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Abstract

This paper presents a framework for real-time hyperspectral image classification using federated self-learning Minimal Learning
Machines (SL-MLM) and trajectory-optimized UAV swarms. The proposed method enables on-board model training and prediction
with low computational cost, supporting asynchronous collaboration between UAVs via adaptive Kalman filter-based model fusion.
To optimize scanning efficiency, we integrate deep reinforcement learning-based trajectory planning using a Multi-Agent Deep
Q-Network (MADQN), minimizing total flight duration and improving energy efficiency. Experimental results on the Salinas-A
hyperspectral dataset demonstrate that our federated SL-MLM achieves high classification accuracy with minimal labeled data and
communication overhead. The approach supports scalable and distributed remote sensing applications in bandwidth- and resource-

constrained UAV environments.

1. Introduction

On-board computing enables real-time remote sensing across
diverse applications such as agricultural management, forestry
assessment, and disaster response. This capability allows for
timely detection of hazards and more efficient interventions,
replacing labor-intensive methods with automated, machine
learning-based solutions. Furthermore, integrating hyperspec-
tral imaging (HSI) with unmanned aerial vehicles (UAVs) ex-
tends monitoring capabilities beyond standard RGB imaging.
Hyperspectral systems capture hundreds or thousands of spec-
tral bands, providing detailed spectral signatures that signific-
antly enhance tasks such as classification, regression, and object
detection.

Despite the technological maturity and affordability of UAVs
and HS imagers, operational limitations persist, particularly
concerning energy constraints and computational resources on-
board (Chen et al., 2023). Additionally, HS imagers gener-
ate large volumes of high-dimensional data, necessitating ef-
ficient computational and storage solutions. This paper intro-
duces a novel on-board HS image classification framework in-
volving multiple UAVs equipped with HS line scanners man-
aged by a portable base station (BS) that orchestrates flight
control and communication between UAVs and the BS. The
proposed method employs a computationally efficient distance-
based classifier, the Self-learning Minimal Learning Machine
(SL-MLM), introduced in (Raita-Hakola and Polonen, 2022),
integrated within a federated learning (FL) framework to facilit-
ate efficient data sharing and model collaboration among UAVs
(Nguyen et al., 2021).

In this work we will concentrate on two related questions:

1. How to plan the optimal position of the portable BS, the
scanning starting point of UAVs, and the optimized tra-
jectory of UAVs to achieve energy efficiency and reduce
scan duration?

2. How does a distance-based minimalistic self-learning
model perform in a federated learning scenario with HSI?

In this study, we are demonstrating that the integration of tra-
jectory optimization and hyperspectral image classification into
a unified system for real-time on-board monitoring is both feas-
ible and advantageous. Our findings indicate that, by employ-
ing a federated learning framework, updated model coefficients
from UAVs can be efficiently transmitted to a BS, thereby re-
ducing communication overhead and enabling near real-time
model refinement. The merging of individual models is a key
issue to be evaluated. Experimental comparisons suggest that
dynamic, state-driven UAV trajectory adjustments provided by
a Multi-Agent Deep Q-Network (MADQN) (Wang et al., 2019)
can reduce flight distances and energy consumption. It should
be noted that most results are in the testing phase and that actual
real-life evaluations have not yet been completed.

2. Trajectory Planning Using Reinforcement Learning

The HSI task imposes constraints on UAV trajectory planning,
including the field of view, ground sampling distance, flight alti-
tude, imaging angles, and route design. An optimal trajectory
ensures complete and efficient coverage of the target area while
minimizing redundant scanning regions. In scenarios involving
multiple UAVs, the area of interest must be partitioned among
UAV agents, necessitating coordinated trajectories and distrib-
uted model aggregation.

To optimize the UAV trajectories for cooperative push-broom
HSI scan, we employ a MADQN (Wang et al., 2019) method.
This reinforcement learning (RL) approach simultaneously op-
timizes scan-area assignments and individual UAV trajectories.
Unlike conventional optimization methods, MADQN enables
UAVs to dynamically adjust their trajectories based on real-time
state information, thus reducing total flight distances and energy
consumption.

