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Abstract

This study investigates the classification of individual tree and shrub species within a complex Mediterranean ecosystem using
UAV-acquired multispectral imagery and machine learning techniques. Conducted on Culuccia Island (Sardinia, Italy), the research
integrates high-resolution photogrammetric products with Object-Based Image Analysis (OBIA) and a Random Forest classifier to
delineate and identify vegetation species at the crown level. A total of 272 geo-referenced samples from 16 species were used to train
and validate the model, which achieved an overall accuracy of 0.71. The workflow demonstrates the effectiveness of single tree
segmentation in highly heterogeneous environments and highlights the potential of phenology-informed feature sets for improving
classification. The results underscore the value of UAV-based methods in conservation monitoring, ecological assessment, and
habitat management. Future research directions include the integration of LIDAR data, deep learning architectures, and multi-
temporal observations to enhance scalability and model interpretability.

1. Introduction

The classification and monitoring of vegetation species in
coastal and insular ecosystems are critical for biodiversity
conservation,  sustainable  resource  management, and
compliance with European directives such as the Habitats
Directive 92/43/EEC. These areas are characterised by unique
ecological features, including high salinity, poor and shallow
soils, strong seasonal dynamics, and a diverse mosaic of
vegetation structures. Accurate recognition of plant species,
particularly at the individual level, is essential for assessing
conservation status, understanding successional processes, and
supporting restoration or mitigation planning. While field-based
surveys remain the traditional approach for species-level
monitoring, they are often labour-intensive, time-consuming,
and logistically challenging, particularly in complex or remote
terrain. As such, remote sensing technologies, including high-
resolution UAV (Uncrewed Aerial Vehicle) imagery and
satellite observations, are increasingly leveraged to overcome
these limitations. UAV-based approaches, in particular, offer
significant advantages in terms of spatial, spectral, and temporal
resolution, providing a flexible and cost-effective means of
capturing fine-scale ecological information (Belcore et al.,
2021; Fassnacht et al., 2016).

In recent years, the integration of UAV-acquired multispectral
and hyperspectral imagery with advanced machine learning
(ML) techniques has significantly advanced the capabilities of
species-level vegetation mapping. Object-Based Image Analysis
(OBIA), coupled with supervised classifiers such as Random
Forest (RF) and Support Vector Machines (SVM), has proven
effective for delineating individual tree crowns and assigning
them to species categories based on spectral, geometric, and
textural features (Takahashi Miyoshi et al., 2020; Michez et al.,
2016). These methods can incorporate both spectral reflectance
characteristics (e.g., red-edge, NIR) and phenological traits
derived from multi-temporal datasets, enabling improved
species discrimination even in structurally complex
environments

UAV platforms enable tailored, high-frequency data acquisition
that is especially valuable for phenology-based classification,
wherein plant species are characterised by their seasonal growth
stages. Studies have demonstrated that UAV data collected at
key phenological epochs, such as pre-green-up, flowering, and
full canopy development, can significantly increase
classification accuracy. For instance, Belcore et al. (2021)
showed that the overall F1-score for species classification in
riparian habitats increased by 0.3 when three phenological
epochs were included instead of two.

Nevertheless, species classification using UAV and Al
technologies still faces critical challenges. Mediterranean
ecosystems, such as those in coastal and insular areas, often
consist of dense, multi-layered vegetation with low height
variation and overlapping canopies. These conditions lead to
common issues such as under-segmentation, high intra-species
spectral variability, and limited spectral separability among
different species. Moreover, the accuracy of classification
models is often constrained by the availability of balanced,
high-quality ground-truth data and the need for extensive
feature engineering (Belcore et al., 2021; Xu et al., 2020).

