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Abstract 

 

To reduce the high cost of manually detecting and removing gluten-containing grains from oat crops, drone imaging and deep 

learning can be used to automate the detection process. In a previous work, a multi-image object detection approach was proposed 

utilizing high-resolution RGB images captured by a drone using multi-view technology, including nadir and four oblique angles. The 

images were georeferenced using bundle block adjustment (BBA), and a semi-supervised object detection model (Faster R-CNN) 

was trained to identify foreign grains. The detector outputs were projected into ground coordinates using a photogrammetric 

technique. These coordinates were then analyzed using a clustering approach to generate a detection map of barley plant locations. In 

this study focused on three main objectives. First, it aimed to optimize parameters related to the clustering phase. Second, it 

evaluated drone data capture settings by assessing whether fewer images could maintain acceptable detection accuracy to reduce 

flight time. Third, it tested whether direct georeferencing could produce results comparable to those obtained using BBA-based 

georeferencing. The study showed that using fewer images—for example, two view angles and a side overlap of 80%—could 

maintain good detection accuracy (omission error of 0.14 and commission error of 0.27). This setup would reduce data collection 

time from 100 min/ha to 40 min/ha—a substantial improvement for practical field operations. Direct georeferencing showed 

promising practical results, even though error statistics increased slightly compared to BBA-based georeferencing. These 

improvements could significantly reduce data capture and processing time, representing a meaningful step toward a practical, cost-

effective solution for end-users aiming to detect weedy foreign barley in gluten-free oat production fields. 

 

 

1. Introduction 

Oats are part of a healthy diet and are especially important for 

people with celiac disease, who cannot consume gluten-

containing grains such as wheat and rye (Butt et al. 2008; 

Varma et al. 2016). Although oats are naturally gluten-free, the 

purity of the final product can be compromised by the presence 

of foreign grains in the crop. Contamination on the farm can 

occur through various means, such as contaminated seed 

material, seed transportation by birds and animals, or flooding. 

Currently, the detection and removal of foreign grains are done 

manually, with workers inspecting fields on foot to identify and 

remove them. This monotonous and labor-intensive phase 

significantly increases the cost of producing gluten-free oats. 

The process could be optimized by developing methods that use 

drone imaging and artificial intelligence to detect foreign grains. 

 

Remote sensing technologies have the potential to provide tools 

for detecting foreign grains in the crop, enabling farmers to 

manage their fields more effectively. We previously developed 

a deep learning-based multi-image object detection method to 

identify individual foreign grains in oat fields (Khoramshahi et 

al., 2023). The approach utilizes high-resolution RGB images 

captured by a drone using multi-view technology, including 

nadir and oblique angles (front, back, left, and right), allowing 

each individual plant to theoretically appear in multiple images. 

This enhances the visibility of even those individuals growing 

beneath the main vegetation layer. Then images were 

georeferenced using bundle block adjustment (BBA) and a 

semi-supervised object detection architecture (Faster R-CNN), 

was trained to detect foreign grains. The outputs of the object 

detector were transformed into ground coordinates using a 

photogrammetric technique. These coordinates were then 

analyzed using a clustering approach to generate a probabilistic 

map of the barley plant locations. The results were promising, 

with over 80% of the foreign barley plants successfully detected 

(Khoramshahi et al., 2023). 

 

However, it is essential to optimize the entire process chain — 

from drone flight to calculation and data transfer — to ensure 

that the results are available to the user (human or robot) as 

quickly as possible. In this context, the objectives of this study 

were to 1) test whether the BBA, which requires a lot of  

computing time and power, could be omitted, i.e. whether we 

can achieve sufficient accuracy results with direct 

georeferencing, 2) test if less images could still provide 

acceptable accuracy in order to speed up the drone flight time, 

and 3) simplify and optimize hyperparameters related to 

clustering phase.  

 

2. Materials and Methods 

The simplified methodology pipeline, starting from multi-angle 

drone data capture and ending to detection map with ground 

coordinates to support farmer in plant removal, is presented in 

Figure 1. This study focuses to two phases: 1) to optimize drone 

data capture and processing and 2) to optimize the 3D 

localization and clustering phase. 
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Figure 1. Methodological framework for detecting foreign grains in gluten-free oat production fields using high-resolution multi-

view drone imaging. 