2.1 System Model and Problem Formulation

As shown in Fig. [T} we consider N UAVs jointly performing
the HSI task to scan an agriculture field and then transmit their
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Figure 1. System model for the smart drones SL-MLM network.

trained model data to the base station (BS), where each UAV is
assigned a specific area to carry out the scanning task and must
departs from the common start point O(zs,ys). The agricul-
tural field is rectangular in dimensions X X Y m, and the BS
is located at the same as the common start point O. To carry
out this jointly scan task, the field is discretized into grid-based
cells, each representing a scan unit with scanning width d. As-
sume that each UAV flies from O to its assigned area and then
scans the area as push-broom method with fixed speed v and
height H. We intend to optimize the common start point O
of UAVs and their trajectory to achieve the minimum required
scanning time for better energy efficiency.

Considering the rectangular field with dimension X X Y re-
quires to be fully scanned using N UAVs, each equipped with
a push-broom sensor of width d. The total number of vertical
scanning strips can be given by:

X
T = {EJ + 1. (1)

Each UAV starts and ends its trajectory at the common start
point O. The field is partitioned into N non-overlapping ver-
tical strip sets, assigned to each UAV such that every portion of
the field is covered exactly once.

Assume p = {p1,p2,...,pn~} to be a valid partition for each
UAV of T strips, where p; denotes the number of strips assigned
to UAV-i. N UAVs require to push-broom scan the whole field
area, which indicates the partition p satisfying:

N

Zpi:T Vi € N. )

=1

The flight duration 7; for UAV-i consists of: 1) the travel dis-
tance from the start point O to the first scan line; 2) the ver-
tical scan motions in snake-like patterns and the lateral shifts
between scan lines for the assigned area p;; 3) the return path
from the final scan endpoint back to the common start point O.
7; can be described as

t
T =18 4 7 4 3)

Since UAV-i flies from O to its assigned area to perform a push-
broom scan, we can reasonably consider that the trajectory of
UAV-i is fixed once p and O are set. The optimization problem
can be summarized to minimize the worst case of total flight
duration by optimizing p and O as follows

min { max Ti} (4a)
(zs,ys),p |i€{1,....,N}
N
st. » pi=T VieN. (4b)
i=1

2.2 DQN for UAVs Trajectory Optimization

The objective of UAVs trajectory design is to minimize the
maximum required task performing time among all drones.
Each UAV’s state, action, and reward function are defined as
follows:

State: In our proposed model, the environment employs a
simplified observation model, since the trajectory only depends
on O and p. The state space S is defined as static state space:

s €S ={0.0}. (5)

This indicates that the environment is modeled as a single-step
decision-making problem, where the learning process is driven
entirely by the action-dependent reward.

Actions: The discrete action space A encodes both the com-
mon starting point O and the partitioning p of the field for mul-
tiple UAVs. Each action a € A can be defined as:

e The discrete starting point O(zs, ys) sampled from a uni-
form grid of resolution G» x Gy over the X x Y m rect-
angular field.

e The partitioning vector p = [p1,p2,...,pn]|, Where
Zilil pi=T.
The total action space can be derived as
A=G,-G, P, 6)

where P denotes the set of all valid integer partitions of T’
among N drones.

Reward: The reward R(a) for an action a is computed based
on the worst-case, i.e., the longest, trajectory among all UAVs,
penalized by the spatial deviation of the common start point
from the geometric centelﬂ of the field:

(s, ys) — (X/2,Y/2)]|

max T; — A , (D

ie{1,...,N} (X/2)2 4+ (Y/2)?

R(a) = —

where A is a weighting parameter controlling the penalty for
non-centralized start positions. This design incentivizes a par-
tition strategy that balances the scan workload among drones
and selects a geometrically efficient start position to minimize
the maximum completion time across all UAVs and provides
better communication among UAVs and the BS.

Therefore, the completed optimization problem can be formu-
lated as

! This is because the germetric center can provide better and more fair
wireless communication with each agent.
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(e p |iE{ln (X/2)2 t (V/2)2
N
st. Yy pi=T VieN, (8b)

=1

(l‘says) S g7 (SC)
where G is the discrete grid of possible start points.

