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Abstract 
Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensors offer a promising approach for monitoring water quality in 
optically complex inland waters, particularly in tropical eutrophic systems. This study investigates the performance of two UAV-
mounted sensors, DJI Phantom 4 Multispectral and MicaSense RedEdge-P Dual, for estimating chlorophyll-a and turbidity 
concentrations in the Ibirité Reservoir, Brazil. Four UAV campaigns were conducted in 2024, alongside in situ measurements, and 
six regression models were evaluated. Results show that chlorophyll-a was robustly predicted using ensemble algorithms, with the 
MicaSense sensor achieving the best performance (R² = 0.867, RMSE = 6.72 µg/L). Turbidity estimation was more variable, with 
linear regression outperforming complex models when using MicaSense data (R² = 0.712). The DJI sensor consistently 
underperformed, mainly due to limited spectral resolution. Findings highlight the critical roles of sensor configuration, spectral 
sensitivity, and model selection in UAV-based water quality assessment.  
 

1. Introduction 

Unmanned Aerial Vehicles (UAVs) equipped with optical 
sensors have increasingly become integral to water quality 
monitoring, offering a complementary or alternative approach to 
conventional field sampling and satellite-based remote sensing. 
Their ability to acquire higher spatial resolution imagery on 
demand, at low operational cost, and with high temporal 
flexibility renders them particularly useful in small or dynamic 
inland water bodies. UAVs facilitate fine-scale assessments that 
capture spatial heterogeneity in limnological parameters—
something often overlooked in traditional discrete sampling or 
limited by the spatial resolution of satellite platforms. 
 
Among the water quality parameters of interest, chlorophyll-a 
and turbidity are commonly used as proxies for primary 
productivity and suspended matter concentration, respectively. 
Chlorophyll-a, a photosynthetic pigment found in 
phytoplankton, serves as a crucial indicator of trophic status and 
levels of eutrophication (Castro et al., 2020). Turbidity, on the 
other hand, measures the attenuation of light due to suspended 
particulate matter, including sediment, detritus, plankton, and 
organic material (Souza et al., 2023). Both parameters are vital 
for understanding ecological dynamics in lentic systems, 
influencing primary production, oxygen dynamics, and habitat 
suitability for aquatic organisms. As a result, their remote 
estimation holds significant importance for effective 
monitoring, early warning, and ecosystem management. 
 
The optical behaviour of these parameters forms the scientific 
foundation for their retrieval via remote sensing. Chlorophyll-a 
exhibits characteristic absorption in the blue and red spectral 
regions, while reflecting in the green and red-edge portions of 
the spectrum. Turbidity, influenced primarily by the 
backscattering properties of suspended particles, tends to 
manifest increased reflectance in the visible and near-infrared 
regions depending on particle size, composition, and water 
depth. The ability to detect these spectral signals using 
multispectral UAV sensors depends not only on the spectral and 
radiometric configuration of the sensor but also on transient 
environmental conditions that alter water surface reflectance. 

Factors such as wind-induced surface roughness (waves), sun 
glint, cloud shading, and cloud glint can introduce significant 
variability in the measured reflectance, potentially masking the 
spectral signatures of chlorophyll-a and turbidity and 
complicating model calibration and validation. These effects are 
particularly relevant in small or shallow inland waters, where 
surface conditions can change rapidly during a single UAV 
flight (Salim et al., 2024). Consequently, the accuracy and 
reliability of empirical models depend on both data 
characteristics and environmental conditions. 
 
Empirical modelling of chlorophyll-a and turbidity using UAV-
based multispectral imagery has shown promising yet 
contrasting results for different parameters. Castro et al. (2020) 
employed a MicaSense RedEdge sensor to estimate chlorophyll-
a in a eutrophic reservoir and reported high predictive 
performance, with the three-band algorithm reaching R² = 0.812 
and the two-band algorithm R² = 0.791. Simpler indices like 
SABI and NDCI also performed well, achieving R² = 0.781 and 
R² = 0.752, respectively. In contrast, turbidity estimation 
showed weaker results, with the best UAV-based model using a 
green/red band ratio reaching only R² = 0.547. This 
performance gap highlights the greater spectral separability of 
chlorophyll-a and the difficulty of isolating turbidity signals in 
optically complex waters. 
 