 

 

  

Figure 2. Five examples of multi-view images from study area. Starting from left: left, right, nadir front and back direction. Total 

number of images used in the analysis was 1495. 

 

 

2.1 Datasets 

A multi-angle drone dataset was captured using a DJI Matrice 

300 RTK drone, equipped with a Zenmuse P1 RGB camera 

(8192 × 5460 pixels, 35 mm lens), a dual-frequency GNSS 

receiver, and an inertial measurement unit (IMU). The data 

collection took place on 9 July 2021 at 14:00 local time. The 

flight altitude was 12 meters, resulting in a ground sample 

distance (GSD) of approximately 1.6 mm for the images. The 

flight was conducted in “Smart Oblique Capture” mode, which 

acquires oblique images in four directions (left, right, back, and 

front) at a 66-degree tilt angle, in addition to nadir images 

(Figure 2). Image overlaps, based on nadir images, were set to 

50% in the frontal direction and 80% in the side direction. 

When including all five view directions, each point in the study 

area was theoretically visible in 50 images. These settings 

resulted in a total drone flight time of 100 minutes to cover a 1-

hectare field area. 

 

The study trial was established on 29 May 2021 in Ilmajoki, 

Finland. The oat cultivar was sown at a standard sowing rate of 

500 seeds/m², with additional barley seeds mixed in at a rate of 

0.5–1 seeds/m². A detailed field survey was conducted to detect 

and record the coordinates of all foreign grain individuals 

within the oat stand. In total, 524 barley plants were identified. 

Ground control points were installed in the field, and their 

coordinates were measured during data collection. 

 

A semi-supervised object detection framework, namely 

Unbiased Teacher v2 (Liu et al., 2022), using the Faster R-CNN 

architecture (Ren et al., 2016), was trained to detect foreign 

grains. At the image level, an average precision of 95% was 

achieved (see Khoramshahi et al., 2023, for more details). This 

study does not focus on the object detection phase itself but uses 

the same model and image detections from Khoramshahi et al. 

(2023) to optimize subsequent processing phases using the 

dataset. The outputs of the object detector include the image 

coordinates of detected objects and a confidence score 

indicating the model’s certainty about each prediction. In this 

study, we filtered out all detections with a confidence score 

below 0.5. (Note: in Khoramshahi et al. (2023), the confidence 

threshold was set to 0.9 before the clustering phase.) The 

median confidence score was higher for nadir, right, and back 

images compared to left and front images (Figure 3). 

 

 
Figure 3. A boxplot visualizing the confidence score provided 

by object detector to all five view directions in the image 

dataset. Please note that detections where confidence score was 

lower than 0.5 was removed for the analysis. 
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2.2 Methods 

In the 3D localization phase, the image coordinates of detected 

objects (i.e., the 2D positions of objects within the images) are 

transformed into real-world ground coordinates (i.e., 3D 

positions in a geographic coordinate system). This 

transformation is achieved using the classic photogrammetric 

collinearity equations. For simplification of ground coordinate 

estimation, a constant average altitude of the field was assumed 

for the study area. This was convenient as the area has very 

small variation in the terrain height. 

 

Object detection using multi-view image datasets yielded 

multiple unlabelled points per foreign grain, and these points are 

slightly scattered instead of aligning perfectly at one ground 

location. Thus, DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) clustering method (Ester et al. 1996) 

was employed to analyse the large number of points from the 

object detection projected to ground coordinates. DBSCAN is a 

powerful density-based clustering algorithm well-suited for 

discovering clusters of various shapes and handling noise in 

data. It is widely used in various applications, from spatial data 

analysis to anomaly detection but it sensitive of choosing right 

parameters (Schubert et al. 2017). Thus, the algorithm’s 

parameters—epsilon (the maximum distance between two 

samples to be accepted to add in same cluster) and min_samples 

(the minimum number of samples in a neighbourhood for a 

point to be considered a core point)—were optimized using a 

simple grid search to enhance clustering accuracy. The range in 

grid search for min_samples was from 3 to 15 and for epsilon 

0.1 to 0. 35 m. The final coordinate for each foreign grain was 

determined by calculating the mean position of all points within 

its corresponding cluster. An example of clustering in the test 

field is presented in Figure 4. 

