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Abstract

Photogrammetric methods, when used with UAV-based image acquisition, allow the creation of dense 3D point clouds that can be
utilized in numerous applications across various fields. Planar surface areas can be extracted from 3D point clouds and utilized for
various purposes, such as building reconstruction, augmented reality, general scene understanding, robot navigation, finding
corresponding observations needed for data registration, or in SLAM, to name a few. The aim of this paper was to examine the behavior
of voxel-based detection and sampling of planar surface areas from UAV-based photogrammetric 3D point clouds with both non-
overlapping and overlapping voxels. As a result, significantly more samples from planar surfaces were found if overlapping voxels
were applied. In addition, it was found that the threshold value for detecting planarity needs to be adjusted when the voxel size is
changed. The trend was that the threshold needed to be increased when the size of voxels decreased.

1. Introduction

UAYV (Uncrewed Aerial Vehicle) systems with mounted cameras
have become popular due to their ability to provide an aerial
perspective at competitive prices. Photogrammetric methods
applied to UAV imagery provide dense 3D point clouds with
RGB colors. Such data have become popular in the AEC
(architecture, engineering and construction) industry (He et al.
2024), archaeology (Gtinen et al., 2024), cultural heritage (Yigit
and Uysal, 2024), urban planning (Sang, 2024), and monitoring
of landscape and environmental states, structures, processes,
changes, and hazards (van der Sluijs et al., 2024), just to name a
few.

From 3D point clouds, it is possible to search for geometrical
primitives such as points, lines, planes, polygons, circles,
spheres, and cubes to further analyze and understand the scene.
Planes can be utilized for various tasks. In built areas, dominant
planes can reveal structures on buildings that can be utilized for
reconstruction or augmented reality. Planar areas can also give
valuable information for general scene understanding or, e.g., for
robot navigation (Liu et al.,, 2019). On the other hand,
corresponding planar areas can also be utilized to register data
from different sources (Jonassen et al., 2024) or in SLAM
(simultaneous localization and mapping) applications (Behley
and Stachniss, 2018). There have even been attempts to extract
3D planes from a single image with the aid of neural networks
(e.g., Liuetal., 2019), but using 3D point clouds is a more robust
approach.

There are many alternatives to extract a plane from a set of 3D
points. One alternative is to fit a mathematical model using a
robust method such as RANSAC (Fischler and Bolles, 1981),
Hough transformation (Duda and Hart, 1971), least median of
squares (Rousseeuw, 1984), or their variants. Alternatively,
planar areas can be extracted using a region growing algorithm
that starts from a seed point and examines the neighborhood
(Rabbani et al., 2006). The neighboring points are needed for
defining a normal vector for an examination point. The
neighboring points can be selected using either fixed distance
neighbors or k-nearest neighbors. Another approach is to use
principal component analysis (PCA) (Jolliffe, 2002) of a local

covariance matrix to reveal the direction of the normal vector, as
the eigenvector corresponding to the smallest eigenvalue
approximates the surface normal (Pauly et al. 2002). In addition,
eigenvalues from PCA can be utilized to distinguish planar areas
from non-planar areas. In addition, deep learning methods can
detect planar surface areas from 3D point clouds. An example of
such segmentation is PointNet (Qi et al., 2017).

A voxel, i.e., a volume pixel, represents only one point in a 3D
space. However, in the original 3D point cloud from which
voxels are created, many points may locate within one voxel.
This enables computation of statistical information or geometric
properties that can be attached to a voxel (Yang et al. 2021).
Voxels are utilized to represent volumetric data in various fields,
such as 3D mapping, navigation, environmental modeling,
medical imaging, meteorology, geology, finite element analysis,
3D printing, and 3D games.

