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Abstract

To reduce the high cost of manually detecting and removing gluten-containing grains from oat crops, drone imaging and deep
learning can be used to automate the detection process. In a previous work, a multi-image object detection approach was proposed
utilizing high-resolution RGB images captured by a drone using multi-view technology, including nadir and four oblique angles. The
images were georeferenced using bundle block adjustment (BBA), and a semi-supervised object detection model (Faster R-CNN)
was trained to identify foreign grains. The detector outputs were projected into ground coordinates using a photogrammetric
technique. These coordinates were then analyzed using a clustering approach to generate a detection map of barley plant locations. In
this study focused on three main objectives. First, it aimed to optimize parameters related to the clustering phase. Second, it
evaluated drone data capture settings by assessing whether fewer images could maintain acceptable detection accuracy to reduce
flight time. Third, it tested whether direct georeferencing could produce results comparable to those obtained using BBA-based
georeferencing. The study showed that using fewer images—for example, two view angles and a side overlap of 80%—could
maintain good detection accuracy (omission error of 0.14 and commission error of 0.27). This setup would reduce data collection
time from 100 min/ha to 40 min/ha—a substantial improvement for practical field operations. Direct georeferencing showed
promising practical results, even though error statistics increased slightly compared to BBA-based georeferencing. These
improvements could significantly reduce data capture and processing time, representing a meaningful step toward a practical, cost-
effective solution for end-users aiming to detect weedy foreign barley in gluten-free oat production fields.

1. Introduction was trained to detect foreign grains. The outputs of the object
detector were transformed into ground coordinates using a
photogrammetric technique. These coordinates were then
analyzed using a clustering approach to generate a probabilistic
map of the barley plant locations. The results were promising,
with over 80% of the foreign barley plants successfully detected
(Khoramshahi et al., 2023).

Oats are part of a healthy diet and are especially important for
people with celiac disease, who cannot consume gluten-
containing grains such as wheat and rye (Butt et al. 2008;
Varma et al. 2016). Although oats are naturally gluten-free, the
purity of the final product can be compromised by the presence
of foreign grains in the crop. Contamination on the farm can

occur through various means, such as contaminated seed  However, it is essential to optimize the entire process chain —

material, seed transportation by birds and animals, or flooding.
Currently, the detection and removal of foreign grains are done
manually, with workers inspecting fields on foot to identify and
remove them. This monotonous and labor-intensive phase
significantly increases the cost of producing gluten-free oats.
The process could be optimized by developing methods that use
drone imaging and artificial intelligence to detect foreign grains.

Remote sensing technologies have the potential to provide tools
for detecting foreign grains in the crop, enabling farmers to
manage their fields more effectively. We previously developed
a deep learning-based multi-image object detection method to
identify individual foreign grains in oat fields (Khoramshahi et
al., 2023). The approach utilizes high-resolution RGB images
captured by a drone using multi-view technology, including
nadir and oblique angles (front, back, left, and right), allowing
each individual plant to theoretically appear in multiple images.
This enhances the visibility of even those individuals growing
beneath the main vegetation layer. Then images were
georeferenced using bundle block adjustment (BBA) and a
semi-supervised object detection architecture (Faster R-CNN),

from drone flight to calculation and data transfer — to ensure
that the results are available to the user (human or robot) as
quickly as possible. In this context, the objectives of this study
were to 1) test whether the BBA, which requires a lot of
computing time and power, could be omitted, i.e. whether we
can achieve sufficient accuracy results with direct
georeferencing, 2) test if less images could still provide
acceptable accuracy in order to speed up the drone flight time,
and 3) simplify and optimize hyperparameters related to
clustering phase.

2. Materials and Methods

The simplified methodology pipeline, starting from multi-angle
drone data capture and ending to detection map with ground
coordinates to support farmer in plant removal, is presented in
Figure 1. This study focuses to two phases: 1) to optimize drone
data capture and processing and 2) to optimize the 3D
localization and clustering phase.
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Figure 1. Methodological framework for detecting foreign grains in gluten-free oat production fields using high-resolution multi-
view drone imaging.

