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Abstract

Sustainable grassland management practices enhance key ecological functions, including carbon sequestration, biodiversity
conservation, and the maintenance of soil fertility essential for climate change mitigation. Accurate and reliable estimation of grass
biomass is essential for decision making on harvesting time and rate of fertilizer application. Remote sensing and data analysis
technologies offer unprecedented opportunities for monitoring grassland dynamics, yet methodological challenges persist in
generalizing remote sensing-based models for different growths and different areas. This study investigates the estimation of grass
biomass of different growth stages during two years using multispectral UAS-based remote sensing. A leave-one-out cross-validation
was conducted using five harvest datasets to train and test random forest (RF) and partial least squares regression (PLSR) models,
assessing estimation accuracy within individual sites. This was followed by a cross-site evaluation, where models trained using data
from other locations were tested on each harvest date to evaluate model generalizability. The estimation models within the Maaninka
site yielded at the best NRMSEs 14.7%, but exceeded 55% on two cutting dates. Incorporating data from multiple sites improved
generalization or maintained similar accuracy across test dates. The findings indicated that using data from various locations can

improve model stability, especially in cases where local data does not provide strong predictive information.

1. Introduction

Grasslands are critical ecosystems that contribute to key
ecological  functions, including carbon  sequestration,
biodiversity conservation, and the maintenance of soil fertility.
Implementing sustainable grassland management practices
enhances these functions, thereby supporting climate change
mitigation and promoting long-term ecosystem stability.
Agricultural grasslands—particularly those used for harvested
forages— provide a significant portion of the feed for livestock
in Northen Europe.

Remote sensing technologies have the potential to provide tools
for estimating forage yield. Taking advantage of 3D information
acquired from cameras (e.g. Patel et al. 2024) or LiDAR (Hutt
et al. 2024) utilizing Uncrewed Aircraft System (UASs) as a
platform is an option to estimate biomass and yield in
grasslands. Furthermore, multiple studies have utilized spectral
information including multispectral (e.g. Hernandez et al. 2024)
and hyperspectral (Franceschini et al. 2022, Oliveira et al. 2020,
Oliveira et al. 2024, Wengert et al, 2022) datasets along with
diverse modelling techniques to estimate forage biomass, the
resulting models are often site-specific. Since the growing
conditions varies, it is still challenge to obtain a model which
generalizes across different locations or time periods with
varying environmental conditions (Bazzo et al., 2023). Grass
type and harvest timing influence biomass prediction (Viljanen
et al., 2018). Lussem et al. (2020) analysed a multi-year dataset
to predict forage yield based on plant height derived from low-
cost UAV imagery. Wengert et al. (2022) has investigated the
biomass estimation using eight multiple grass sites in natural
grasslands in Germany using data from hyperspectral imaging
data collected for different harvest dates of same year. They

verified that the camera had potential in the application, but
more studies are needed considering spectral range and more
growth periods.

This study investigates the estimation of biomass for different
growth stages/cuts and sites, utilizing UAS multispectral remote
sensing data features—particularly vegetation indices—to
identify those that are most optimal and stable across different
harvest times. Data from tree experimental sites of grass in two
years (2021 and 2022) were utilized. To evaluate within-site
estimation accuracy of partial least square regression (PLSR)
and random forest (RF), a leave-one-out cross-validation was
performed where, in each iteration, models were trained on four
harvest datasets of the same area and tested on the remaining
one. Additionally, a cross-site evaluation was performed by
training models on all data from other locations leaving the test
date from the target site out, enabling assessment of model
transferability and comparison between within-site and cross-
site prediction performance.

