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Abstract

Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensors offer a promising approach for monitoring water quality in
optically complex inland waters, particularly in tropical eutrophic systems. This study investigates the performance of two UAV-
mounted sensors, DJI Phantom 4 Multispectral and MicaSense RedEdge-P Dual, for estimating chlorophyll-a and turbidity
concentrations in the Ibirité Reservoir, Brazil. Four UAV campaigns were conducted in 2024, alongside in situ measurements, and
six regression models were evaluated. Results show that chlorophyll-a was robustly predicted using ensemble algorithms, with the
MicaSense sensor achieving the best performance (R? = 0.867, RMSE = 6.72 pg/L). Turbidity estimation was more variable, with
linear regression outperforming complex models when using MicaSense data (R* = 0.712). The DIJI sensor consistently
underperformed, mainly due to limited spectral resolution. Findings highlight the critical roles of sensor configuration, spectral
sensitivity, and model selection in UAV-based water quality assessment.

1. Introduction

Unmanned Aerial Vehicles (UAVs) equipped with optical
sensors have increasingly become integral to water quality
monitoring, offering a complementary or alternative approach to
conventional field sampling and satellite-based remote sensing.
Their ability to acquire higher spatial resolution imagery on
demand, at low operational cost, and with high temporal
flexibility renders them particularly useful in small or dynamic
inland water bodies. UAVs facilitate fine-scale assessments that
capture spatial heterogeneity in limnological parameters—
something often overlooked in traditional discrete sampling or
limited by the spatial resolution of satellite platforms.

Among the water quality parameters of interest, chlorophyll-a
and turbidity are commonly used as proxies for primary
productivity and suspended matter concentration, respectively.
Chlorophyll-a, a  photosynthetic  pigment found in
phytoplankton, serves as a crucial indicator of trophic status and
levels of eutrophication (Castro et al., 2020). Turbidity, on the
other hand, measures the attenuation of light due to suspended
particulate matter, including sediment, detritus, plankton, and
organic material (Souza et al., 2023). Both parameters are vital
for understanding ecological dynamics in lentic systems,
influencing primary production, oxygen dynamics, and habitat
suitability for aquatic organisms. As a result, their remote
estimation holds significant importance for effective
monitoring, early warning, and ecosystem management.

The optical behaviour of these parameters forms the scientific
foundation for their retrieval via remote sensing. Chlorophyll-a
exhibits characteristic absorption in the blue and red spectral
regions, while reflecting in the green and red-edge portions of
the spectrum. Turbidity, influenced primarily by the
backscattering properties of suspended particles, tends to
manifest increased reflectance in the visible and near-infrared
regions depending on particle size, composition, and water
depth. The ability to detect these spectral signals using
multispectral UAV sensors depends not only on the spectral and
radiometric configuration of the sensor but also on transient
environmental conditions that alter water surface reflectance.

Factors such as wind-induced surface roughness (waves), sun
glint, cloud shading, and cloud glint can introduce significant
variability in the measured reflectance, potentially masking the
spectral signatures of chlorophyll-a and turbidity and
complicating model calibration and validation. These effects are
particularly relevant in small or shallow inland waters, where
surface conditions can change rapidly during a single UAV
flight (Salim et al., 2024). Consequently, the accuracy and
reliability of empirical models depend on both data
characteristics and environmental conditions.

Empirical modelling of chlorophyll-a and turbidity using UAV-
based multispectral imagery has shown promising yet
contrasting results for different parameters. Castro et al. (2020)
employed a MicaSense RedEdge sensor to estimate chlorophyll-
a in a eutrophic reservoir and reported high predictive
performance, with the three-band algorithm reaching R? = 0.812
and the two-band algorithm R? = 0.791. Simpler indices like
SABI and NDCI also performed well, achieving R? = 0.781 and
R? = 0.752, respectively. In contrast, turbidity estimation
showed weaker results, with the best UAV-based model using a
green/red band ratio reaching only R? = 0.547. This
performance gap highlights the greater spectral separability of
chlorophyll-a and the difficulty of isolating turbidity signals in
optically complex waters.

