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Abstract 

 

Sustainable grassland management practices enhance key ecological functions, including carbon sequestration, biodiversity 

conservation, and the maintenance of soil fertility essential for climate change mitigation. Accurate and reliable estimation of grass 

biomass is essential for decision making on harvesting time and rate of fertilizer application. Remote sensing and data analysis 

technologies offer unprecedented opportunities for monitoring grassland dynamics, yet methodological challenges persist in 

generalizing remote sensing-based models for different growths and different areas. This study investigates the estimation of grass 

biomass of different growth stages during two years using multispectral UAS-based remote sensing. A leave-one-out cross-validation 

was conducted using five harvest datasets to train and test random forest (RF) and partial least squares regression (PLSR) models, 

assessing estimation accuracy within individual sites. This was followed by a cross-site evaluation, where models trained using data 

from other locations were tested on each harvest date to evaluate model generalizability. The estimation models within the Maaninka 

site yielded at the best NRMSEs 14.7%, but exceeded 55% on two cutting dates. Incorporating data from multiple sites improved 

generalization or maintained similar accuracy across test dates. The findings indicated that using data from various locations can 

improve model stability, especially in cases where local data does not provide strong predictive information. 

 

 

1. Introduction 

Grasslands are critical ecosystems that contribute to key 

ecological functions, including carbon sequestration, 

biodiversity conservation, and the maintenance of soil fertility. 

Implementing sustainable grassland management practices 

enhances these functions, thereby supporting climate change 

mitigation and promoting long-term ecosystem stability. 

Agricultural grasslands—particularly those used for harvested 

forages— provide a significant portion of the feed for livestock 

in Northen Europe. 

 

Remote sensing technologies have the potential to provide tools 

for estimating forage yield. Taking advantage of 3D information 

acquired from cameras (e.g. Patel et al. 2024) or LiDAR (Hütt 

et al. 2024) utilizing Uncrewed Aircraft System (UASs) as a 

platform is an option to estimate biomass and yield in 

grasslands. Furthermore, multiple studies have utilized spectral 

information including multispectral (e.g. Hernandez et al. 2024) 

and hyperspectral (Franceschini et al. 2022, Oliveira et al. 2020, 

Oliveira et al. 2024, Wengert et al, 2022) datasets along with 

diverse modelling techniques to estimate forage biomass, the 

resulting models are often site-specific. Since the growing 

conditions varies, it is still challenge to obtain a model which 

generalizes across different locations or time periods with 

varying environmental conditions (Bazzo et al., 2023). Grass 

type and harvest timing influence biomass prediction (Viljanen 

et al., 2018). Lussem et al. (2020) analysed a multi-year dataset 

to predict forage yield based on plant height derived from low-

cost UAV imagery. Wengert et al. (2022) has investigated the 

biomass estimation using eight multiple grass sites in natural 

grasslands in Germany using data from hyperspectral imaging 

data collected for different harvest dates of same year. They 

verified that the camera had potential in the application, but 

more studies are needed considering spectral range and more 

growth periods.  

 

This study investigates the estimation of biomass for different 

growth stages/cuts and sites, utilizing UAS multispectral remote 

sensing data features—particularly vegetation indices—to 

identify those that are most optimal and stable across different 

harvest times. Data from tree experimental sites of grass in two 

years (2021 and 2022) were utilized. To evaluate within-site 

estimation accuracy of partial least square regression (PLSR) 

and random forest (RF), a leave-one-out cross-validation was 

performed where, in each iteration, models were trained on four 

harvest datasets of the same area and tested on the remaining 

one. Additionally, a cross-site evaluation was performed by 

training models on all data from other locations leaving the test 

date from the target site out, enabling assessment of model 

transferability and comparison between within-site and cross-

site prediction performance. 