2. Materials and Methods
2.1 Study area and Datasets

Three experimental grass trial fields located Finland were used
(Figure 1). Isokyrd trial consisted of 240 test plots (Figure 1a),
with two different species of fescue. Most of the test plots (228)
consisted of tall fescue, while there were only 12 test plots of
meadow fescue. The test plots were organized in four columns
with 60 test plots in each column. The test plots with meadow
fescue were randomly located within the field. Ylistaro
comprised 54 test plots (Figure 1c), out of which 33 were fescue
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plots and 21 were timothy plots. The sites Isokyrd and Ylistaro
were separated by approximately 10 km, whereas Maaninka site
was located about 250 km from both. Maaninka field included
60 plots with dimensions of 1.5 x 8 m and each plot separated
by a similar sized cover plot (Figure 1b). The plant material was
pure timothy (Phleum pratense L. cultivar ‘Nuutti’) cultivated
as typically for silage grass. Different nitrogen treatments were
applied to each plot to generate greater variation between the
plots.

In-situ data biomass (fresh yield - FY) measurements were
performed across June-August of 2021 and 2022 (Table 1).
These dates corresponded to different growth periods in
Finland. Table 1 shows the mean and standard deviation of the
plots fresh yield measurements from three different study
areas—Maaninka, Isokyrd, and Ylistaro—collected across

multiple grass cuts and years.

M ets00, _Helsinki
R 68 135 km

Figure 1: Trail sites (a) Isokyrd, (b) Maaninka and (c) Ylistaro.
(d) Location of the study areas, data by OpenStreetMap.

Isokyrd has two datasets from 2021, showing a substantial
increase in yield from the second (18,115 kg/ha) to the third cut
(28,621 kg/ha). Ylistaro, with three harvest records, presented
its highest yield in the first cut of 2022 (31,588 kg/ha), the
highest single value across all sites, while the lowest was in the
second cut of 2022 (13,961 kg/ha). Maaninka site has the most
datasets, with first and third cut of 2021, first, second cut and
third cut of 2022, thus, it was selected to be the site used for
evaluating different setups of the regression models.

Maaninka FY ranged from a high of 21,947 kg/ha during the
first cut of 2022 to a low of 8,071 kg/ha during the second cut
of 2022. During these cuts, many plots exhibited high biomass

values, while a smaller number showed lower biomass due to
the absence of nitrogen fertilization (Figure 2). The standard
deviation of FY in the first cuts were greater than in the second
and third cuts, primarily due to the increased variability
introduced by plots with reduced or no nitrogen application. In
contrast, FY in the second and third cuts was more uniformly
distributed and generally lower in magnitude (Figure 2).
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Figure 2: Histogram of fresh yield in-situ data measurement for
each date.

The UAS campaigns for high-resolution remote sensing data
acquisition were carried out using a DJI Matrice 300 RTK
(M300), carrying a multispectral Micasense Altum camera, with
2064 x 1544 pixels images in five VNIR bands: blue (475 nm),
green (560 nm), red (661 nm), red-edge (717 nm), and NIR (842
nm), and an additional thermal band at 160 x 120 pixels for a
wavelength of 11,000 nm, which was not utilized. The flights
were conducted from approximately 100 m above ground level.
Flight dates for aerial monitoring were closely preceded or
coincided with the harvest dates.

Growth | Date harvest J;rEKg/hsat)d Flight date
First 2021-06-10 | 21554 | 5849 | 2021-06-09

8| Third 2021-09-02 8424 | 3825 | 2021-08-26
% First 2022-06-15 | 21947 | 4749 | 2022-06-14
= Second | 2022-07-21 | 8071 | 3327 | 2022-07-20
Third 2022-08-31 | 11169 | 4971 | 2022-08-30

g Second | 2021-07-21 | 18115 | 2500 | 2021-07-21
é Third 2021-09-16 | 28621 | 2461 | 2021-09-16
° Third 2021-09-16 | 18129 | 4215 | 2021-09-16
g First 2022-06-16 | 31588 | 4815 | 2022-06-16
> Second | 2022-09-07 | 13961 | 2538 | 2022-09-07

Table 1: Harvest dates, mean and standard deviation of fresh
yield (FY kg /ha) and flight dates for each study site.
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2.2 Data process and analysis

The geometric and radiometric processing of datasets were
executed in Agisoft Metashape 1.7 software, resulting on
approximate 3-4 cm spatial resolution multispectral reflectance
orthomosaics. Ground control points measured with RTK
GNSS receiver of approximated 2.5 cm accuracy were utilized
to ensure geometric accuracy among the multitemporal datasets.
The radiometric calibration and reflectance transformation were
performed considering the Micasense calibration parameters,
and its reflectance panel and irradiance sensor.