Recent studies have emphasized the benefits of employing data
balancing strategies—such as SMOTE (Synthetic Minority
Oversampling Technique)—and of integrating canopy height
models (CHMs) derived from UAV photogrammetry or LiDAR
to enhance vertical differentiation among species (Shi et al.,
2020). These approaches are especially relevant for detecting
less dominant or structurally distinct species, such as Pinus
sylvestris or Salicornia europaea, which may otherwise be
underrepresented. Looking forward, the incorporation of deep
learning  architectures—particularly  convolutional  neural
networks (CNNs)—offers promising avenues for automated and
scalable vegetation mapping. CNNs have demonstrated superior
performance in tasks involving complex spatial patterns and can
learn hierarchical features directly from image data without
extensive manual preprocessing (Egli and Hopke, 2020;
Kattenborn et al., 2021; Boston et al, 2024).
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Moreover, recent advances in explainable artificial intelligence
(XAlI) are beginning to peel back deep learning models' “black-
box” nature providing interpretable visualizations such as
saliency maps, Class Activation Maps (CAM), and feature
attribution techniques that help elucidate which image features
most influence model decisions (Samek et al., 2017; Montavon
et al., 2018). For instance, Matrone et al. (2022) introduced
BubblEX, an XAl framework that produces saliency-style
visualisations and interpretability modules for 3D point-cloud
data, showing how specific features and neighbourhoods
contribute to model decisions. These methods are highly
relevant in ecological settings, where transparency and
interpretable model outputs are essential for scientific validation
and practical environmental management.

Despite the increasing adoption and interest in these analyses,
several challenges persist in species classification, which can be
grouped into technological limitations and the specific
characteristics of the forest types under examination. The most
significant challenges include: low detection rates for small
trees and shrubs, under-segmentation caused by high vegetation
density and limited height differences among specimens, over-
segmentation and limited classification precision, low spectral
variability between species, and high intra-class spectral
variability at very high resolutions.

These challenges are especially pronounced in Mediterranean
woodlands, which are characterized by small trees and shrubs, a
complex and stratified structure, and patchy vegetation cover.
Moreover, due to the unique nature of the Mediterranean
Ecosystem and the high variability in structure and composition,
developing a generalizable species classification and detection
model remains highly complex.

2. Materials and Methods
2.1 Study site

Culuccia Island, also known as Isola delle Vacche, is a
promontory spanning approximately 320 hectares connected to
the mainland by a narrow sandy isthmus. It is located in the
Gallura region, along the northeastern coast of Sardinia, Italy
(Figure 1). Geographically, the island is situated within the Gulf
of Arzachena, near the La Maddalena Archipelago National
Park. This area holds significant conservation interest, having
been designated as a Site of Community Importance (SCI) with
code 1TB010008, under the Habitats Directive 92/43/EEC, due
to its high biodiversity and the presence of priority habitats.

Climatically, the island is characterised by a thermo-temperate
Mediterranean climate (Csa type according to the Koppen-
Geiger classification), featuring hot, arid summers and mild,
moderately rainy winters. Intrusive rocks of the Hercynian
basement dominate the site's geology, primarily granites and
granodiorites, which give rise to an undulating landscape with
rocky outcrops and shallow, acidic sandy soils with limited
water retention capacity (Figure 2).

The vegetation is a typical example of Mediterranean maquis, a
complex mosaic of plant communities whose structure and
composition are determined by topography, exposure to
dominant winds, particularly the Mistral. The vegetation cover
is dominated by evergreen sclerophyllous formations, which can
be distinguished into: tall maqui, a dense scrubland up to 4-5
meters high, dominated by tree and shrub species such as
Phoenicean juniper (Juniperus phoenicea), wild olive (Olea

europaea var. sylvestris), mastic tree (Pistacia lentiscus), and
broad-leaved phillyrea (Phillyrea latifolia); Low maquis and
garrigue: more open and lower-height formations (0.5-1.5
meters), where prevalent species include common myrtle
(Myrtus communis), various cistus species (Cistus spp.), spiny
broom (Calicotome villosa), and Italian everlasting
(Helichrysum italicum).

A salient feature of this vegetation landscape is its high
structural heterogeneity, with individuals of different species
growing in dense aggregates, often with overlapping and
interpenetrating canopies. This complexity represents a
significant challenge for remote sensing techniques for

Individual Tree Detection. Culuccia Island constitutes an ideal
study site; it is a representative, ecologically intact, and
sufficiently circumscribed ecosystem to test and validate a high-
resolution single tree classification methodology.

Figure 1. Geographic context of the study site, Culuccia Island,
in the northern part of Sardinia.

Figure 2. Aerial view of Culuccia Island.

2.2 UAV Data Collection and Pre-Processing

UAV data were collected using a DJI Mavic 3M RTK
multirotor drone, equipped with four 1/2.8-inch CMOS 5 MP
multispectral sensors, specifically capturing Green (560 + 12.5
nm), Red (650 £ 10 nm), Red Edge (730 + 10 nm), and Near-
Infrared (860 = 13 nm) bands. Additionally, a wide-angle
camera with a 4/3 CMOS 20 MP sensor and a 24 mm (35 mm
equivalent) lens was utilized to capture RGB (Red, Green, Blue)
information, providing high-resolution visual context.