Voxel-based methods have been widely utilized to find planar
surfaces because the previously mentioned plane detection
methods can be applied to points located within a voxel. Liu and
Zhang (2023) searched planar surface points to register two
LiDAR point clouds with a point-to-plane method using voxels.
In addition, they enhanced the method with an adaptive
voxelization, in which larger voxels were divided into sub-parts
to find smaller parts of planes. Afterwards, too small plane parts
were merged with adjacent planes. Supervoxels are groupings of
voxels, and Tian and Hua (2024) provide an overview of various
approaches for creating supervoxels.

Usually, voxels do not overlap. However, Rénnholm et al.,
(2015) utilized overlapping voxel grids to improve voxel-based
outlier filtering from 3D data. Inspired by this, overlapping
voxels are examined in this article.

The aim of this paper is to examine the behavior of voxel-based
detection and sampling of planar surface areas using both non-
overlapping and overlapping voxels. Because the focus is on
detecting differences when using voxels of different sizes and
parameters, only one plane detection method was included,
utilizing PCA of 3D covariance matrices. The process takes
samples from planar surface areas, as within each voxel location,
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the mean point representing one planar surface point and a
normal vector are found. Although the method is applicable to
any 3D data, this paper focuses on photogrammetric UAV data.

2. Materials and methods
2.1 Data

The complete data set included 449 oblique aerial images (Figure
1) acquired in 2022 with Sony DSC-RX1RM2 35mm full frame
Exmor R CMOS camera mounted in GeoDrone 6 quadrocopter.
The size of images were 7952 x 5304 pixels. The test area located
in Helsinki, Finland. The camera was calibrated using self-
calibration, and 3D point clouds were created, all within Agisoft
Metashape. The point density on the surface with a good texture
was approximately 1000 points per m2. For this test, only a part
of one building was selected (Figure 2). The longest side of the
building model is ca. 43 meters. The back side of the building
was not included in this test. Otherwise, the photogrammetric 3D
point cloud was unprocessed consisting of ca. 2.7 million points.

S i RIS
Figure 1. The imaging geometry of oblique UAV images.

Figure 2. The colored dense 3D point cloud of the test building.

2.2 Workflow

All steps were implemented in Matlab. The first step was to
compute voxels from a photogrammetric 3D point cloud and to
check if a voxel includes a planar surface area. The size of a
voxel, which is a cube, was an adjustable parameter. In addition,
it was possible to move a voxel with a different shift than the
voxel size. In this article, this shift is referred to as ‘step size’.
This enables the creation of overlapping voxels. The other two
parameters of the algorithm were the minimum number of points
a voxel must include and the threshold for planarity.

The detection of planar surface areas was based on PCA. For each
voxel location, a 3D covariance matrix was computed from the
points located inside the voxel. The first step was to compute the
mean of all points with Equation 1. The parameter p represents
the number of points.

X p
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Then, all points were centered according to the mean point.
Xcentered X Xﬂ (2)
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If all centered points are stored in a matrix D, where each row
includes one centered point, the covariance matrix can be
computed with Equation 3.
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Eigenvalue decomposition was performed on the covariance
matrix because the normal vector to the surface corresponds to
the eigenvector with the smallest eigenvalue. This decomposition
provides three eigenvalues (44, 4, 43). From the eigenvalues, it
is possible to establish an equation for surface variation, i.e., a
measure of planarity (mp), as presented in Equation 4.
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Setting a threshold for this measure allows identification of
planar areas. Only if the measure of planarity indicated that a
voxel contained a clear planar surface area, the mean point and
the normal vector were stored, providing a sample of the plane.
The location of the mean point depends on the distribution of
points within a voxel and most likely deviates from the voxel's
center point. This method is independent of the orientation of the
planar area. However, if the step size is half of the voxel size, it
is possible that, in planar surface areas, the same set of points will
be selected more than once, leading to duplicate mean points and
normal vectors. Therefore, before saving a point, it was ensured
that there were no duplicates in the already saved data.

It is possible that some normal vectors need to be flipped to point
outwards from the surface. Because the test object in this case
was simple, having only three expected growing directions, the
flipping was done according to prior knowledge of these
directions. A more advanced method would have, for example,
involved using an estimated centroid of the object and forcing
normal vectors to grow away from it. The complete workflow is
illustrated in Figure 3.