 

 
Figure 4. Up: An example of unlabelled points in the ground as 

a result of the multi-view object detection and 3D localization 

(red “x” indicates the locations of the ground truth). Down: 

Points clustered with DBSCAN method (black triangles indicate 

the centre coordinates of clusters). The points that are not 

considered to part of any cluster are not presented in this image. 

 

Collecting images from five different view angles (four oblique 

+ one nadir), as proposed in previous work, increases 

considerable the duration of drone-based data collection 

compared to setups utilizing fewer viewing angles. To 

investigate the potential for optimizing this process, various 

data collection scenarios were tested by altering the 

combinations of oblique and nadir images. In addition, a test of 

decreasing side overlap from original 80% to 60% by removing 

every second flight line was performed. 

 

To test whether the BBA, which requires a lot of computing 

time and power, can be omitted in the data processing phase, i.e. 

whether we can get sufficiently accurate results with direct 

georeferencing, direct georeferencing results were firstly 

compared to those obtained through bundle block adjustment 

(BBA) using ground control points. Next, the accuracy of 

foreign grain detection was evaluated by comparing the 

estimated grain locations to ground-truth positions measured 

with a GNSS RTK receiver. 

 

Two performance metrics were used to evaluate the detection 

on the ground level:  Omission error = FN / (TP + FN) and 

commission error = FP / (TP + FP), where FP is the false 

positive, TP is the true positive, FN is the false negative, TN is 

the true negative. Omission error indicates how many foreign 

grains were missed compared to the ground truth field data, 

while commission error reflects how many of the detected 

grains were not actually present in the ground truth data—i.e., a 

high commission error means the method is detecting too many 

false positives. As the false negatives should have higher cost 

than false positives in this application, i.e. it is worse to miss 

actual foreign grains than suspect too many of those, omission 

error was minimized. However, as omission and commission 

errors are often trade-offs, only tests where a commission error 

was less than 0.4 was considered when looking the minimum 

omission errors. In addition, root mean square error (RMSE) 

was used as performance metric, when comparing estimated 

coordinates by the method to coordinates measured directly in 

the field. 

 

 

3. Results and Discussion 

3.1 Optimizing parameters for BBA-based georeferencing 

The grid search for optimizing DBSCAN clustering parameters 

showed that omission error was typically high when epsilon (the 

maximum distance between two samples to be considered part 

of the same cluster) was too small, while commission error 

tended to be high when min_samples was too low (Figure 5). 

For example, the lowest omission error—under the condition 

that commission error does not exceed 0.4—was achieved with 

epsilon = 0.23 and min_samples = 5 when using nadir and left-

view images (Figure 5). The grid resulted in slightly different 

parameters to different scenarios (Table 1 and 2). Optimal value 

for Min samples varied from 3 to 8 and epsilon (Max dist.) from 

0.23 to 0.35 m.  
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Figure 5: Optimization of DBSCAN parameters min_samples 

and epsilon using nadir and left-view images. Note that 

min_samples values of 4 and 5 were also analyzed but are 

omitted from the figure to improve readability. 

 

 

View angles 
Omission 

error 

Commission 

error 

RMSE 

(m) 

Min 

samples 

Max 

dist. 

(m) 

Flight 

time 

/ ha 

(min) 

back 0.25 0.37 0.34 4 0.35 20 

front 0.30 0.38 0.34 5 0.35 20 

left 0.27 0.34 0.34 4 0.35 20 

right 0.16 0.38 0.33 3 0.35 20 

nadir 0.13 0.30 0.15 3 0.35 20 

front+left 0.26 0.30 0.31 6 0.35 40 

nadir+left 0.14 0.27 0.20 5 0.23 40 

nadir+front+left 0.19 0.34 0.23 6 0.25 60 

all 0.19 0.34 0.24 8 0.23 100 

Table 1: The best results for each individual view angle and 

their selected combinations using the original 80% side 

overlap in nadir images and the DBSCAN parameters (“Min 

samples”: minimum number of points required in a 

neighbourhood for a point to be classified as a core point. and 

“Max dist.”: Maximum distance between two samples for one to 

be considered within the other’s neighbourhood) at the time 

they were achieved. RMSE (Root Mean Square Error) was 

calculated by comparing estimated and measured coordinates. 