Flight missions were executed autonomously, ensuring
consistent data acquisition parameters (Figure 3). An average
flight altitude of 70 m above ground level was maintained,
resulting in an average Ground Sample Distance (GSD) of
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approximately 1.50 cm/pixel for the RGB camera, while the
multispectral cameras produced a GSD of approximately 3
cm/pixel. To ensure comprehensive coverage and sufficient data
for accurate photogrammetric reconstruction, images were
acquired with substantial longitudinal and transverse overlap of
80% and 60% respectively. Over 40,000 images were captured,
collectively covering the entire 3.2 km? study area.

The acquired UAV data underwent a standard Structure-from-
Motion (SfM) photogrammetric workflow (Turner et al., 2012;
Calantropio et al., 2018; Cortesi et al., 2022; Giordano et al,
2025) using Agisoft Metashape Professional software (version
2.1.0).

The processing pipeline included several key steps: initial image
alignment, generation of a dense 3D point cloud (Figure 3),
construction of a Digital Surface Model (DSM) (Figure 4) and a
Digital Terrain Model (DTM), and a high-resolution
multispectral orthomosaic (Figure 4).

Georeferencing of the final products was achieved directly
through the drone's integrated dual-frequency GNSS receiver.
To further verify and optimise the geometric accuracy of the
measurements and to refine the alignment of images and the 3D
model, 38 known ground coordinate points were used. These
included 26 Ground Control Points (GCPs) and 12 Check Points
(CPs), all easily identifiable within the imagery. These points
were measured in the field using the Network Real-Time
Kinematic (NRTK) GNSS technique. The rigorous

georeferencing process resulted in a remarkable final accuracy
of 1.5 cm in the planimetric component and 3 cm in the
altimetric one.

Figure 3. Flight plan and dense point cloud of the island's
northern part.

Figure 4. Digital Surface Model, on the left, and Orthomosaic,
on the right, of the northern part of Culuccia Island with a
spatial resolution of 3 cm/pixel.

2.3 Ground-Truth Vegetation Species Data Collection

A comprehensive geodatabase of tree and shrub species present
was compiled to train and validate the vegetation classification.
This involved extensive ground-truthing, during which 272
individual samples of 16 distinct species were identified and
geo-referenced (Figure 5). These samples were meticulously
selected based on their clear discernibility in the high-resolution
RGB orthophotos and multispectral imagery, ensuring that their
spectral and geometric characteristics could be accurately
extracted for machine learning training and validation.

Each sampled tree or shrub's crown centroid was recorded with
a high-precision Leica GS18 GNSS RTK receiver, achieving
sub-centimetre positional accuracy. This precise georeferencing
of individual tree locations served as the ground truth data. The
composition of the sampled species highlights the dominance of
a few key taxa within the study area. Phoenicean juniper
(Juniperus phoenicea) was the most frequently sampled species,
accounting for 96 individuals (35% of the total). Following this,
Common myrtle (Myrtus communis) represented a significant
portion with 49 samples (18%). Other notable species included
Lentisk (Pistacia lentiscus) and a variety of other Mediterranean
maquis components, each contributing a smaller percentage to
the overall sample count, such as Spartium junceum, Juncus
acutus, Salicornia europaea, Cistus monspeliensis, Helichrysum
italicum, Limonium sp., Phillyrea angustifolia, Inula
crithmoides, Arbutus unedo, Erica arborea, Lavandula
stoechas, and Olea europaea var. sylvestris. The cumulative
samples for these other 14 species accounted for the remaining
47% of the geodatabase.

This robust geodatabase, compiled with high-precision NRTK
GNSS measurements and combined with the accurately
processed UAV imagery, provided the essential foundation for
developing and validating the individual tree species
classification methodology.
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Figure 5. Distribution of ground-truth vegetation samples
collected for model training and validation.
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2.4 Vegetation Classification Methodology

The methodological workflow for classifying individual tree
species involved a multi-stage approach encompassing initial
vegetation segmentation, individual tree crown delineation,
comprehensive feature extraction, and a machine learning
classification algorithm.

2.4.1 Individual Tree Detection and Feature Extraction

This section details the methodology used to accurately identify
individual trees and extract a comprehensive set of descriptive
features crucial for vegetation characterisation. This process
was implemented within the Trimble eCognition Developer
software.