Although UAVs are increasingly used for water quality
monitoring, few studies have directly compared different UAV-
mounted multispectral sensors under the same environmental
conditions, particularly in tropical eutrophic reservoirs, where
optical complexity poses significant challenges (Burket et al.,
2023; Pahlevan et al., 2021). Most existing research focuses on
a single sensor or modelling approach, limiting our
understanding of which combinations of sensor and model yield
the most reliable results. Furthermore, there is limited evidence
on whether advanced machine learning techniques consistently
outperform simpler statistical models, such as linear regression,
in these settings. This knowledge gap makes it difficult to
design practical, cost-effective UAV-based monitoring
strategies that balance sensor performance, model complexity,
and operational feasibility.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-263-2025 | © Author(s) 2025. CC BY 4.0 License. 263



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

This study addresses these gaps by systematically comparing
two multispectral UAV sensors—DJI Phantom 4 Multispectral
and MicaSense RedEdge-P Dual —for estimating chlorophyll-a
and turbidity concentrations in a tropical eutrophic reservoir.
Using data from four UAV campaigns and corresponding in situ
measurements, we trained and evaluated six regression models,
ranging from statistical (linear and exponential) to machine
learning methods (decision tree, random forest, support vector
regression, and XGBoost). We aim to assess how sensor
configuration and model selection influence prediction accuracy
and to offer practical guidance for the use of UAV-based remote
sensing in inland water quality assessment.

2. Study Area and Field Data Acquisition

This study was conducted at the Ibirité Reservoir, situated in the
metropolitan region of Belo Horizonte, Minas Gerais, Brazil.
The reservoir encompasses an area of approximately 200
hectares. It represents a typical urban eutrophic system, subject
to rapid water quality variations influenced by precipitation
events, seasonal dynamics, urban runoff, and internal
biogeochemical processes. These conditions contribute to a
spatially and temporally heterogeneous optical environment,
posing challenges for monitoring but offering a relevant context
for testing high-resolution remote sensing techniques. In this
regard, the Ibirité Reservoir provides an appropriate case study
for evaluating the capacity of UAV-based multispectral imaging
to retrieve limnological parameters in optically complex tropical
inland waters. Figure 1 illustrates the location of the study area
along with the georeferenced water sampling points employed
in this research.

-44.12 -44.10

Figure 1. Study area and sampling locations at the Ibirité
Reservoir, where UAV images and in situ measurements of
turbidity and chlorophyll-a were collected

Four field campaigns were conducted across the transition from
dry to wet season in 2024 (August 23, September 17, October 2,
and November 6), capturing a range of hydrological and
atmospheric conditions. To minimize sun glint effects during
data acquisition, all UAV flights were scheduled in the early
morning (between 08:00 and 10:30 AM) and solar elevation
angles ranging between 25 and 45 degrees (Salim et al., 2024).
Each field campaign was designed to ensure spatial alignment
between UAV imagery and in situ measurements. The UAV
followed a pre-programmed waypoint flight plan over
georeferenced sampling locations, and water quality
measurements were subsequently collected by boat at the same
coordinates within a maximum interval of one hour. This
approach allowed for the integration of near-simultaneous

reflectance data and field observations, while maintaining
operational efficiency and spatial precision.

Water samples were collected at 19 georeferenced locations
distributed throughout the reservoir, covering nearshore and
pelagic zones as well as areas with visible water quality
gradients. At each station, a YSI ProDSS multiparameter probe
was used to record chlorophyll-a concentration (in mg/L) and
turbidity (in NTU) approximately 10-20 cm below the surface,
minimizing surface reflectance artifacts while capturing the
photic layer. All sampling locations were integrated into the
UAV flight plans and image analysis pipeline, forming the
ground truth dataset for regression modeling. On each campaign
day, the field team aimed to visit all 19 stations, which were
distributed across the reservoir according to accessibility,
limited in some areas by the presence of dense aquatic
vegetation. A total of 64 points were selected for regression
analysis using MicaSense imagery and 67 points using DJI
Phantom 4 Multispectral imagery, considering the availability
of both in situ data and coincident UAV images.

