveness of 

the proposed method was validated through experiments 

targeting representative tree species. 

 

Future work includes further improving classification accuracy 

through the integrated use of multi-resolution images, detecting 

shadow regions and estimating their influence on the final 

classification results, and introducing visibility analysis for the 

3D point cloud. We also plan to investigate the use of semantic 

segmentation to enhance pixel-level classification performance. 

 

Additionally, conducting validation experiments at multiple test 

sites with varying geographic conditions and vegetation 

compositions will be important for quantitatively evaluating the 

generalizability and robustness of the proposed method. 
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