Several vegetation indices (VIs) (see Oliveira et al., 2024) were
computed from the multispectral orthomosaics. The Pearson’s
Correlation Coefficients (PCC) between the biomass and VIs
were analysed. To enhance model robustness under these
temporally variable conditions, only the most predictive VIs—
identified through the correlation analysis—were selected as
input features for the estimation models.

To evaluate the potential for developing models that generalize
across varying temporal conditions and sites, Random Forest
(RF) and partial least squares regression (PLSR) were applied to
estimate FY using the datasets collected from different harvests
and across two growing seasons. First, all features were
standardized to have zero mean and unit variance. The number
of trees in the RF was 500 and the ratio of features chosen at
each node was 0.3. The number of components in the PLS
regression was 3.

First tests were performed using only data from the Maaninka
study site. From the five grass harvest datasets—two from the
2021 season and three from 2022, a leave-one-out cross-
validation approach was used. In each iteration, four of the five
harvest datasets from Maaninka were used to train the PLSR
and RF regressors, while the remaining dataset (corresponding
to a single Maaninka cut date) was held out for testing. This
procedure was repeated until each date had been used once as
the test set. The estimation accuracy was quantified coefficient
of determination (R?) and Root Mean Square Error (RMSE) and
Normalized Root Mean Square Error (NRMSE) (Table 2).

To complement this within-site validation, a second evaluation
setup was implemented to assess model transferability across
locations. In this cross-site experiment, models were trained on
all available data from all sites (Isokyrdé and Ylistaro and
Maaninka) except one test date from Maaninka. The trained
models were evaluated on each Maaninka harvest date, allowing
for a comparison of within-site and cross-site model
performance.

3. Results

Figure 2 presents the absolute PCC values between the VIs and
FY for the Maaninka datasets, and Figure 3 presents the average
PCCs for each site. Several vegetation indices have a high
correlation with FY (PCC >0.8) in Maaninka. There were,
however, some vegetation indices that only correlated well with
FY for specific growth stage. The best performing vegetation
indices based on the PCC from Maaninka field trial for each cut
were BNDVI, DATT1, GBNDVI, GNDVI1, NDRE, OSAVI,
RDVI1 and SAVI (Figure 2). The PCCs were lower for Isokyrd
and Ylistaro compared to Maaninka, the highest PCCs for
Ylistaro were ARVI, DATT1, NDRE, OSAVI, SAVI, and TCI.
The 8 VIs with the highest PCCs from Maaninka area were
utilized to build the regression models.
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Figure 4. Average correlation coefficient between each
vegetation index and fresh yield (FY) in cut datasets per field
trial.

The predicted FY accuracies for both RF and PLSR in the
within-site test are presented in the Table 2 and the across-sites
performance is presented in Table 3. Figure 3 presents
scatterplots of predicted versus in-situ measured FY values for
each iteration of the cross-validation performed using RF. The
plots are arranged chronologically based on the harvest date
used as the test set, starting with the first harvest from 2021.
Predictions generated using within-site are displayed in the left
column, while those from the across-sites are shown in the right
column.