Flight time per hectare (min/ha) indicates the data collection 

efficiency in each scenario. BBA-based georeferencing. 

 

 

 
Figure 6. Omission and commission error and RMSE Root 

Mean Square Error) for each image views and combination. 

 

The lowest omission errors were achieved when using nadir and 

nadir+ left datasets (Table 1, Figure 6). When comparing these 

two, nadir had smaller RMSE value but higher commission 

error than nadir+left.  

 

View angles 
Omission 

error 

Commission 

error 

RMSE 

(m) 

Min 

samples 

Max 

dist. 

 (m) 

Flight 

time / 

ha (min) 

back 0.20 0.12 0.37 3 0.35 10 

front 0.37 0.11 0.37 4 0.35 10 

left 0.27 0.09 0.45 3 0.35 10 

right 0.22 0.09 0.32 4 0.35 10 

nadir 0.40 0.06 0.17 3 0.35 10 

front+left 0.28 0.12 0.36 5 0.35 20 

nadir+left 0.22 0.09 0.32 4 0.35 20 

nadir+front+left 0.22 0.16 0.30 5 0.3 30 

all 0.24 0.12 0.24 6 0.3 50 

Table 2: The best results for each individual view angle and 

their selected combinations using the 60% side overlap in nadir 

images and the DBSCAN parameters (“Min samples”: 

minimum number of points required in a neighborhood for a 

point to be classified as a core point. and “Max dist.”: 

Maximum distance between two samples for one to be 

considered within the other’s neighbourhood) at the time they 

were achieved. RMSE (Root Mean Square Error) was 

calculated by comparing estimated and measured coordinates. 

Flight time per hectare (min/ha) indicates the data collection 

efficiency in each scenario. BBA-based georeferencing. 

 

 
Figure 7: Omission error for each image views and combination 

in the case of 80 % and 60 % of side overlap. 

 

As expected, omission error generally increased as side overlap 

decreased from 80% to 60% (Figure 7; Tables 1 and 2), with the 

most significant change observed when using only nadir 

images. The only exception was the back-view image dataset. 
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For example, in the nadir + left configuration, omission error 

rose from 0.14 to 0.22. 

 

These findings suggest that using two view angles and a side 

overlap of 80%, or slightly less, would be an optimal approach 

for this application. This setup would reduce data collection 

time from 100 min/ha to 40 min/ha, which isa remarkable 

improvement for practical field operations. 

 

3.2 Optimizing parameters for direct georeferencing 

Considering the geometrical accuracies based on ground control 

points, the horizontal and vertical accuracies achieved using 

BBA were 0.035 m and 0.1 m, respectively. In contrast, direct 

georeferencing resulted in accuracies of 0.27 m horizontally and 

0.13 m vertically. This would indicate that direct georeferencing 

would provide enough accurate coordinates for this application. 

 

However, based on the ground truth barley locations and the 

estimated locations, the horizontal RMSE of foreign barley 

detection was 24 cm when using BBA and 35 cm when using 

direct georeferencing (Table 1, Table 3, Figure 8). In addition, 

with optimized parameters and using the full image dataset, the 

omission and commission errors were 0.19 and 0.34, 

respectively, when using BBA, and 0.39 and 0.35 when using 

direct georeferencing (Table 1, Table 3, Figure 8). 

 

 

View angles 
Omission 

error 

Commis 

sion 

error 

RMSE 

(m) 

Min 

samples 

Max 

dist. 

(m) 

Flight 

time 

/ ha 

(min) 

back 0.37 0.35 0.40 5 0.35 20 

front 0.61 0.39 0.59 5 0.3 20 

left 0.47 0.40 0.51 7 0.35 20 

right 0.77 0.36 0.54 4 0.3 20 

nadir 0.33 0.38 0.34 3 0.35 20 

front+left 0.47 0.40 0.51 7 0.35 40 

nadir+left 0.31 0.38 0.31 5 0.35 40 

nadir+front+left 0.52 0.32 0.40 9 0.35 60 

all 0.39 0.35 0.35 10 0.3 100 

 

Table 3: The best results for each individual view angle and 

their selected combinations using the original 80% side 

overlap in nadir images and the DBSCAN parameters (“Min 

samples”: minimum number of points required in a 

neighbourhood for a point to be classified as a core point. and 

“Max dist.”: Maximum distance between two samples for one to 

be considered within the other’s neighbourhood) at the time 

they were achieved. RMSE (Root Mean Square Error) was 

calculated by comparing estimated and measured coordinates. 