Figure 2. Fi
number of images used in the analysis was 1495.

2.1 Datasets

A multi-angle drone dataset was captured using a DJI Matrice
300 RTK drone, equipped with a Zenmuse P1 RGB camera
(8192 x 5460 pixels, 35 mm lens), a dual-frequency GNSS
receiver, and an inertial measurement unit (IMU). The data
collection took place on 9 July 2021 at 14:00 local time. The
flight altitude was 12 meters, resulting in a ground sample
distance (GSD) of approximately 1.6 mm for the images. The
flight was conducted in “Smart Oblique Capture” mode, which
acquires oblique images in four directions (left, right, back, and
front) at a 66-degree tilt angle, in addition to nadir images
(Figure 2). Image overlaps, based on nadir images, were set to
50% in the frontal direction and 80% in the side direction.
When including all five view directions, each point in the study
area was theoretically visible in 50 images. These settings
resulted in a total drone flight time of 100 minutes to cover a 1-
hectare field area.

The study trial was established on 29 May 2021 in limajoki,
Finland. The oat cultivar was sown at a standard sowing rate of
500 seeds/m?2, with additional barley seeds mixed in at a rate of
0.5-1 seeds/m2. A detailed field survey was conducted to detect
and record the coordinates of all foreign grain individuals
within the oat stand. In total, 524 barley plants were identified.
Ground control points were installed in the field, and their
coordinates were measured during data collection.

A semi-supervised object detection framework, namely
Unbiased Teacher v2 (Liu et al., 2022), using the Faster R-CNN
architecture (Ren et al., 2016), was trained to detect foreign
grains. At the image level, an average precision of 95% was
achieved (see Khoramshahi et al., 2023, for more details). This
study does not focus on the object detection phase itself but uses

ve examples of multi-view images from sudy area. Starting from left: left, right, nadir front and back direction. Total

the same model and image detections from Khoramshahi et al.
(2023) to optimize subsequent processing phases using the
dataset. The outputs of the object detector include the image
coordinates of detected objects and a confidence score
indicating the model’s certainty about each prediction. In this
study, we filtered out all detections with a confidence score
below 0.5. (Note: in Khoramshahi et al. (2023), the confidence
threshold was set to 0.9 before the clustering phase.) The
median confidence score was higher for nadir, right, and back

images compared to left and front images (Figure 3).
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Figure 3. A boxplot visualizing the confidence score provided
by object detector to all five view directions in the image
dataset. Please note that detections where confidence score was
lower than 0.5 was removed for the analysis.
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2.2 Methods

In the 3D localization phase, the image coordinates of detected
objects (i.e., the 2D positions of objects within the images) are
transformed into real-world ground coordinates (i.e., 3D
positions in a geographic coordinate system). This
transformation is achieved using the classic photogrammetric
collinearity equations. For simplification of ground coordinate
estimation, a constant average altitude of the field was assumed
for the study area. This was convenient as the area has very
small variation in the terrain height.

Object detection using multi-view image datasets yielded
multiple unlabelled points per foreign grain, and these points are
slightly scattered instead of aligning perfectly at one ground
location. Thus, DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) clustering method (Ester et al. 1996)
was employed to analyse the large number of points from the
object detection projected to ground coordinates. DBSCAN is a
powerful density-based clustering algorithm well-suited for
discovering clusters of various shapes and handling noise in
data. It is widely used in various applications, from spatial data
analysis to anomaly detection but it sensitive of choosing right
parameters (Schubert et al. 2017). Thus, the algorithm’s
parameters—epsilon (the maximum distance between two
samples to be accepted to add in same cluster) and min_samples
(the minimum number of samples in a neighbourhood for a
point to be considered a core point)—were optimized using a
simple grid search to enhance clustering accuracy. The range in
grid search for min_samples was from 3 to 15 and for epsilon
0.1 to 0. 35 m. The final coordinate for each foreign grain was
determined by calculating the mean position of all points within
its corresponding cluster. An example of clustering in the test
field is presented in Figure 4.
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Figure 4. Up: An example of unlabelled points in the ground as
a result of the multi-view object detection and 3D localization
(red “x” indicates the locations of the ground truth). Down:
Points clustered with DBSCAN method (black triangles indicate
the centre coordinates of clusters). The points that are not
considered to part of any cluster are not presented in this image.