This formulation ensures full coverage of the field, balanced
workload across UAVs, and operational efficiency through cent-
ralized coordination. The proposed DQN-baed UAVs trajectory
optimization scheme can be summarized in Algorithm [T}

Algorithm 1 DQN-Based Multi-Drone Scan Optimization

1: Initialization: Field size (X,Y"), scan width d, number of
drones N, grid size (G, Gy)

: Compute total number strips 1" of UAVs according to

: Generate all valid partitions P

: Construct discrete action space A

: for each training step do

Randomly select action a = (x5, ys, P)

Decode action into: Common start point O and strip

assignment p

8: Calculate flight time 7; of each UAV-; according to

9: Calculate reward R(a) according to (6)

10: Update DQN agent with R(a)

11: end for

12: return Optimal common start point O* and partition p*

RS- NEV N )

3. Federated Self-Learning Minimal Learning Machine

The MLM is a computationally efficient, distance-based clas-
sifier used for rapid inference and training in classification and
anomaly detection tasks (Polonen et al., 2020, |Raita-Hakola and
Polonen, 2021) |de Souza Junior et al., 2015). MLM relates dis-
tance matrices of the data and reference points, which are subset
of data points, through linear regression solved using Ordinary
Least Squares (OLS) (Mesquita et al., 2017). Given spectral
observations X, reference subset R, and their corresponding
labels (Y, T"), MLM constructs the linear model:

A, =D.B+E, ©)

where D, represents distance matrix between reference point
label and data labels. Matrix A, represent distance matrices
between reference points and data. Coefficients B are estimated
via OLS:

B = (DID,) 'DfA,. (10)

For the new spectrum x,, the distance between its label y,, and
set of reference points labels is

§(yn,T) = d(xn, R)B. (11)

MLM estimates its label y,, by solving a quadratic multilater-
ation optimization problem detailed in (de Souza Junior et al.,
2015). MLM also generalizes nearest neighbour classification
(NN-MLM) through ranked distance assignment (Hakola and
Polonen, 2020, Mesquita et al., 2017), which we utilized here.

To further facilitate continuous learning, Self-Learning MLM
(SL-MLM) is build on Recursive Least Squares (RLS) shown

as algorithm 2] RLS efficiently updates model coefficients in
real time without reprocessing historical data (Romberg, 2016,
Haykin, 2008). Implementation details SL-MLM are described
in (Raita-Hakola and Polonen, 2022).

Algorithm 2 Recursive Least Squares (Romberg, 2016)

: Input: X,R)Y, T

: Initialize:

: Calculate distance matrix D o

: Calculate distance matrix Ay o

: Calculate Po = (D, d Dy o)™ !

: Calculate model B, 0 = PoD..g Ay 0

s fori=123. do

New data X ,;, Y, appears

Calculate distance matrix D |

10: Calculate distance matrix A, ;

11: Calculate P, ; = P; D, T

12: Calculate Pz = Pi—l — PIJ(I
+D, P.:) ‘D, Pi1

13:  Calculate K; = P;D, ;"

14: Update model B, ; = By ;1
+Ki(Ay,i =Dy By io1)

15: end for__

16: return B, ; and P;

R I Y O

To improve the quality of the training data, we integrated an an-
omaly detection mechanism directly into the learning algorithm
(Raita-Hakola and Polonen, 2021)). Specifically, we used lower
and upper thresholds on the variance of the distances between
predicted labels and reference classes, denoted as

Var(6(yn, T)). (12)

By applying this variance-based filter, only high-quality and
consistent samples were admitted into the recursive least
squares update, thereby enhancing the robustness of the learn-
ing process.

In our federated learning approach, each UAV independently
updates its local MLM model using onboard, communicating
only updated coefficient matrices B between UAVs and the BS.
This significantly reduces communication bandwidth, enabling
near real-time model updates.