Flight time per hectare (min/ha) indicates the data collection 

efficiency in each scenario. Direct georeferencing. 

 

When every second flight line was removed from the analysis—

resulting in 60% side overlap in nadir images—direct 

georeferencing produced slightly larger errors compared to 

BBA-based georeferencing (Table 4, Figure 8). For both 

overlap configurations, RMSE was 25 cm using BBA and 35–

37 cm with direct georeferencing (Figure 8). 

 

There was more variation between the different view angles in 

the direct georeferencing results than in the BBA-based results. 

Interestingly, using only the back-view images resulted in 

smaller errors than any other view in the case of 60% overlap 

(Table 4). 

 

This particular dataset had a relatively high density of foreign 

grains due to its nature as a training trial, which may have 

caused more confusion with nearby plants and, therefore, more 

clustering errors. Thus, it would be of great interest to test how 

direct georeferencing would perform in a practical gluten-free 

oat production field with a lower density of foreign grains. 

 

View angles 
Omission 

error 

Commission 

error 

RMSE 

(m) 

Min 

samples 

Max 

dist. 

(m) 

Flight 

time 

/ ha 

(min) 

back 0.23 0.25 0.41 3 0.35 10 

front 0.63 0.32 0.62 5 0.35 10 

left 0.76 0.39 0.58 3 0.23 10 

right 0.79 0.36 0.51 3 0.3 10 

nadir 0.70 0.34 0.34 3 0.35 10 

front+left 0.65 0.36 0.57 6 0.35 20 

nadir+left 0.44 0.37 0.32 4 0.35 20 

nadir+front+left 0.53 0.36 0.43 6 0.3 30 

all 0.28 0.39 0.38 7 0.35 50 

Table 4: The best results for each individual view angle and 

their selected combinations using the 60% side overlap in nadir 

images and the DBSCAN parameters parameters (“Min 

samples”: minimum number of points required in a 

neighborhood for a point to be classified as a core point. and 

“Max dist.”: Maximum distance between two samples for one to 

be considered within the other’s neighborhood) at the time they 

were achieved. RMSE (Root Mean Square Error) was 

calculated by comparing estimated and measured coordinates. 

Flight time per hectare (min/ha) indicates the data collection 

efficiency in each scenario. Direct georeferencing. 

 

 
 

Figure 8. Omission and commission error and RMSE (Root 

Mean Square Error) when using 80 and 60 % overlap (SO) 

based on BBA (bundle block adjustment) and DG (direct 

georeferencing) 

 

 

4. Conclusions and Future Work 

This study showed that drone-based data collection and 

processing for foreign grains detection can be significantly 

speeded up achieving comparable accuracy than in previous 

study (Khoramshahi et al. 2023). For example, using only two 

view angles and a side overlap of 80% still maintained good 

detection accuracy. This setup alone would reduce data 

collection time from 100 minutes/ha to 40 minutes/ha—a 

substantial improvement for practical field operations. In 
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addition, the relatively good results achieved with only 60% 

side overlap suggest that the optimal overlap may be less than 

80%, which could further shorten flight time. Direct 

georeferencing showed promising practical results, even if error 

statistics increased slightly compared to BBA-based 

georeferencing. This represents a significant improvement 

towards delivering a practical, cost-effective solution for the 

end-users aiming to detect weedy foreign barleys in gluten-free 

oat production fields. An important future work is to test and 

improve the full approach in practical gluten-free oat production 

field. In addition, we are developing tools to also assist foreign 

grain removal, not only detect and provide locations of them. 

Firstly, a mobile-based solution to guide the person on the 

optimal route to found foreign grains is planned to test. 

Secondly, automatic removing of foreign grains is studied using 

a cutter attached to the drone. 
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