Collecting images from five different view angles (four oblique
+ one nadir), as proposed in previous work, increases
considerable the duration of drone-based data collection
compared to setups utilizing fewer viewing angles. To
investigate the potential for optimizing this process, various
data collection scenarios were tested by altering the
combinations of oblique and nadir images. In addition, a test of
decreasing side overlap from original 80% to 60% by removing
every second flight line was performed.

To test whether the BBA, which requires a lot of computing
time and power, can be omitted in the data processing phase, i.e.
whether we can get sufficiently accurate results with direct
georeferencing, direct georeferencing results were firstly
compared to those obtained through bundle block adjustment
(BBA) using ground control points. Next, the accuracy of
foreign grain detection was evaluated by comparing the
estimated grain locations to ground-truth positions measured
with a GNSS RTK receiver.

Two performance metrics were used to evaluate the detection
on the ground level: Omission error = FN / (TP + FN) and
commission error = FP / (TP + FP), where FP is the false
positive, TP is the true positive, FN is the false negative, TN is
the true negative. Omission error indicates how many foreign
grains were missed compared to the ground truth field data,
while commission error reflects how many of the detected
grains were not actually present in the ground truth data—i.e., a
high commission error means the method is detecting too many
false positives. As the false negatives should have higher cost
than false positives in this application, i.e. it is worse to miss
actual foreign grains than suspect too many of those, omission
error was minimized. However, as omission and commission
errors are often trade-offs, only tests where a commission error
was less than 0.4 was considered when looking the minimum
omission errors. In addition, root mean square error (RMSE)
was used as performance metric, when comparing estimated
coordinates by the method to coordinates measured directly in
the field.

3. Results and Discussion
3.1 Optimizing parameters for BBA-based georeferencing

The grid search for optimizing DBSCAN clustering parameters
showed that omission error was typically high when epsilon (the
maximum distance between two samples to be considered part
of the same cluster) was too small, while commission error
tended to be high when min_samples was too low (Figure 5).
For example, the lowest omission error—under the condition
that commission error does not exceed 0.4—was achieved with
epsilon = 0.23 and min_samples = 5 when using nadir and left-
view images (Figure 5). The grid resulted in slightly different
parameters to different scenarios (Table 1 and 2). Optimal value
for Min samples varied from 3 to 8 and epsilon (Max dist.) from
0.23t0 0.35 m.
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Figure 5: Optimization of DBSCAN parameters min_samples
and epsilon using nadir and left-view images. Note that
min_samples values of 4 and 5 were also analyzed but are
omitted from the figure to improve readability.
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Figure 6. Omission and commission error and RMSE Root
Mean Square Error) for each image views and combination.

The lowest omission errors were achieved when using nadir and
nadir+ left datasets (Table 1, Figure 6). When comparing these
two, nadir had smaller RMSE value but higher commission
error than nadir+left.