Two multispectral UAV imaging platforms were deployed. The
DJI Phantom 4 Multispectral is an integrated drone equipped
with five sensors (450, 560, 650, 730 and 840 nm) and an RGB
camera, capturing images at a native spatial resolution of ~6
cm/pixel at 100 m above ground altitude. The MicaSense
RedEdge-P Dual is a dual-sensor configuration, capturing ten
bands (centered at 444, 475, 531, 560, 650, 668, 705, 717, 740,
and 842 nm) with images of 5 cm/pixel at 100 m above ground
altitude. Multispectral imagery was radiometrically calibrated
using Agisoft Metashape Professional (v2.2.0), following the
official MicaSense guidelines for the RedEdge-P Dual sensor.
Raw digital numbers (DNs) were first converted to spectral
radiance using sensor-specific parameters, including exposure
time, electronic gain, vignetting correction, and black level
adjustment. A reflectance calibration step was then conducted
using a calibrated reflectance panel (CRP) imaged prior to each
flight. For each band of the MicaSense RedEdge-P Dual, a
reflectance factor was derived by comparing the measured
radiance over the CRP to its known reflectance values. These
factors were subsequently applied to the radiance imagery to
generate accurate surface reflectance, ensuring consistency
across bands and flight campaigns.

To construct the modelling dataset, median reflectance values
from each spectral band were extracted at the georeferenced
sampling locations. These spectral metrics were then integrated
with the corresponding in situ measurements of turbidity and
chlorophyll-a, providing the predictor and response variables for
subsequent regression analysis. The resulting spectral
signatures, shown in Figure 2, exhibit distinct peaks in the green
and red-edge regions, with lower reflectance in the blue, red,
and near-infrared bands. This pattern is characteristic of
eutrophic waters dominated by phytoplankton, closely
resembling the spectral responses observed in Halstead’s Bay,
Lake Minnetonka (Burket et al., 2023). Similar spectral features
have also been reported for Optical Water Types (OWT) 5 and
6, which are associated with high concentrations of different
phytoplankton blooms and elevated turbidity levels (Pahlevan et
al., 2021).

During the study period, water quality in the Ibirité Reservoir
was characterized by dominant, elevated chlorophyll-a
concentrations (median = 55.1 mg/L; standard deviation = 19.6
mg/L) and moderate turbidity levels (median = 11.4 NTU;
standard deviation = 4.4 NTU). NTU stands for Nephelometric
Turbidity unit.
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Figure 2. Spectral Signatures for Chlorophyll-a and Turbidity
Using UAV Sensors

4. Machine Learning and Statistical Modelling Workflow

To explore the predictive potential of UAV-derived reflectance
for water quality estimation, Pearson correlation coefficients
were first calculated between each spectral band and the in situ
limnological variables (chlorophyll-a and turbidity). This initial
step provided insight into spectral sensitivity and informed the
subsequent modeling approach. Six regression models were
then evaluated to capture a range of relationships between
reflectance and water quality parameters: Linear Regression,
Exponential Regression, Decision Tree, Random Forest,
Support Vector Regression with Radial Basis Function kernel
(SVR-RBF), and Extreme Gradient Boosting (XGBoost).

A stratified 5-fold cross-validation scheme was applied to
ensure robust model evaluation, maintaining balanced
distributions of target values across folds. Model performance
was assessed using the coefficient of determination (R?) and
root mean square error (RMSE), which respectively represent
the proportion of variance explained and the dispersion of
prediction errors.

For each combination of sensor and target variable, the best-
performing model was selected based on average cross-
validation scores and then retrained using the full dataset to
produce the final predictive function. This workflow enabled a
comparative assessment of modeling strategies across different
sensor configurations and target parameters, examining the
relationship between algorithmic complexity and the stability of
predictions across multiple sampling campaigns.

3. Results
3.1 Chlrophyll-a

The spectral correlation analysis demonstrated a consistent and
interpretable pattern for chlorophyll-a detection across both
UAV platforms. As shown in Figure 3 (a—b), Spearman
correlation coefficients indicated a strong sensitivity of
chlorophyll-a to the green and red-edge spectral regions. For the
MicaSense RedEdge-P Dual sensor, the highest correlations
were found at 560nm (r=0.766), 531 nm (r=0.735), and
717 nm (r=0.730), all of which align with known reflectance