To fuse independently learned models from multiple UAVs into
a coherent and continuously updating base model, we employ
an adaptive Kalman filter framework (Mehra, 1970). Each UAV
produces a regression model estimate B; and a corresponding
uncertainty covariance matrix P;, which are treated as noisy ob-
servations of the true underlying model. The fusion process is
implemented through recursive Kalman updates, ensuring prin-
cipled integration of new model information while maintaining
robustness against overconfidence and filter divergence.

At each timestep 1, the filtering process comprises a prediction
and update step. In the prediction step, the current fused estim-
)

(i—1) . . (i—1
ate By, .~/ and its covariance Py

by adding a process noise term Q (¥, initially set proportional
to the identity matrix and later adapted. To maintain numer-
ical stability and avoid singularities in the covariance matrices,
a small regularization term el is added.

are propagated forward

In the update step, the new UAV model estimate B,is incorpor-
ated using the classical Kalman gain
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@ (p -t
K, =P, (PL+P) (13)
The fused model is then updated as
(@) _ Rp ) (%)
Bfuse - Bpred +Ki (B’ - Bpred) ) (14)
and the covariance is updated accordingly:
Pl = (- K)PL),. (15)

To ensure the filter remains responsive over time and does not
become overly confident, we use an adaptive process noise scal-
ing mechanism. Specifically, we monitor the Frobenius norm
|K;|r of the Kalman gain at each step and adjust the process
noise as:

QY = |Ki|r L (16)

This formulation ties the system’s responsiveness to the inform-
ational content of each incoming UAV model. Additionally, we
track the log-determinant log det(P _fuse) over time to monitor
filter confidence and detect potential degeneracy.

This approach enables asynchronous, uncertainty-aware fusion
of model parameters from distributed sources and supports con-
tinual learning in real-time remote sensing scenarios.

Algorithm 3 Kalman Filter Fusion for UAV Model Ag-
gregation

1: Input: Initial model By, covariance Py, reference samples
R, reference labels y r

: Hyperparameters: Regularization €, dynamic process
noise @

3: Inmitialize: By < Bo, Prse < Po

4: for each timestep: = 1,2,... do

5: New UAV model B;, covariance P; arrives

6: Prediction step:

7:

8

9

3%

Bpred — Bfuse
Ppred <~ Pfuse + Q
: Ppyred < Ppred + € - I *Regularization
10: Update step:
11: K < Pped(Pprea + P;) 7' *Kalman gain

12: Bfuse — Bpred + Ki (]/—5’1 - Bpred)

130 Py < (I—Ki)Pprea
14: Adaptive noise tuning:
15: gi + ||K:|| 7 *Gain norm

16: Q<+ g1

17: Track log det(Piuse)
18: end for

19: return Py and Byyge

4. Simulation and Results

4.1 Trajectory planning

We provide simulation results to demonstrate the effectiveness
of our DRL-based UAVs trajectory optimization scheme. In
the simulation, assume that the field to be scanned has the di-
mention of 318 m and the scan width of the HSI camera on
each UAV is 3.7 m. The uniform grid resolution is set to

G, = Gy = 5 m. Due to the fact that UAVs need to transmit
their trained model to the BS, a centralized BS can achieve bet-
ter and more fair transmission performance. Therefore, we set
the penalty weighting parameter A = 10 to increase the weight
of centralized common start positions.
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Figure 2. Optimized trajectories of two UAVs and the
corresponding common start point.
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Figure 3. Optimized trajectories of three UAVs and the
corresponding common start point.

In Fig. |ZL we optimize the common starting point location O,
along with the scan area assignment, for the case of N = 2
UAVs. The results suggest that the optimal location is at
0*(159.0,107.0), which lies approximately at the center of
the field, seemingly an intuitive outcome. Each UAV is as-
signed 43 scanning strips, resulting in total flight lengths of
[9654.53,9654.70] m. Thus, the overall network scanning time
is 9654.70/v, where v denotes the UAV scanning speed.