Max Flight
. OmissionCommissionRMSE| Min . | time
View angles dist.

error error (m) |samples /ha
(M) | (i

(min)
back 0.25 0.37 034 4 0.35| 20
front 0.30 0.38 034 5 0.35| 20
left 0.27 0.34 034 4 0.35| 20
right 0.16 0.38 0.33 3 035 20
nadir 0.13 0.30 0.15 3 035 20
front+left 0.26 0.30 0.31 6 035| 40
nadir+left 0.14 0.27 020| 5 0.23] 40
nadir+front+lefy 0.19 0.34 023| 6 0.25| 60
all 0.19 0.34 024] 8 0.23] 100

Table 1: The best results for each individual view angle and
their selected combinations using the original 80% side
overlap in nadir images and the DBSCAN parameters (“Min
samples”: minimum number of points required in a
neighbourhood for a point to be classified as a core point. and
“Max dist.”: Maximum distance between two samples for one to
be considered within the other’s neighbourhood) at the time
they were achieved. RMSE (Root Mean Square Error) was
calculated by comparing estimated and measured coordinates.
Flight time per hectare (min/ha) indicates the data collection
efficiency in each scenario. BBA-based georeferencing.

View angles OTisionCommission RUSE| Win i | ing)
(m) [ha (min)
back 0.20 0.12 037| 3 035 10
front 0.37 0.11 037| 4 035 10
left 0.27 0.09 045| 3 035 10
right 0.22 0.09 032| 4 035 10
nadir 0.40 0.06 017| 3 035 10
front+left 0.28 0.12 0.36 5 0.35 20
nadir+left 0.22 0.09 0.32 4 0.35 20
nadir+front+leftf 0.22 0.16 0.30 5 0.3 30
all 0.24 0.12 024 6 0.3 50

Table 2: The best results for each individual view angle and
their selected combinations using the 60%o side overlap in nadir
images and the DBSCAN parameters (“Min samples”:
minimum number of points required in a neighborhood for a
point to be classified as a core point. and “Max dist.”:
Maximum distance between two samples for one to be
considered within the other’s neighbourhood) at the time they
were achieved. RMSE (Root Mean Square Error) was
calculated by comparing estimated and measured coordinates.
Flight time per hectare (min/ha) indicates the data collection
efficiency in each scenario. BBA-based georeferencing.
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Figure 7: Omission error for each image views and combination
in the case of 80 % and 60 % of side overlap.

As expected, omission error generally increased as side overlap
decreased from 80% to 60% (Figure 7; Tables 1 and 2), with the
most significant change observed when using only nadir
images. The only exception was the back-view image dataset.
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For example, in the nadir + left configuration, omission error
rose from 0.14 to 0.22.

These findings suggest that using two view angles and a side
overlap of 80%, or slightly less, would be an optimal approach
for this application. This setup would reduce data collection
time from 100 min/ha to 40 min/ha, which isa remarkable
improvement for practical field operations.

3.2 Optimizing parameters for direct georeferencing

Considering the geometrical accuracies based on ground control
points, the horizontal and vertical accuracies achieved using
BBA were 0.035 m and 0.1 m, respectively. In contrast, direct
georeferencing resulted in accuracies of 0.27 m horizontally and
0.13 m vertically. This would indicate that direct georeferencing
would provide enough accurate coordinates for this application.

However, based on the ground truth barley locations and the
estimated locations, the horizontal RMSE of foreign barley
detection was 24 cm when using BBA and 35 cm when using
direct georeferencing (Table 1, Table 3, Figure 8). In addition,
with optimized parameters and using the full image dataset, the
omission and commission errors were 0.19 and 0.34,
respectively, when using BBA, and 0.39 and 0.35 when using
direct georeferencing (Table 1, Table 3, Figure 8).

Interestingly, using only the back-view images resulted in
smaller errors than any other view in the case of 60% overlap
(Table 4).

This particular dataset had a relatively high density of foreign
grains due to its nature as a training trial, which may have
caused more confusion with nearby plants and, therefore, more
clustering errors. Thus, it would be of great interest to test how
direct georeferencing would perform in a practical gluten-free
oat production field with a lower density of foreign grains.