features of chlorophyll-a in optically active waters. The DJI
Phantom 4 Multispectral sensor exhibited a similar spectral
response, with peak correlations at 560 nm (r=0.613) and
730nm (r=0.632). These results align with previous studies
highlighting the importance of red-edge wavelengths for
detecting chlorophyll-a, particularly in productive inland waters
with elevated phytoplankton biomass (Castro et al., 2020). The
stronger correlations observed with the MicaSense sensor are
likely due to its narrower spectral bands and the use of a
calibrated reflectance panel (CRP) specifically optimized for
that sensor, enhancing radiometric accuracy and spectral
sensitivity.
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Figure 3. Sensor-specific performance and spectral sensitivity
analysis for chlorophyll-a retrieval using machine learning
models. Panels show: (a-b) Spearman correlations across
spectral bands, (c—d) model accuracy metrics (R? and RMSE),
and (e—f) regression plots for the MicaSense RedEdge-P Dual
(MRDP) and DJI P4M platforms.
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Regarding model performance, shown in Figure 3 (c—d),
substantial differences were observed across sensors and
algorithms. For the MicaSense sensor, the RF model achieved
the highest predictive accuracy (R*2=0.867;
RMSE =6.72 ug/L), followed by the exponential regression
(R?=0.823) and DT (R*=0.806) models. Conversely, the SVR-
RBF model performed poorly (R? = 0.282), indicating limited
generalizability for chlorophyll-a retrieval under these
conditions. For the DJI P4M, the DT model yielded the best
results (R2=0.825; RMSE=7.63 ug/L), followed by RF
(R2=0.779), while SVR-RBF again showed the weakest
performance (R?=0.258). These results highlight the robustness
of ensemble and tree-based algorithms in capturing the non-
linear relationship between chlorophyll-a and reflectance in
eutrophic waters. Similar performance levels have been reported
in previous studies. Castro et al. (2020) achieved R? values up to
0.94 using a MicaSense RedEdge sensor imagery to estimate
chlorophyll-a, while Xiao et al. (2023) reported R>=0.69 using
the DJI P4M, reinforcing the better performance of Micasense.

Scatterplots of observed versus predicted values further
confirmed these findings (Figure 3 (e—f)), revealing tight
clustering around the 1:1 line and minimal dispersion, indicative
of strong model generalization.

3.2 Turbidity

Turbidity estimation based on spectral reflectance exhibited
more complex and less predictable patterns compared to
chlorophyll-a. As shown in Figure 4 (a-b), Spearman
correlation values were generally lower and more variable
across the spectral range, reflecting the diffuse nature of
turbidity-related optical signals. For the MicaSense RedEdge-P
Dual sensor, moderate positive correlations were observed in
the red-edge region, r = 0.541 at 717nm and r = 0.502 at
705 nm, followed by weaker, yet still positive, correlations in
the green spectral range (e.g., 560 nm, r = 0.427). In contrast,
the DJI P4AM exhibited overall lower spectral sensitivity to
turbidity, with its highest correlations also located in the green
(560 nm, r = 0.453) and red-edge (730 nm, r = 0.422) bands.
These trends are consistent with Xiao et al. (2023), who
reported a strong correlation between suspended solids and the
red band (r = 0.67), highlighting the band’s sensitivity to
backscattering by particulate matter. Additionally, their study
found that the spectral index (RE — G)/(RE + G) was among the
most effective for turbidity retrieval, achieving a correlation of r
= 0.63. This aligns well with our own results, where both green
and red-edge bands emerged as most informative.

Interestingly, negative correlations were also observed,
particularly in the blue, red and near-infrared regions, likely due
to overlapping effects of chlorophyll, coloured dissolved
organic matter (CDOM), and organic particles in optically
complex waters (Pahlevan et al., 2021). When models were
trained using only bands with positive correlations, predictive
performance declined consistently (data not shown).

Regression modeling revealed clear differences in turbidity
estimation performance between sensors and algorithms (Figure
4c—f). For the MicaSense RedEdge-P Dual, Linear Regression
consistently produced the best results, with a mean R? of 0.712
and RMSE of 2.22, outperforming more complex models such
as RF, DT, and SVR-RBF, which yielded lower R? values
(0.577-0.616) and higher RMSEs. This outcome challenges the
notion that nonlinear approaches inherently perform better in
optically complex inland waters. In contrast, all models
performed poorly with the DJI P4M, whose five-band