2.3 Evaluation methods

For three dominant planar directions, the mean normal vectors
were computed. To classify all the found normal vectors into
three classes of dominant directions, k-means clustering (David
and Vassilvitskii, 2007) was applied. The normal vectors were
first normalized by dividing them by their lengths. For each class,
the mean normal vector (1) was computed. For each normal
vector (n) in the class, the angle with respect to the mean normal
vector was computed (Equation 5). The mean angular deviation
was computed by taking the mean value of the absolute values of
all angles within a class.

angle = acos (n-n) (5)

In CloudCompare, the longest facade was manually segmented
for more detailed examination. The window areas were manually
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removed because they contained many uncertain 3D points. Then
noise was reduced with the SOR (Statistical Outlier Removal)
filter. A plane was fitted to remaining facade points (Figure 4).
Figure 5 illustrates how the facade points deviate from the fitted
plane, revealing potential planar surface areas as well as some
problematic areas. Most of the points are within 3 cm from the
plane, but there are some areas where the difference is larger.

Photogrammetric
3D point cloud

Voxelization

Planar check

If a planar area

Store the mean
point and the
normal vector

Figure 3. The workflow of the method.

The normal vector of the fitted plane from CloudCompare was
compared with the mean normal vector computed from all voxel-
based samples of the fagade. For this, Equation 5 was applied
with the mean normal vector from the voxel-based method and
the normal vector of the fitted plane from CloudCompare as the
input vectors.

The processing time was recorded for all cases with different
parameters. All computations were done on the same computer:
Intel i7, 128GB memory, NVIDIA GeForce GTX 1080Ti.

paLd

Figure 4. A plane (green) was fitted to potential facade points.

Figure 5. The deviation of the original photogrammetric 3D
potential surface points from planarity was observed when
compared to the fitted plane.

3. Results

The results in Table 1 used a threshold of 45 for the minimum
number of points in a voxel and 0.0001 for the measure of
planarity (mp). The experiment was repeated with different voxel
sizes and step sizes. Table 1 shows the number of found points
and the angular deviation to three dominant directions (D1 refers
to the direction closest to the X axis, D2 to the direction of the Y
axis, and D3 to the direction of the Z axis). In Table 2, the
corresponding results using the mp threshold of 0.0002 are listed.
A larger threshold value means that fewer samples of planar
surface areas are accepted.

Voxel | Step | Number Mean Mean Mean
size | size of angular | angular angular
(m) (m) points | dev., D1 | dev.,, D2 | dev., D3

(deg) (deg) (deg)
2.0 2.0 66 0.7 0.5 15
2.0 1.0 412 0.8 1.4 15
1.5 15 163 0.4 0.6 1.6
15 |0.75 859 1.5 1.2 1.6
1.0 1.0 277 0.9 0.9 1.6
1.0 0.5 1721 1.3 0.7 15
0.5 0.5 1010 0.4 0.5 1.2
05 [0.25]| 6810 0.3 0.5 0.9

Table 1. The results were obtained using an mp threshold of
0.0001 and a requirement that the number of points within a
voxel must be 45 or more.

Voxel | Step | Number Mean Mean Mean
size | size of angular | angular angular
(m) (m) points | dev., D1 | dev.,, D2 | dev., D3

(deg) (deg) (deg)
2.0 2.0 100 25 0.7 15
2.0 1.0 618 1.4 17 15
1.5 15 286 0.9 0.6 15
15 | 0.75| 1565 1.8 1.4 1.6
1.0 1.0 709 0.8 1.1 1.6
1.0 0.5 3975 1.2 0.9 1.6
0.5 0.5 1923 0.6 0.7 1.6
05 |0.25| 12966 0.6 0.7 13

Table 2. The results were obtained using an mp threshold of
0.0002 and a requirement that the number of points within a
voxel must be 45 or more.