 

2. Materials and Methods 

2.1 Study area and Datasets 

Three experimental grass trial fields located Finland were used 

(Figure 1). Isokyrö trial consisted of 240 test plots (Figure 1a), 

with two different species of fescue. Most of the test plots (228) 

consisted of tall fescue, while there were only 12 test plots of 

meadow fescue. The test plots were organized in four columns 

with 60 test plots in each column. The test plots with meadow 

fescue were randomly located within the field. Ylistaro 

comprised 54 test plots (Figure 1c), out of which 33 were fescue 
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plots and 21 were timothy plots. The sites Isokyrö and Ylistaro 

were separated by approximately 10 km, whereas Maaninka site 

was located about 250 km from both. Maaninka field included 

60 plots with dimensions of 1.5 x 8 m and each plot separated 

by a similar sized cover plot (Figure 1b). The plant material was 

pure timothy (Phleum pratense L. cultivar ‘Nuutti’) cultivated 

as typically for silage grass. Different nitrogen treatments were 

applied to each plot to generate greater variation between the 

plots. 

 

In-situ data biomass (fresh yield - FY) measurements were 

performed across June–August of 2021 and 2022 (Table 1). 

These dates corresponded to different growth periods in 

Finland. Table 1 shows the mean and standard deviation of the 

plots fresh yield measurements from three different study 

areas—Maaninka, Isokyrö, and Ylistaro—collected across 

multiple grass cuts and years. 

 

 

Figure 1: Trail sites (a) Isokyrö, (b) Maaninka and (c) Ylistaro. 

(d) Location of the study areas, data by OpenStreetMap. 

 

 

Isokyrö has two datasets from 2021, showing a substantial 

increase in yield from the second (18,115 kg/ha) to the third cut 

(28,621 kg/ha). Ylistaro, with three harvest records, presented 

its highest yield in the first cut of 2022 (31,588 kg/ha), the 

highest single value across all sites, while the lowest was in the 

second cut of 2022 (13,961 kg/ha). Maaninka site has the most 

datasets, with first and third cut of 2021, first, second cut and 

third cut of 2022, thus, it was selected to be the site used for 

evaluating different setups of the regression models.  

 

Maaninka FY ranged from a high of 21,947 kg/ha during the 

first cut of 2022 to a low of 8,071 kg/ha during the second cut 

of 2022. During these cuts, many plots exhibited high biomass 

values, while a smaller number showed lower biomass due to 

the absence of nitrogen fertilization (Figure 2). The standard 

deviation of FY in the first cuts were greater than in the second 

and third cuts, primarily due to the increased variability 

introduced by plots with reduced or no nitrogen application. In 

contrast, FY in the second and third cuts was more uniformly 

distributed and generally lower in magnitude (Figure 2). 

 

 
Figure 2: Histogram of fresh yield in-situ data measurement for 

each date. 

 

The UAS campaigns for high-resolution remote sensing data 

acquisition were carried out using a DJI Matrice 300 RTK 

(M300), carrying a multispectral Micasense Altum camera, with 

2064 × 1544 pixels images in five VNIR bands: blue (475 nm), 

green (560 nm), red (661 nm), red-edge (717 nm), and NIR (842 

nm), and an additional thermal band at 160 × 120 pixels for a 

wavelength of 11,000 nm, which was not utilized. The flights 

were conducted from approximately 100 m above ground level. 

Flight dates for aerial monitoring were closely preceded or 

coincided with the harvest dates. 

 

 
Growth Date harvest 

FY (Kg/ha) 
Flight date 

 Mean Std 

M
a

a
n

in
k

a
 

First 2021-06-10 21554 5849 2021-06-09 

Third 2021-09-02 8424 3825 2021-08-26 

First 2022-06-15 21947 4749 2022-06-14 

Second 2022-07-21 8071 3327 2022-07-20 

Third 2022-08-31 11169 4971 2022-08-30 

Is
o

k
yr

ö
 

Second 2021-07-21 18115 2500 2021-07-21 

Third 2021-09-16 28621 2461 2021-09-16 

Y
li

st
a

ro
 Third 2021-09-16 18129 4215 2021-09-16 

First 2022-06-16 31588 4815 2022-06-16 

Second 2022-09-07 13961 2538 2022-09-07 

Table 1: Harvest dates, mean and standard deviation of fresh 

yield (FY kg /ha) and flight dates for each study site. 
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2.2 Data process and analysis 

The geometric and radiometric processing of datasets were 

executed in Agisoft Metashape 1.7 software, resulting on 

approximate 3-4 cm spatial resolution multispectral reflectance 

orthomosaics. Ground control points measured with RTK 

GNSS receiver of approximated 2.5 cm accuracy were utilized 

to ensure geometric accuracy among the multitemporal datasets. 