Firstly, a preliminary vegetation segmentation was performed to
distinguish vegetated areas from bare soil and other non-
vegetated surfaces. This step utilized an object-based approach
that applied multi-thresholding techniques on spectral indices,
such as the Normalized Difference Vegetation Index (NDVI),
and height information derived from the Normalized Digital
Surface Model (NDSM) (Figure 6). This allowed for the
effective separation of ground cover from vegetation (Figure 7a)
and a subsequent differentiation between low-lying herbaceous
and shrub vegetation and taller arboreal structures (Figure 7b),
optimising the subsequent individual tree detection.

Following this initial segmentation, individual tree crown
detection and delineation (Figure 7c) were achieved using a
multi-resolution segmentation algorithm. This Object-Based
Image Analysis (OBIA) approach was tailored to identify and
segment individual tree objects by analysing homogeneity
criteria based on pixel values from various image layers (e.g.,
multispectral bands, NDVI, and NDSM). The segmentation
parameters were dynamically optimised for different vegetation
strata (i.e., low vs. high vegetation) to ensure accurate crown
delineation across the diverse structural complexity of the
Mediterranean maquis. This process resulted in the generation
of numerous spatially distinct vegetation segments, each
representing a potential individual tree or a defined vegetation
clump.

For each individual tree vegetation object, a comprehensive set
of 72 descriptive features was extracted. This included spectral
features such as the mean, skewness, and standard deviation of
pixel values across all multispectral (Green, Red, Red Edge,
Near-Infrared) and RGB bands. Various established spectral
indices were also calculated, including NDVI, NDSM, GRVI
(Green-Red Vegetation Index), NDWI (Normalized Difference
Water Index), and SAVI (Soil-Adjusted Vegetation Index),
which offer key insights into vegetation health, photosynthetic
activity, and water content. To characterize the spatial
arrangement and perceived roughness of tree crowns, texture
features were derived from the Haralick Co-occurrence Matrix
(Haralick et al., 1973). These included metrics such as Angular
Second Moment, Contrast, Correlation, Dissimilarity, Entropy,
Homogeneity, Mean, and Standard Deviation, computed from
significant bands like Green and Near-Infrared. Texture features
are essential for differentiating species that may have similar
spectral signatures but distinct canopy structures. Additionally,
geometric features like compactness and colour transformation
features, such as hue derived from various band combinations,
further enhanced the descriptive power of each segmented
object. This extensive feature set provides a multi-dimensional
representation for each vegetation species, forming the
foundation for subsequent machine learning classification.
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Figure 6. NDVI map (left) and NDSM (right) used for
vegetation analysis.
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Figure 7. Sequential segmentation strategy for vegetation
analysis: a) Bare soil and vegetation segmentation; b) High and
low vegetation segmentation; c) Individual tree segmentation.

2.4.2  Classification Algorithm

The extracted features from the individual vegetation objects
were subsequently used as input for the classification model.
The Random Forest (RF) algorithm (Breiman, 2001) was
selected for its robustness, proven ability to handle high-
dimensional data, effective management of complex non-linear
relationships, and reduced susceptibility to overfitting, making
it particularly suitable for this classification application. Prior to
training the RF model, the ground-truth dataset underwent
several crucial preparation steps to optimize classification
performance. The collected ground-truth samples were
thoroughly prepared and cleaned, ensuring data quality and
consistency for model input. To enhance the representation of
minority classes and prevent algorithmic bias towards dominant
species, oversampling techniques were applied to augment the
training dataset for these underrepresented categories. The
model was configured with a specific number of estimators
designed to ensure stable and robust predictions, utilizing the
GINI impurity criterion for optimal node splitting within each
tree. A feature selection process, based on the GINI impurity
metric, was also applied to identify and retain the most
discriminative features, thereby reducing dimensionality and
enhancing computational efficiency without compromising
classification accuracy. For model validation, the Leave-One-
Out (LOO) cross-validation strategy was implemented,
providing a comprehensive assessment of the model's
generalization capabilities by iteratively training on nearly the
entire dataset and testing on a single, independent sample.
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3. Results and Discussion

The application of the developed OBIA and Random Forest
classification ~ workflow yielded comprehensive results
regarding the identification and spatial distribution of vegetation
species within the Culuccia Island study area. The Random
Forest model's overall accuracy was 0.71, with a standard
deviation of 0.18. Table 3 presents a more detailed performance
assessment of the individual species classes, providing insights
into Precision, Recall, and F1-score.