Table 3 illustrates processing times. These values include only
the part starting from voxelization and ending when all accepted
planar samples and their normal vectors were saved. For
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example, plotting the results was not included. Notice that the
code was not optimized for speed.

Voxel Step Processing | Processing
size size time (s), time (s),
(m) (m) mp<0.0001 | mp<0.0002
2.0 2.0 31 31
2.0 1.0 242 237
15 15 51 50
15 0.75 387 377
1.0 1.0 118 112
1.0 0.5 919 893
0.5 0.5 559 519
0.5 0.25 4419 4463

Table 3. Processing times.

In Table 4, the angular mismatch is shown between the mean
normal vector of all normal vectors within the selected fagade
and the normal vector given by CloudCompare for the plane that
was fitted to all photogrammetric fagade points. In addition to
changing the voxel size and step size, two different mp values
(0.0001 and 0.0002) were also examined.

Voxel Step mp Angular
size size threshold mismatch
(m) (m) (deg)
2.0 2.0 0.0001 0.5
2.0 2.0 0.0002 1.3
2.0 1.0 0.0001 0.3
2.0 1.0 0.0002 0.7
1.5 15 0.0001 0.1
1.5 15 0.0002 0.5
1.5 0.75 0.0001 0.9
1.5 0.75 0.0002 1.0
1.0 1.0 0.0001 0.4
1.0 1.0 0.0002 0.3
1.0 0.5 0.0001 0.7
1.0 0.5 0.0002 0.7
0.5 0.5 0.0001 0.1
0.5 0.5 0.0002 0.2
0.5 0.25 0.0001 0.1
0.5 0.25 0.0002 0.3

Table 4. The effect of the mp threshold on the angular mismatch
between the mean normal vector and the normal vector from
plane fitting in CloudCompare.

Figures 6, 7, 8, and 9 present visual illustrations of the sampled
planar surface areas and their normal vectors. This reveals the
distribution and density of the identified planar surface points
with their attached normal vectors. The applied voxel sizes were
2.0m, 1.5 m, 1.0 m, and 0.5 m. In all cases, two threshold values
for mp, 0.0001 and 0.0002, were applied.

The results of the comparison between the fitted plane of the
selected fagade from CloudCompare and the accepted mean
points of voxels representing planar surface areas are listed in the
Appendix. The comparison illustrates the distances of planar
surface samples from the plane.

Figure 6. The comparison of found planar samples with normal
vectors when the voxel size was 2 meters is shown. In the left
column, the step size was 2 meters, and in the right column, it
was 1 meter. In the upper row, the mp threshold is 0.0001, and in
the lower row, the mp threshold is 0.0002.

Figure 7. The comparison of found planar samples with normal
vectors when the voxel size was 1.5 meters. In the left column,
the step size was 1.5 meters, and in the right column it was 0.75
meters. In the upper row, the mp threshold is 0.0001, and in the
lower row, the mp threshold is 0.0002.

Figure 8. The comparison of found planar samples with normal
vectors when the voxel size was 1.0 meters. In the left column,
the step size was 1.0 meters, and in the right column it was 0.50
meters. In the upper row, the mp threshold is 0.0001, and in the
lower row, the mp threshold is 0.0002.
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Figure 9. The comparison of found planar samples with normal
vectors when the voxel size was 0.5 meters. In the left column,
the step size was 0.5 meters, and in the right image it was 0.25
meters. In the upper row, the mp threshold is 0.0001, and in the
lower row, the mp threshold is 0.0002.

4. Discussion

The voxel-based method is obviously able to detect planar areas.
However, the selection of the voxel size, step size, minimum
number of points in a voxel, and the threshold of planarity can
significantly change the results. The voxel size sets the limits on
how small planar areas can be detected.

When using voxels, there is a chance that potential planar surface
areas could be missed due to bad luck. The reason for this is that
voxels are usually established in object space and do not account
for the structures of objects in the point cloud. Therefore,
changing the starting point of the voxel system can result in very
different outcomes. This is illustrated in Figure 10, where the
black voxel system is unable to detect a potential planar surface
area. In contrast, the red voxel system can detect it.