The best results within Maaninka site were achieved for the first
harvest in 2021, with NRMSE 14.71% using RF, the RF model
showed a good fit for the lower FY values (<12000 kg/ha),
while predictions for yields above 17500 kg/ha showed both
over- and underestimations (Figure 3). In contrast, the second
cut of 2022 (2022-07-20) model had the worst results (RF
NRMSE = 92.41%, PLSR NRMSE = 154.96%). For the second
and third cuts of 2022, both RF and PLSR achieved similar
results, although with high NRMSE for the third cut (NRMSE
over 55%).
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Trained on 4/5 Maaninka cut
RF PLSR
Test Data | RMSE | NRMSE R RMSE kg |NRMSE R
(Maaninka) | kg /ha % /ha %

2021-06-09( 3180 | 14.71 |0.71| 3860 | 17.85 | 0.57
2021-08-26 | 2069 | 24.56 | 0.7 | 3197 | 37.95 | 0.29
2022-06-14 6175 | 28.13 |-0.72| 6447 | 29.37 | -0.87
2022-07-20 7459 | 92.41 |-4.11| 12507 |154.96 (-13.37
2022-08-30 6230 | 55.78 |-0.6| 6169 | 55.23 | -0.57

Table 2: Performance of random forest (RF) and partial least
squares regression (PLSR) models for the leave-one-out cross-
validation (LOOCV) within Maaninka datasets — where the
model was trained on 4 out of 5 dates from Maaninka and tested
on the left-out date. R%: coefficient of determination and
NRMSE: Normalized Root Mean Square Error.

In the cross-site setup (Table 3), RF models performed better
for the 2021 cuts (NRMSE 21.4%) while PLSR models
provided better NRMSE for 2022 cuts with NRMSEs 20.68%,
33.93% and, 60.7%, respectively for first, second and third cuts
of 2022. Overall, the cross-site models (Table 3) performed
similar or better than the models using only same site (Table 2).
Notably, for the 2022-07-20 test date, the cross-site model
significantly outperformed the model using only the same site

(NRMSE of 39.77% vs. NRMSE of 92.41%), suggesting that
including external site data can in some cases improve
robustness, especially when local data is less informative.

Trained on All Sites Except Test Data
RF PLSR
Test Data | RMSE | NRMSE R RMSE kg | NRMSE R
(Maaninka) | kg /ha % /ha %

2021-06-09 | 4610 | 21.39 |0.37| 5181 2403 | 0.2
2021-08-26 | 1806 | 21.44 |0.77| 2653 3149 |0.51
2022-06-14 | 6187 | 28.19 |-0.73| 4540 20.68 |0.07
2022-07-20 | 3210 | 39.77 |0.05 2739 33.93 |0.31
2022-08-30 | 7462 | 66.81 |-1.29| 6780 60.69 [-0.89

Table 3. Performance of random forest (RF) and partial least
squares regression (PLSR) models for the leave-one-out cross-
validation (LOOCV) within Maaninka datasets Cross-Site
Transfer — where the model was trained on all available data
from the other sites plus all Maaninka dates except the test
Maaninka date. R%: coefficient of determination and NRMSE:

Normalized Root Mean Square Error.
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Figure 5. Scatter plot of the predicted fresh yield within Maaninka datasets using random forest (RF). The left column contains the
scatter plots where the model was trained on 4 out of 5 dates from Maaninka and tested on the left-out date, while the right column
where the model was trained on all available data from the other sites plus all Maaninka dates except the test Maaninka date. The cuts
are ordered from top to bottom in chronological order.

study area remained consistent, variations in environmental

4. Conclusions conditions across growth periods and years introduced

challenges for model generalization. The results demonstrated

The objective of this study was to evaluate estimating biomass  that incorporating data from multiple locations can enhance
at a given harvest using data exclusively from other harvests  model robustness, particularly when local data are limited or
and, where applicable, from different locations. Although the  less informative. Random Forest regression outperformed PLSR
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within Maaninka site; however, PLSR exhibited slightly better
performance and generalizability in tests involving multi-
location datasets.

Future research should incorporate longer multi-year time series
and multi-location datasets, and potentially include additional
data sources beyond remote sensing, to enable a more robust
evaluation of model performance. Furthermore, studies on
generalization potential of deep learning models will be of great
interest.
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