Although UAVs are increasingly used for water quality 
monitoring, few studies have directly compared different UAV-
mounted multispectral sensors under the same environmental 
conditions, particularly in tropical eutrophic reservoirs, where 
optical complexity poses significant challenges (Burket et al., 
2023; Pahlevan et al., 2021). Most existing research focuses on 
a single sensor or modelling approach, limiting our 
understanding of which combinations of sensor and model yield 
the most reliable results. Furthermore, there is limited evidence 
on whether advanced machine learning techniques consistently 
outperform simpler statistical models, such as linear regression, 
in these settings. This knowledge gap makes it difficult to 
design practical, cost-effective UAV-based monitoring 
strategies that balance sensor performance, model complexity, 
and operational feasibility. 
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This study addresses these gaps by systematically comparing 
two multispectral UAV sensors—DJI Phantom 4 Multispectral 
and MicaSense RedEdge-P Dual —for estimating chlorophyll-a 
and turbidity concentrations in a tropical eutrophic reservoir. 
Using data from four UAV campaigns and corresponding in situ 
measurements, we trained and evaluated six regression models, 
ranging from statistical (linear and exponential) to machine 
learning methods (decision tree, random forest, support vector 
regression, and XGBoost). We aim to assess how sensor 
configuration and model selection influence prediction accuracy 
and to offer practical guidance for the use of UAV-based remote 
sensing in inland water quality assessment. 
 

2. Study Area and Field Data Acquisition 

This study was conducted at the Ibirité Reservoir, situated in the 
metropolitan region of Belo Horizonte, Minas Gerais, Brazil. 
The reservoir encompasses an area of approximately 200 
hectares. It represents a typical urban eutrophic system, subject 
to rapid water quality variations influenced by precipitation 
events, seasonal dynamics, urban runoff, and internal 
biogeochemical processes. These conditions contribute to a 
spatially and temporally heterogeneous optical environment, 
posing challenges for monitoring but offering a relevant context 
for testing high-resolution remote sensing techniques. In this 
regard, the Ibirité Reservoir provides an appropriate case study 
for evaluating the capacity of UAV-based multispectral imaging 
to retrieve limnological parameters in optically complex tropical 
inland waters. Figure 1 illustrates the location of the study area 
along with the georeferenced water sampling points employed 
in this research. 

 
Figure 1. Study area and sampling locations at the Ibirité 
Reservoir, where UAV images and in situ measurements of 
turbidity and chlorophyll-a were collected 
 
Four field campaigns were conducted across the transition from 
dry to wet season in 2024 (August 23, September 17, October 2, 
and November 6), capturing a range of hydrological and 
atmospheric conditions. To minimize sun glint effects during 
data acquisition, all UAV flights were scheduled in the early 
morning (between 08:00 and 10:30 AM) and solar elevation 
angles ranging between 25 and 45 degrees (Salim et al., 2024). 
Each field campaign was designed to ensure spatial alignment 
between UAV imagery and in situ measurements. The UAV 
followed a pre-programmed waypoint flight plan over 
georeferenced sampling locations, and water quality 
measurements were subsequently collected by boat at the same 
coordinates within a maximum interval of one hour. This 
approach allowed for the integration of near-simultaneous 

reflectance data and field observations, while maintaining 
operational efficiency and spatial precision. 
 
Water samples were collected at 19 georeferenced locations 
distributed throughout the reservoir, covering nearshore and 
pelagic zones as well as areas with visible water quality 
gradients. At each station, a YSI ProDSS multiparameter probe 
was used to record chlorophyll-a concentration (in mg/L) and 
turbidity (in NTU) approximately 10–20 cm below the surface, 
minimizing surface reflectance artifacts while capturing the 
photic layer. All sampling locations were integrated into the 
UAV flight plans and image analysis pipeline, forming the 
ground truth dataset for regression modeling. On each campaign 
day, the field team aimed to visit all 19 stations, which were 
distributed across the reservoir according to accessibility, 
limited in some areas by the presence of dense aquatic 
vegetation. A total of 64 points were selected for regression 
analysis using MicaSense imagery and 67 points using DJI 
Phantom 4 Multispectral imagery, considering the availability 
of both in situ data and coincident UAV images. 
 