4

4

Figure 10. The black voxel system cannot detect the planar area,
but the red voxel system can.

Reducing the step size to smaller than the voxel size increases the
chances of finding more existing planar surface areas. However,
there is a risk that two voxels with different center points may
include the same points belonging to a planar surface. Such a case
is illustrated in Figure 11. Therefore, the duplicate points were
removed in this research. However, if even one 3D point changes,
the mean points from adjacent voxels will not be the same. This
might lead to a case where there are samples very close to each
other. On the other hand, those are still valid samples from planar
surface areas. If the number of points in Tables 1 and 2, as well
as the illustrations of their distribution in the Appendix, are
examined, it is obvious that utilizing a half-voxel step size results
in finding significantly more samples from planar areas. A
smaller step size is expected to find even more samples from
planar surface areas. However, the computing time would
increase. If the step size were very short, the method would have
no computational advantage over an alternative method that
examines local planarity for every point by selecting k-nearest

neighbors (kNN) around an examination point (Barbero-Alvarez
et al., 2024).

o

Figure 11. A step size of half a voxel may lead to the selection of
identical point sets for two voxels (red and blue) in planar areas.

Processing times were examined and presented in Table 3, and it
is obvious that using a smaller voxel size increased processing
times. In addition, a smaller step size affected significantly to
processing times. In every case, the half-voxel step size led to
approximately eight times longer processing time with the
current implementation. The code was not optimized for speed.
For example, using an octree structure (Elseberg et al., 2013)
with 3D point clouds or employing parallel processing would
significantly decrease processing times.

Depending on how strict the mp threshold is, this method allows
for the detection of planar areas even in the presence of some
noise. However, there is no system to detect the direction of
noise; the surface point is assumed to be the mean point of all
points within the voxel. In cases where noise is directed below or
above the surface, the mean point will be biased accordingly.

Noise can also become a limiting issue if a voxel size is small.
This can be detected in the case where the voxel size was set to
0.5 meters. Even though significantly more samples of planar
surface points were found compared to using larger voxel sizes,
the distribution was not as good. One possible reason is that when
the voxel size is smaller, the presence of noise becomes more
significant. Therefore, the mp threshold should be increased.
Indeed, the changing mp threshold from 0.0001 to 0.0002
improved the distribution. However, the significantly longer
processing time suggests that using a larger voxel size is better
for this point cloud.

In this experiment, PCA was utilized for classifying voxel
contents as planar or non-planar surface areas. However, PCA is
sensitive to outliers and, therefore, some planar areas might not
be detected. Alternatively, robust PCA (Hubert and Rousseeuw,
2005) could be applied to overcome this problem.

The selection of parameters is dependent on the application. If it
is crucial to find just a few robust planar surface areas, and it is
known that the point cloud includes relatively large planar areas,
larger voxel sizes can be applied. An example of such a need is
when the aim is to use plane information to solve registration
with another data set. If the aim is to detect structural issues,
using smaller voxel sizes may be more suitable. In principle, even
one found planar surface point with an accurate normal vector
can define a large planar area, such as a facade.

It is interesting to further examine the case of a 1.5-meter voxel
size and a 0.75-meter step size, which have the worst angular
deviation when the mp threshold is 0.0001. The corresponding
illustration in the Appendix and comparison with the original
data reveal that the distribution looks good overall, but there are
a couple of points separate from the others. It appeared that two
of these points came from window areas that consist of some
unstable points. Therefore, the normal vectors at those locations
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are slightly tilted compared to other normal vectors. This
suggests that, in this case, the mean angular deviation may reveal
if the results include points that do not belong to the same plane.