In Fig. EL for the scenario with three UAVSs, the optimized start-
ing point is at O* = (79.5, 53.5), which is no longer at the cen-
ter of the field. The scan strip allocation is [29, 29, 28], and the
corresponding flight lengths are [6566.48, 6579.37, 6481.75] m.
Consequently, the total network scanning time is 6579.3/v.
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4.2 Federated Self-learning MLM

To evaluate the proposed model fusion method based on ad-
aptive Kalman filtering, we conducted experiments using the
widely adopted Salinas-A hyperspectral dataset. This dataset
contains hyperspectral imagery acquired over agricultural fields
in the Salinas Valley, California, comprising 204 spectral bands
and eight ground truth classes representing different crop types.

The original image was divided into training and test sets, both
preserving the spatial and spectral structure of the scene. As a
preprocessing step, ground truth labels were re-indexed to en-
sure a continuous class index starting from zero. Background
pixels labeled as zero were excluded from training and evalu-
ation.

To simulate a distributed sensing scenario, the training image
was spatially split column-wise into two halves, mimicking two
UAVs observing different regions of the field. A small repres-
entative reference set R and corresponding labels 7" were se-
lected, with five samples per class used as reference points for
initializing the model.

The model was first initialized using this reference data, then
updated row by row in a simulated real-time fashion, where
each UAV sequentially provided local observations. Model up-
dates were performed using a recursive least squares scheme
[2]l, and model fusion was achieved using an adaptive Kalman
filter [3]]. The Kalman gain and the determinant of the covari-
ance matrix were monitored to assess confidence in the fused
model. Classification was based on five nearest neighbors.

Anomaly detection thresholds were optimized by performing a
grid search over lower and upper bounds for the variance of la-
bel distances. This tuning was conducted using only the training
data. For each threshold pair, a simulation was run and clas-
sification accuracy recorded. The best-performing thresholds,
yielding the highest accuracy, were selected to filter out unre-
liable samples during model updates. The selected boundaries
were [0.95,1.95].

This setup provides a realistic simulation of how local models
from two UAVs, observing different regions of a hyperspectral
scene, can be effectively fused into a coherent global model
under strict supervision constraints. Whole simulation can be
seen in the algorithm 4]

Prediction performance was evaluated on the unseen test set
after each update step. In Figure ] the classification result on
the test set after the final update is shown on the left, while
the ground truth of the Salinas-A dataset is shown on the right.
From Figures [5] and [6] we observe that although both UAVs
were initialized with the same reference sets R and T, their
learning performances differ. After fusing the models at the
base station, the performance trends of the UAVs and the base
model converge, achieving consistently high accuracy and F1-
scores.

The effect of model updates and fusion can also be observed in
the model weights. As shown in Figure[7] each line represents
the evolution of a single weight in the model matrix B over
time. Small but consistent changes after each update indicate
that the model continues to adapt throughout the simulation.

Algorithm 4 Simulation of Federated UAV Learning with
Adaptive Kalman Filter

1: Input: Uav’s data, R and T’
2: Initialize model parameters B1, P1, B2, P> < (R, yr)
3: Initialize fused model By, Py, Q < (B1, P1, Q)
4: for each row r in training data do
5: Extract row .1, €2 from UAV1 and UAV2
6: 9r1, Sr1 <+ predict model(Bi,xr1, R, yr)
7: Ur2, Sr2 < predict model(Ba, zr2, R, yr)
8: Select inliers using anomaly score:
maski < $r1 € (Tv, Tu)
9: if mask; has any true values then
10 201, Yyr < masked inputs and predictions
11: Compute distances:
12: D,y « euclidean distances(x,, R)
13: Y51 < euclidean distances(y,,,Yr)
14: B1, P, < recursive_1s(P;, DI, Y5T17 B)
15: end if
16: if masks> has any true values then
17: repeat lines 10-14 for UAV2
18: end if
19: if mask; has any true values then
20: B™,P” < kalman predict(By, P, Q)
21: Bt P" K +kalman fuse(B~,P~,B1,Pi,...)
22: Update Q: Q < || K| - I
23: Bf7Pf<—B+,PJr
24: Synchronize UAVs to fused model
25: end if
26: if maskz has any true values then
27: repeat lines 20-24 for UAV2
28: end if
29: end for