The radiometric calibration and reflectance transformation were 

performed considering the Micasense calibration parameters, 

and its reflectance panel and irradiance sensor. 

 

Several vegetation indices (VIs) (see Oliveira et al., 2024) were 

computed from the multispectral orthomosaics. The Pearson’s 

Correlation Coefficients (PCC) between the biomass and VIs 

were analysed. To enhance model robustness under these 

temporally variable conditions, only the most predictive VIs—

identified through the correlation analysis—were selected as 

input features for the estimation models. 

 

To evaluate the potential for developing models that generalize 

across varying temporal conditions and sites, Random Forest 

(RF) and partial least squares regression (PLSR) were applied to 

estimate FY using the datasets collected from different harvests 

and across two growing seasons. First, all features were 

standardized to have zero mean and unit variance. The number 

of trees in the RF was 500 and the ratio of features chosen at 

each node was 0.3. The number of components in the PLS 

regression was 3. 

 

First tests were performed using only data from the Maaninka 

study site. From the five grass harvest datasets—two from the 

2021 season and three from 2022, a leave-one-out cross-

validation approach was used. In each iteration, four of the five 

harvest datasets from Maaninka were used to train the PLSR 

and RF regressors, while the remaining dataset (corresponding 

to a single Maaninka cut date) was held out for testing. This 

procedure was repeated until each date had been used once as 

the test set. The estimation accuracy was quantified coefficient 

of determination (R2) and Root Mean Square Error (RMSE) and 

Normalized Root Mean Square Error (NRMSE) (Table 2). 

 

To complement this within-site validation, a second evaluation 

setup was implemented to assess model transferability across 

locations. In this cross-site experiment, models were trained on 

all available data from all sites (Isokyrö and Ylistaro and 

Maaninka) except one test date from Maaninka. The trained 

models were evaluated on each Maaninka harvest date, allowing 

for a comparison of within-site and cross-site model 

performance. 

 

3. Results 

Figure 2 presents the absolute PCC values between the VIs and 

FY for the Maaninka datasets, and Figure 3 presents the average 

PCCs for each site. Several vegetation indices have a high 

correlation with FY (PCC >0.8) in Maaninka. There were, 

however, some vegetation indices that only correlated well with 

FY for specific growth stage. The best performing vegetation 

indices based on the PCC from Maaninka field trial for each cut 

were BNDVI, DATT1, GBNDVI, GNDVI1, NDRE, OSAVI, 

RDVI1 and SAVI (Figure 2). The PCCs were lower for Isokyrö 

and Ylistaro compared to Maaninka, the highest PCCs for 

Ylistaro were ARVI, DATT1, NDRE, OSAVI, SAVI, and TCI. 

The 8 VIs with the highest PCCs from Maaninka area were 

utilized to build the regression models. 

 

Figure 3. Absolute correlation coefficient between each 

vegetation index and fresh yield (FY) in Maaninka field trial in 

different times. 

 

 
Figure 4. Average correlation coefficient between each 

vegetation index and fresh yield (FY) in cut datasets per field 

trial. 

 

The predicted FY accuracies for both RF and PLSR in the 

within-site test are presented in the Table 2 and the across-sites 

performance is presented in Table 3. Figure 3 presents 

scatterplots of predicted versus in-situ measured FY values for 

each iteration of the cross-validation performed using RF. The 

plots are arranged chronologically based on the harvest date 

used as the test set, starting with the first harvest from 2021. 

Predictions generated using within-site are displayed in the left 

column, while those from the across-sites are shown in the right 

column. 

 

The best results within Maaninka site were achieved for the first 

harvest in 2021, with NRMSE 14.71% using RF, the RF model 

showed a good fit for the lower FY values (<12000 kg/ha), 

while predictions for yields above 17500 kg/ha showed both 

over- and underestimations (Figure 3). In contrast, the second 

cut of 2022 (2022-07-20) model had the worst results (RF 

NRMSE = 92.41%, PLSR NRMSE = 154.96%). For the second 

and third cuts of 2022, both RF and PLSR achieved similar 

results, although with high NRMSE for the third cut (NRMSE 

over 55%). 
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 Trained on 4/5 Maaninka cut 