Two multispectral UAV imaging platforms were deployed. The 
DJI Phantom 4 Multispectral is an integrated drone equipped 
with five sensors (450, 560, 650, 730 and 840 nm) and an RGB 
camera, capturing images at a native spatial resolution of ~6 
cm/pixel at 100 m above ground altitude. The MicaSense 
RedEdge-P Dual is a dual-sensor configuration, capturing ten 
bands (centered at 444, 475, 531, 560, 650, 668, 705, 717, 740, 
and 842 nm) with images of 5 cm/pixel at 100 m above ground 
altitude. Multispectral imagery was radiometrically calibrated 
using Agisoft Metashape Professional (v2.2.0), following the 
official MicaSense guidelines for the RedEdge-P Dual sensor. 
Raw digital numbers (DNs) were first converted to spectral 
radiance using sensor-specific parameters, including exposure 
time, electronic gain, vignetting correction, and black level 
adjustment. A reflectance calibration step was then conducted 
using a calibrated reflectance panel (CRP) imaged prior to each 
flight. For each band of the MicaSense RedEdge-P Dual, a 
reflectance factor was derived by comparing the measured 
radiance over the CRP to its known reflectance values. These 
factors were subsequently applied to the radiance imagery to 
generate accurate surface reflectance, ensuring consistency 
across bands and flight campaigns. 
 
To construct the modelling dataset, median reflectance values 
from each spectral band were extracted at the georeferenced 
sampling locations. These spectral metrics were then integrated 
with the corresponding in situ measurements of turbidity and 
chlorophyll-a, providing the predictor and response variables for 
subsequent regression analysis. The resulting spectral 
signatures, shown in Figure 2, exhibit distinct peaks in the green 
and red-edge regions, with lower reflectance in the blue, red, 
and near-infrared bands. This pattern is characteristic of 
eutrophic waters dominated by phytoplankton, closely 
resembling the spectral responses observed in Halstead’s Bay, 
Lake Minnetonka (Burket et al., 2023). Similar spectral features 
have also been reported for Optical Water Types (OWT) 5 and 
6, which are associated with high concentrations of different 
phytoplankton blooms and elevated turbidity levels (Pahlevan et 
al., 2021). 
 
During the study period, water quality in the Ibirité Reservoir 
was characterized by dominant, elevated chlorophyll-a 
concentrations (median = 55.1 mg/L; standard deviation = 19.6 
mg/L) and moderate turbidity levels (median = 11.4 NTU; 
standard deviation = 4.4 NTU). NTU stands for Nephelometric 
Turbidity unit. 
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Figure 2. Spectral Signatures for Chlorophyll-a and Turbidity 
Using UAV Sensors 
 
4. Machine Learning and Statistical Modelling Workflow 
 

To explore the predictive potential of UAV-derived reflectance 
for water quality estimation, Pearson correlation coefficients 
were first calculated between each spectral band and the in situ 
limnological variables (chlorophyll-a and turbidity). This initial 
step provided insight into spectral sensitivity and informed the 
subsequent modeling approach. Six regression models were 
then evaluated to capture a range of relationships between 
reflectance and water quality parameters: Linear Regression, 
Exponential Regression, Decision Tree, Random Forest, 
Support Vector Regression with Radial Basis Function kernel 
(SVR-RBF), and Extreme Gradient Boosting (XGBoost).  
 

A stratified 5-fold cross-validation scheme was applied to 
ensure robust model evaluation, maintaining balanced 
distributions of target values across folds. Model performance 
was assessed using the coefficient of determination (R²) and 
root mean square error (RMSE), which respectively represent 
the proportion of variance explained and the dispersion of 
prediction errors.  
 

For each combination of sensor and target variable, the best-
performing model was selected based on average cross-
validation scores and then retrained using the full dataset to 
produce the final predictive function. This workflow enabled a 
comparative assessment of modeling strategies across different 
sensor configurations and target parameters, examining the 
relationship between algorithmic complexity and the stability of 
predictions across multiple sampling campaigns. 
 

3. Results 

3.1 Chlrophyll-a 

The spectral correlation analysis demonstrated a consistent and 
interpretable pattern for chlorophyll-a detection across both 
UAV platforms. As shown in Figure 3 (a–b), Spearman 
correlation coefficients indicated a strong sensitivity of 
chlorophyll-a to the green and red-edge spectral regions. For the 
MicaSense RedEdge-P Dual sensor, the highest correlations 
were found at 560 nm (r = 0.766), 531 nm (r = 0.735), and 
717 nm (r = 0.730), all of which align with known reflectance 

features of chlorophyll-a in optically active waters. The DJI 
Phantom 4 Multispectral sensor exhibited a similar spectral 
response, with peak correlations at 560 nm (r = 0.613) and 
730 nm (r = 0.632). These results align with previous studies 
highlighting the importance of red-edge wavelengths for 
detecting chlorophyll-a, particularly in productive inland waters 
with elevated phytoplankton biomass (Castro et al., 2020). The 
stronger correlations observed with the MicaSense sensor are 
likely due to its narrower spectral bands and the use of a 
calibrated reflectance panel (CRP) specifically optimized for 
that sensor, enhancing radiometric accuracy and spectral 
sensitivity. 
 