0 f 0 !
. -—ﬂd ) -—-"
40 40
0 20 40 60 80 0 20 40 60 80

Figure 4. Classification results on the test set after the final
update step (left) compared to the ground truth map (right) from
the Salinas-A dataset.
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Figure 5. Accuracy of different models over update steps.
5. Discussion

This study investigated two key research questions: (1) How
can the positions of a portable base station (BS), the initial scan-
ning locations of UAVs, and their trajectories be optimized to
achieve energy-efficient and time-effective hyperspectral ima-
ging? (2) How does a distance-based, minimalistic self-learning
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Figure 7. Evolution of individual model weights in the matrix B
over successive update and fusion rounds. Each line corresponds
to one model coefficient.

model perform in a federated learning framework applied to hy-
perspectral image (HSI) classification?

To address the first question, a reinforcement learning-based
trajectory optimization approach was implemented using a
Multi-Agent Deep Q-Network (MADQN). The UAVs’ flight
paths and initial positions were optimized with respect to a
reward function that penalized excessive scan time and dis-
tance from the central BS. The results demonstrated that the
MADQN-based planning strategy effectively minimized mis-
sion duration and energy expenditure, especially in scenarios
with multiple UAVs. Notably, while a two-UAV setup resulted
in symmetric path allocation around the field center, three-UAV
configurations exhibited more asymmetric, yet optimal, traject-
ory patterns. These outcomes underscore the potential of deep
reinforcement learning for real-time, adaptive planning in col-
laborative UAV missions.

Regarding the second question, we evaluated the proposed fed-
erated self-learning Minimal Learning Machine (SL-MLM) us-
ing the widely adopted Salinas-A dataset. This dataset, while
relatively homogeneous and structured, serves as a suitable
benchmark for validating initial feasibility. Each UAV was as-
signed a disjoint spatial partition of the training image and op-
erated independently, updating its model using recursive least
squares (RLS) with anomaly-aware sample selection. An ad-
aptive Kalman filter was employed to fuse the individual UAV
models at a centralized base station, accounting for estimation
uncertainty via dynamic adjustment of process noise and track-
ing of covariance determinants.

Despite the limited complexity of the dataset, the experimental
results revealed that the SL-MLM framework required only five
labeled samples per class for initialization. This demonstrates
the system’s potential in field-deployable settings where annot-
ated data is scarce. The communication footprint was minimal,
consisting solely of model parameters (B) and associated co-
variance matrices (P), which is advantageous in bandwidth-
constrained UAV networks.

Although the proposed fusion approach based on adaptive Kal-
man filtering was effective, alternative strategies, such as en-
semble learning or Bayesian aggregation, may further enhance
robustness and should be examined in future work. Addition-
ally, early-stage discrepancies in model performance between
UAVs point to the need for coordination mechanisms, such as
cross-validation or confidence-based weighting during fusion.

The selection of hyperparameters, including the size of the ref-
erence set, number of nearest neighbors, and anomaly detection
thresholds, was performed manually. Automating these through
meta-learning or optimization-based tuning would increase ad-
aptability to diverse mission contexts.

Lastly, while trajectory planning and model learning were eval-
uated separately in this work, their integration offers a compel-
ling direction for future research. Coupling path planning with
real-time model uncertainty could enable UAVs to actively seek
informative or under-sampled regions, leading to more efficient
and accurate scene understanding.

Future work will further enhance the framework by integrating
real-time trajectory planning into the federated learning scheme
using advanced reinforcement learning methods. In addition,
the transition from conventional computing platforms to com-
pact, low-power devices, such as Raspberry Pi computers, will
be investigated to promote scalability and operational efficiency
in diverse remote sensing applications.

6. Conclusion

We introduced a real-time hyperspectral image classification
system combining federated self-learning with optimized UAV
trajectory planning. The SL-MLM classifier enables light-
weight on-board learning, while adaptive Kalman fusion ef-
fectively integrates distributed models under communication
constraints. MADQN-based trajectory optimization further re-
duces mission time and energy usage. Results on benchmark
data highlight the system’s effectiveness and practicality, even
with minimal supervision. Future work will focus on dynamic
hyperparameter tuning, joint optimization of learning and path
planning, and validation in more complex natural environments.
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