Another large mean angular deviation can be found in the case
where the voxel size was 2.0 meters, the step size was 2.0 meters,
and the mp threshold was 0.0002. All accepted points are from
the fagade. However, approximately 22 percent of the points
appear to be in the area where the original point cloud does not
match the fitted plane exactly (red and blue areas in Figure 5).
Those points do not exist in the case where the corresponding
voxel size and step size were used but with a lower mp threshold
(0.0001). This may indicate that the 0.0002 threshold is too high
for this voxel size, allowing some uncertain planar areas to be
accepted.

Figures 6, 7, 8, and 9, as well as the illustrations in the Appendix,
reveal that all variants using the mp threshold of 0.0001 found
either few or no points from the areas of the photogrammetric 3D
point cloud that deviated from the fitted plane. Therefore, this
approach, with suitable parameters, could be utilized to detect
non-planarity in structures that should be planar. This could be
used to detect errors in photogrammetric 3D point clouds.
However, in such cases, some prior knowledge about expected
planar areas is necessary.

5. Conclusions

In this paper, a voxel-based method to find samples of planar
surface areas from UAV-based photogrammetric 3D point clouds
was examined using both non-overlapping and overlapping
voxels. Overlapping voxels were created by keeping the voxel
size constant, but the applied shift of the voxels corresponded to
half of the voxel size. As a result, significantly more samples
from planar surface areas were found when overlapping voxels
were applied.

The effects of different voxel sizes were examined utilizing two
different threshold values for planarity. As expected, a smaller
voxel size increased computation time but could find more
samples from planar areas. In addition, it was found that the
threshold value for planarity requires adjustment when the voxel
size is changed. The trend was that the threshold needed to be
increased when the voxel size decreased. On the other hand, a
strict threshold ensures that all found samples represent planar
areas. Optimizing the parameters requires further research.

In future work, it would be interesting to test overlapping
adaptive voxelization around found samples to efficiently obtain
more sample points from clear planar surfaces. In addition, it
would be interesting to compare different methods for detecting
planarity from the 3D points located within a voxel.
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Appendix

The original point cloud of the fagade is illustrated in Figure 12.

s SR ol e e ‘
Figure 12. The photogrammetrically derived 3D point cloud of
the test fagade.

In the following figures (Figures 13-28), comparisons of the
accepted planar surface sample points, obtained using different
parameters, are presented. The distances are measured from the
facade plane, which was fitted in CloudCompare v2.14.alpha
using all potential facade points (Figure 4). The color thresholds
for the distances remain consistent across all illustrations.

Figure 13. Voxel size: 2.0 m, step size: 2.0, >45 points,
mp=0.0001.

Figure 14. Voxel size: 2.0 m, step size: 2.0, >45 points,
mp=0.0002.

Figure 15. Voxel size: 2.0 m, step size: 1.0, >45 points,
mp=0.0001.

Figure 16. Voxel size: 2.0 m, step size: 1.0, >45 points,
mp=0.0002.

Figure 17. Voxel size: 1.5 m, step size: 1.5, >45 points,
mp=0.0001.

Figure 18. Voxel size: 1.5 m, step size: 1.5, >45 points,
mp=0.0002.

Figure 19. Voxel size: 1.5 m, step size: 0.75, >45 points,
mp=0.0001.
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Figure 20. Voxel size: 1.5 m, step size: 0.75, >45 points, Figure 26. Voxel size: 0.5 m, step size: 0.5, >45 points,
mp=0.0002. mp=0.0002.

Figure 21. Voxel size: 1.0 m, step size: 1.0, >45 points, Figure 27. Voxel size: 0.5 m, step size: 0.25, >45 points,
mp=0.0001. mp=0.0001.

Figure 22. Voxel size: 1.0 m, step size: 1.0, >45 points, Figure 28. Voxel size: 0.5 m, step size: 0.25, >45 points,
mp=0.0002. mp=0.0002.

Figure 23. Voxel size: 1.0 m, step size: 0.5, >45 points,
mp=0.0001.

Figure 24. Voxel size: 1.0 m, step size: 0.5, >45 points,
mp=0.0002.

Figure 25. Voxel size: 0.5 m, step size: 0.5, >45 points,
mp=0.0001.
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