 
  
Figure 3. Sensor-specific performance and spectral sensitivity 
analysis for chlorophyll-a retrieval using machine learning 
models. Panels show: (a–b) Spearman correlations across 
spectral bands, (c–d) model accuracy metrics (R² and RMSE), 
and (e–f) regression plots for the MicaSense RedEdge-P Dual 
(MRDP) and DJI P4M platforms. 
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Regarding model performance, shown in Figure 3 (c–d), 
substantial differences were observed across sensors and 
algorithms. For the MicaSense sensor, the RF model achieved 
the highest predictive accuracy (R² = 0.867; 
RMSE = 6.72 µg/L), followed by the exponential regression 
(R² = 0.823) and DT (R² = 0.806) models. Conversely, the SVR-
RBF model performed poorly (R² = 0.282), indicating limited 
generalizability for chlorophyll-a retrieval under these 
conditions. For the DJI P4M, the DT model yielded the best 
results (R² = 0.825; RMSE = 7.63 µg/L), followed by RF 
(R² = 0.779), while SVR-RBF again showed the weakest 
performance (R² = 0.258). These results highlight the robustness 
of ensemble and tree-based algorithms in capturing the non-
linear relationship between chlorophyll-a and reflectance in 
eutrophic waters. Similar performance levels have been reported 
in previous studies. Castro et al. (2020) achieved R² values up to 
0.94 using a MicaSense RedEdge sensor imagery to estimate 
chlorophyll-a, while Xiao et al. (2023) reported R² = 0.69 using 
the DJI P4M, reinforcing the better performance of Micasense. 
 
Scatterplots of observed versus predicted values further 
confirmed these findings (Figure 3 (e–f)), revealing tight 
clustering around the 1:1 line and minimal dispersion, indicative 
of strong model generalization.  
 
3.2 Turbidity 

Turbidity estimation based on spectral reflectance exhibited 
more complex and less predictable patterns compared to 
chlorophyll-a. As shown in Figure 4 (a–b), Spearman 
correlation values were generally lower and more variable 
across the spectral range, reflecting the diffuse nature of 
turbidity-related optical signals. For the MicaSense RedEdge-P 
Dual sensor, moderate positive correlations were observed in 
the red-edge region, r = 0.541 at 717 nm and r = 0.502 at 
705 nm, followed by weaker, yet still positive, correlations in 
the green spectral range (e.g., 560 nm, r = 0.427). In contrast, 
the DJI P4M exhibited overall lower spectral sensitivity to 
turbidity, with its highest correlations also located in the green 
(560 nm, r = 0.453) and red-edge (730 nm, r = 0.422) bands. 
These trends are consistent with Xiao et al. (2023), who 
reported a strong correlation between suspended solids and the 
red band (r = 0.67), highlighting the band’s sensitivity to 
backscattering by particulate matter. Additionally, their study 
found that the spectral index (RE − G)/(RE + G) was among the 
most effective for turbidity retrieval, achieving a correlation of r 
= 0.63. This aligns well with our own results, where both green 
and red-edge bands emerged as most informative.  
 
Interestingly, negative correlations were also observed, 
particularly in the blue, red and near-infrared regions, likely due 
to overlapping effects of chlorophyll, coloured dissolved 
organic matter (CDOM), and organic particles in optically 
complex waters (Pahlevan et al., 2021). When models were 
trained using only bands with positive correlations, predictive 
performance declined consistently (data not shown).  
 
Regression modeling revealed clear differences in turbidity 
estimation performance between sensors and algorithms (Figure 
4c–f). For the MicaSense RedEdge-P Dual, Linear Regression 
consistently produced the best results, with a mean R² of 0.712 
and RMSE of 2.22, outperforming more complex models such 
as RF, DT, and SVR-RBF, which yielded lower R² values 
(0.577–0.616) and higher RMSEs. This outcome challenges the 
notion that nonlinear approaches inherently perform better in 
optically complex inland waters. In contrast, all models 
performed poorly with the DJI P4M, whose five-band 

configuration offered limited spectral sensitivity to turbidity. 
The best-performing algorithm, SVR-RBF, achieved only R² = 
0.285 and RMSE = 3.25, indicating restricted capacity to 
capture relevant backscattering signals. Comparable challenges 
in turbidity modeling were reported by Cui et al. (2022), who 
applied RF and SVF to Sentinel-2 and HJ-1A/B satellite data 
over Lake Chaohu, achieving R² values of 0.67 (RF) and 0.60 
(SVR), despite the broader spectral coverage of the sensors. 
Similarly, Dias et al. (2021) employed Micasense imagery to 
estimate total suspended solids in the Guarapiranga Reservoir, 
and reported R² values of 0.78 (RF), 0.75 (SVM), and 0.72 
(multiple linear regression). These results are consistent with or 
slightly higher than the performance obtained with the 
MicaSense RedEdge-P Dual  sensor in the present study, and 
substantially outperform those from the DJI P4M. 
 