configuration offered limited spectral sensitivity to turbidity.
The best-performing algorithm, SVR-RBF, achieved only R? =
0.285 and RMSE = 3.25, indicating restricted capacity to
capture relevant backscattering signals. Comparable challenges
in turbidity modeling were reported by Cui et al. (2022), who
applied RF and SVF to Sentinel-2 and HJ-1A/B satellite data
over Lake Chaohu, achieving R? values of 0.67 (RF) and 0.60
(SVR), despite the broader spectral coverage of the sensors.
Similarly, Dias et al. (2021) employed Micasense imagery to
estimate total suspended solids in the Guarapiranga Reservoir,
and reported R? values of 0.78 (RF), 0.75 (SVM), and 0.72
(multiple linear regression). These results are consistent with or
slightly higher than the performance obtained with the
MicaSense RedEdge-P Dual sensor in the present study, and
substantially outperform those from the DJI PAM.
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Figure 4. Sensor-specific performance and spectral sensitivity
analysis for turbidity retrieval using machine learning models.
Panels show: (a—b) Spearman correlations across spectral bands,
(c—d) model accuracy metrics (R* and RMSE), and (e—f)
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regression plots for the MicaSense RedEdge-P Dual (MRDP)
and DJI P4M platforms.

These findings underscore how sensor limitations, overlapping
spectral influences (e.g., phytoplankton and CDOM), and the
diffuse nature of turbidity constrain model performance,
regardless of algorithmic complexity. Consequently, sensor
selection and waterbody characteristics must be jointly
considered in UAV-based turbidity retrievals, beyond model
tuning alone.

4. Conclusions

This study systematically evaluated the capacity of UAV-
mounted multispectral sensors, in combination with statistical
and machine learning models, to retrieve key limnological
indicators—chlorophyll-a and turbidity—in a tropical eutrophic
reservoir. The results demonstrated robust predictive
capabilities for chlorophyll-a, particularly when leveraging
ensemble-based models such as Random Forests and decision
trees. The MicaSense RedEdge-P Dual sensor consistently
outperformed the DJI Phantom 4 Multispectral platform,
achieving higher spectral sensitivity and improved model
accuracy (R? = 0.867 vs. 0.825, respectively). In contrast,
turbidity estimation exhibited lower and more variable
performance, with the best results (R? = 0.712) emerging from
linear regression models using MicaSense data. These
discrepancies underscore the differential spectral expressiveness
of the two parameters and the inherent challenges associated
with turbidity retrieval in optically complex waters.

The superior performance of chlorophyll-a models is
attributable to the distinct spectral absorption and reflectance
features of this pigment, particularly within the green and red-
edge regions, which are well captured by the MicaSense
sensor’s narrowband configuration. Moreover, the inclusion of
radiometric calibration using a reflectance panel substantially
enhanced the reliability of surface reflectance estimates. In
contrast, turbidity exhibits broader and more diffuse spectral
signatures, often overlapping with other water constituents. This
optical ambiguity limits the discriminative power of
multispectral sensors, particularly those with fewer bands and
lower spectral specificity, such as the DJI P4M.

From a methodological standpoint, the results challenge the
assumption that advanced machine learning algorithms always
outperform simpler models in remote sensing applications.
While ensemble and tree-based approaches proved highly
effective for chlorophyll-a estimation, linear regression models
outperformed more complex algorithms in the case of turbidity,
particularly when using MicaSense data. These findings suggest
that model selection should be parameter-specific and guided by
the underlying spectral structure of the data. Furthermore, they
underscore the importance of harmonizing sensor selection,
radiometric processing, and algorithmic complexity in the
design of UAV-based water quality monitoring systems.
Operational factors, such as flight planning, sun angle
optimization, and timing relative to hydrological events, also
played a critical role in ensuring the consistency of reflectance
measurements and minimizing noise.

Future research should aim to expand the temporal scope of
UAV campaigns to cover a complete hydrological year, thereby
capturing the full range of seasonal and intra-annual variability
in limnological conditions. Integrating UAV data with satellite
observations—particularly from high-resolution platforms such
as Sentinel-2—would enhance spatial and temporal coverage

and allow for multiscale modelling approaches. Moreover, the
application of advanced machine learning techniques, including
deep learning architectures, holds promise for improving the
retrieval of complex parameters such as turbidity and for
expanding the scope of analysis to additional water quality
indicators, such as phycocyanin. Finally, the integration of
optical modelling, UAV-satellite fusion, and long-term in situ
validation will be essential for developing scalable, adaptive
monitoring frameworks that can inform real-time decision-
making and ecosystem management in tropical inland waters.
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