- - - max [Flight
. (OmissionCommissionRMSE|[ Min . time
View angles dist.
error error (m) [samples m) /ha
(min)
back 0.23 0.25 0.41 3 0.35 | 10
front 0.63 0.32 0.62 5 0.35 | 10
left 0.76 0.39 0.58 3 023 | 10
right 0.79 0.36 0.51 3 0.3 10
nadir 0.70 0.34 0.34 3 035 | 10
front+left 0.65 0.36 0.57 6 035 | 20
nadir+left 0.44 0.37 0.32 4 035 | 20
nadir+front+left 0.53 0.36 0.43 6 0.3 30
all 0.28 0.39 0.38 7 0.35 | 50

Commis Max Flight

. Omission ~ . RMSE| Min . time

View angles dist.

error (m) samples /ha

error (m) .

(min)

back 037 035 040| 5 0.35 | 20
front 061 039 059| 5 03 | 20
left 047 040 051| 7 0.35 | 20
right 077 036 054| 4 03 | 20
nadir 033 038 034| 3 0.35 | 20
front+left 047 040 051| 7 0.35 | 40
nadir+left 031 038 031| 5 0.35 | 40
nadir+front+leff 052 032 040| 9 0.35 | 60
all 039 035 035 10 0.3 | 100

Table 3: The best results for each individual view angle and
their selected combinations using the original 80% side
overlap in nadir images and the DBSCAN parameters (“Min
samples”: minimum number of points required in a
neighbourhood for a point to be classified as a core point. and
“Max dist.”: Maximum distance between two samples for one to
be considered within the other’s neighbourhood) at the time
they were achieved. RMSE (Root Mean Square Error) was
calculated by comparing estimated and measured coordinates.
Flight time per hectare (min/ha) indicates the data collection
efficiency in each scenario. Direct georeferencing.

When every second flight line was removed from the analysis—
resulting in 60% side overlap in nadir images—direct
georeferencing produced slightly larger errors compared to
BBA-based georeferencing (Table 4, Figure 8). For both
overlap configurations, RMSE was 25 ¢cm using BBA and 35—
37 cm with direct georeferencing (Figure 8).

There was more variation between the different view angles in
the direct georeferencing results than in the BBA-based results.

Table 4: The best results for each individual view angle and
their selected combinations using the 60%b side overlap in nadir
images and the DBSCAN parameters parameters (“Min
samples”: minimum number of points required in a
neighborhood for a point to be classified as a core point. and
“Max dist.”: Maximum distance between two samples for one to
be considered within the other’s neighborhood) at the time they
were achieved. RMSE (Root Mean Square Error) was
calculated by comparing estimated and measured coordinates.
Flight time per hectare (min/ha) indicates the data collection
efficiency in each scenario. Direct georeferencing.
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Figure 8. Omission and commission error and RMSE (Root
Mean Square Error) when using 80 and 60 % overlap (SO)
based on BBA (bundle block adjustment) and DG (direct

georeferencing)

4. Conclusions and Future Work

This study showed that drone-based data collection and
processing for foreign grains detection can be significantly
speeded up achieving comparable accuracy than in previous
study (Khoramshahi et al. 2023). For example, using only two
view angles and a side overlap of 80% still maintained good
detection accuracy. This setup alone would reduce data
collection time from 100 minutes/ha to 40 minutes/ha—a
substantial improvement for practical field operations. In
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addition, the relatively good results achieved with only 60%
side overlap suggest that the optimal overlap may be less than
80%, which could further shorten flight time. Direct
georeferencing showed promising practical results, even if error
statistics  increased slightly compared to BBA-based
georeferencing. This represents a significant improvement
towards delivering a practical, cost-effective solution for the
end-users aiming to detect weedy foreign barleys in gluten-free
oat production fields. An important future work is to test and
improve the full approach in practical gluten-free oat production
field. In addition, we are developing tools to also assist foreign
grain removal, not only detect and provide locations of them.
Firstly, a mobile-based solution to guide the person on the
optimal route to found foreign grains is planned to test.
Secondly, automatic removing of foreign grains is studied using
a cutter attached to the drone.
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