 
Figure 4. Sensor-specific performance and spectral sensitivity 
analysis for turbidity retrieval using machine learning models. 
Panels show: (a–b) Spearman correlations across spectral bands, 
(c–d) model accuracy metrics (R² and RMSE), and (e–f) 
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regression plots for the MicaSense RedEdge-P Dual (MRDP) 
and DJI P4M platforms. 
 
These findings underscore how sensor limitations, overlapping 
spectral influences (e.g., phytoplankton and CDOM), and the 
diffuse nature of turbidity constrain model performance, 
regardless of algorithmic complexity. Consequently, sensor 
selection and waterbody characteristics must be jointly 
considered in UAV-based turbidity retrievals, beyond model 
tuning alone. 
 

4. Conclusions 

This study systematically evaluated the capacity of UAV-
mounted multispectral sensors, in combination with statistical 
and machine learning models, to retrieve key limnological 
indicators—chlorophyll-a and turbidity—in a tropical eutrophic 
reservoir. The results demonstrated robust predictive 
capabilities for chlorophyll-a, particularly when leveraging 
ensemble-based models such as Random Forests and decision 
trees. The MicaSense RedEdge-P Dual sensor consistently 
outperformed the DJI Phantom 4 Multispectral platform, 
achieving higher spectral sensitivity and improved model 
accuracy (R² = 0.867 vs. 0.825, respectively). In contrast, 
turbidity estimation exhibited lower and more variable 
performance, with the best results (R² = 0.712) emerging from 
linear regression models using MicaSense data. These 
discrepancies underscore the differential spectral expressiveness 
of the two parameters and the inherent challenges associated 
with turbidity retrieval in optically complex waters. 
 
The superior performance of chlorophyll-a models is 
attributable to the distinct spectral absorption and reflectance 
features of this pigment, particularly within the green and red-
edge regions, which are well captured by the MicaSense 
sensor’s narrowband configuration. Moreover, the inclusion of 
radiometric calibration using a reflectance panel substantially 
enhanced the reliability of surface reflectance estimates. In 
contrast, turbidity exhibits broader and more diffuse spectral 
signatures, often overlapping with other water constituents. This 
optical ambiguity limits the discriminative power of 
multispectral sensors, particularly those with fewer bands and 
lower spectral specificity, such as the DJI P4M. 
 
From a methodological standpoint, the results challenge the 
assumption that advanced machine learning algorithms always 
outperform simpler models in remote sensing applications. 
While ensemble and tree-based approaches proved highly 
effective for chlorophyll-a estimation, linear regression models 
outperformed more complex algorithms in the case of turbidity, 
particularly when using MicaSense data. These findings suggest 
that model selection should be parameter-specific and guided by 
the underlying spectral structure of the data. Furthermore, they 
underscore the importance of harmonizing sensor selection, 
radiometric processing, and algorithmic complexity in the 
design of UAV-based water quality monitoring systems. 
Operational factors, such as flight planning, sun angle 
optimization, and timing relative to hydrological events, also 
played a critical role in ensuring the consistency of reflectance 
measurements and minimizing noise. 
 
Future research should aim to expand the temporal scope of 
UAV campaigns to cover a complete hydrological year, thereby 
capturing the full range of seasonal and intra-annual variability 
in limnological conditions. Integrating UAV data with satellite 
observations—particularly from high-resolution platforms such 
as Sentinel-2—would enhance spatial and temporal coverage 

and allow for multiscale modelling approaches. Moreover, the 
application of advanced machine learning techniques, including 
deep learning architectures, holds promise for improving the 
retrieval of complex parameters such as turbidity and for 
expanding the scope of analysis to additional water quality 
indicators, such as phycocyanin. Finally, the integration of 
optical modelling, UAV-satellite fusion, and long-term in situ 
validation will be essential for developing scalable, adaptive 
monitoring frameworks that can inform real-time decision-
making and ecosystem management in tropical inland waters. 
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