RF PLSR 
Test Data 

(Maaninka) 
RMSE 

kg /ha 
NRMSE 

% 
R2 

RMSE kg 

/ha 
NRMSE 

% 
R2 

2021-06-09 3180 14.71 0.71 3860 17.85 0.57 

2021-08-26 2069 24.56 0.7 3197 37.95 0.29 

2022-06-14 6175 28.13 -0.72 6447 29.37 -0.87 

2022-07-20 7459 92.41 -4.11 12507 154.96 -13.37 

2022-08-30 6230 55.78 -0.6 6169 55.23 -0.57 

Table 2: Performance of random forest (RF) and partial least 

squares regression (PLSR) models for the leave-one-out cross-

validation (LOOCV) within Maaninka datasets – where the 

model was trained on 4 out of 5 dates from Maaninka and tested 

on the left-out date. R2: coefficient of determination and 

NRMSE: Normalized Root Mean Square Error. 

 

In the cross-site setup (Table 3), RF models performed better 

for the 2021 cuts (NRMSE 21.4%) while PLSR models 

provided better NRMSE for 2022 cuts with NRMSEs 20.68%, 

33.93% and, 60.7%, respectively for first, second and third cuts 

of 2022. Overall, the cross-site models (Table 3) performed 

similar or better than the models using only same site (Table 2). 

Notably, for the 2022-07-20 test date, the cross-site model 

significantly outperformed the model using only the same site 

(NRMSE of 39.77% vs. NRMSE of 92.41%), suggesting that 

including external site data can in some cases improve 

robustness, especially when local data is less informative. 

 

 Trained on All Sites Except Test Data 

RF PLSR 

Test Data 

(Maaninka) 

RMSE 

kg /ha 

NRMSE 

% 
R2 

RMSE kg 

/ha 

NRMSE 

% 
R2 

2021-06-09 4610 21.39 0.37 5181 24.03 0.2 

2021-08-26 1806 21.44 0.77 2653 31.49 0.51 

2022-06-14 6187 28.19 -0.73 4540 20.68 0.07 

2022-07-20 3210 39.77 0.05 2739 33.93 0.31 

2022-08-30 7462 66.81 -1.29 6780 60.69 -0.89 

Table 3. Performance of random forest (RF) and partial least 

squares regression (PLSR) models for the leave-one-out cross-

validation (LOOCV) within Maaninka datasets Cross-Site 

Transfer – where the model was trained on all available data 

from the other sites plus all Maaninka dates except the test 

Maaninka date. R2: coefficient of determination and NRMSE: 

Normalized Root Mean Square Error. 

 

 

 

 

 

 

 

 

Test data: 2021-06-09 

 
Test data: 2021-06-09 

 

Test data: 2021-08-26 

 
Test data: 2021-08-26 

 

RF Trained on 4/5 Maaninka cut (kg/ha) RF Trained on All Sites Except Test Data (kg/ha) 
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Figure 5. Scatter plot of the predicted fresh yield within Maaninka datasets using random forest (RF). The left column contains the 

scatter plots where the model was trained on 4 out of 5 dates from Maaninka and tested on the left-out date, while the right column 

where the model was trained on all available data from the other sites plus all Maaninka dates except the test Maaninka date. The cuts 

are ordered from top to bottom in chronological order. 

 

 

 

4. Conclusions 

The objective of this study was to evaluate estimating biomass 

at a given harvest using data exclusively from other harvests 

and, where applicable, from different locations. Although the 

study area remained consistent, variations in environmental 

conditions across growth periods and years introduced 

challenges for model generalization. The results demonstrated 

that incorporating data from multiple locations can enhance 

model robustness, particularly when local data are limited or 

less informative. Random Forest regression outperformed PLSR 

Test data: 2022-06-14 

 

Test data: 2022-06-14 

 

Test data: 2022-07-20 

 
Test data: 2022-07-20 

 

Test data: 2022-08-30 

 
Test data: 2022-08-30 
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within Maaninka site; however, PLSR exhibited slightly better 

performance and generalizability in tests involving multi-

location datasets. 

Future research should incorporate longer multi-year time series 

and multi-location datasets, and potentially include additional 

data sources beyond remote sensing, to enable a more robust 

evaluation of model performance. Furthermore, studies on 

generalization potential of deep learning models will be of great 

interest. 
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