weais | Jipens [ s T stionie [ 3 | e
Precision 0.77 0.65 0.95 0.74 0.75
Recall 0.82 0.58 0.95 0.86 0.73
F1-Score 0.80 0.55 0.95 0.80 0.74

Table 1. Per-class accuracy metrics, including Precision, Recall,
and F1-score, for the classified vegetation species (Juniperus
phoenicea, Myrtus communis, Salicornia europaea, Juncus
acutus) and the aggregated 'Other' class

Juniperus phoenicea demonstrated strong classification
performance, achieving an impressive F1-score of 0.80. This
excellent result is mainly due to its distinct morphological
features and unique vertical structure; it typically grows as a
taller shrub or small tree, reaching heights that make it stand out
and clearly differentiate from surrounding lower vegetation or
mixed stands. This distinct vertical profile, captured by the
Canopy Height Model (CHM) and influencing various extracted
features, plays a significant role in its accurate identification.

Conversely, Myrtus communis showed moderate classification
accuracy, with an F1-score of 0.55. This comparatively lower
performance can be attributed to its more variable growth habit
and density. Myrtus communis often appears as a shorter shrub,
usually between 0.5 to 1.5 meters tall. It frequently grows in
denser, more interconnected stands or as understory within
mixed vegetation, making it more difficult to delineate
individual crowns and classify them accurately. While valuable,
the spectral and textural information may be less distinct in
these mixed and structurally complex environments compared
to more isolated or taller specimens.

Notably, Salicornia europaea and Juncus acutus exhibited
exceptionally high classification accuracy, with F1-scores of
0.95 and 0.80, respectively. Several factors likely contribute to
this strong performance. Both species typically grow in isolated
clumps or form distinct, homogeneous patches that are well-
separated from other vegetation types. This spatial separation
simplifies individual object delineation during segmentation,
reducing issues related to overlapping canopies. Additionally,
these species have unique spectral features that make them easy
to distinguish from the broader Mediterranean maquis flora;
Salicornia, as a halophyte, shows specific spectral responses
related to its physiological adaptations to saline environments,
while Juncus acutus, as a rush, also has a distinctive spectral
signature due to its unique leaf structure and often wetland
habitat. Their growth forms also produce unique texture patterns
easily captured by Haralick texture features, such as Salicornia's
succulent nature or Juncus's rigid, upright culms. These spectral
and textural properties and their spatial isolation reduce spectral
overlap with dominant shrub species, enhancing their
separability by the classification model. The combined ‘Other'
class also performed well, with an F1l-score of 0.74,
demonstrating the usefulness of grouping various less dominant
species.

The application of the Random Forest model across the study
area generated a detailed spatial map illustrating the predicted
distribution of the classified vegetation species. This map
(Figure 8) visually represents the spatial patterns of Juniperus
phoenicea, Myrtus communis, and the 'Other' vegetation class,
providing a foundational understanding of their distribution
across Culuccia Island. Specific regions of high density for
Juniperus phoenicea are discernible, often forming extensive,
homogeneous patches. Myrtus communis appears more
dispersed, frequently found in smaller, fragmented stands or
interspersed within mixed vegetation areas. The 'Other' class
delineates areas comprising the remaining aggregated species,
which exhibit a heterogeneous spatial distribution. The visual
inspection of the map confirms the model's ability to delineate
individual vegetation objects and classify them according to the
defined species categories, providing a valuable spatial
representation of the island's vegetation composition.
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Figure 8. Spatial classification map of vegetation species across
Culuccia Island, illustrating the predicted distribution of
Juniperus phoenicea, Myrtus communis, and other vegetation
classes, with zoomed-in examples of classified Juniper and
Myrtle species in the northern part of the island.
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3.1 Strengths and Limitations of the Approach

The methodology employed in this study, UAV-acquired
multispectral imagery and ML techniques, demonstrates
significant strengths in addressing the intricate challenges of
detailed vegetation classification within complex Mediterranean
ecosystems. A primary advantage lies in the capacity of UAV-
based platforms to acquire very high-resolution data, which is
crucial for individual tree detection and the subsequent
classification at the single-species level. The rigorous
georeferencing process, achieved through NRTK GNSS
measurements, ensured a remarkable final accuracy of 1.5 cm in
the planimetric component and 3 c¢cm in the altimetric one,
providing a robust foundation for accurate spatial analysis. This
high spatial detail and multispectral capabilities allowed for
extracting a comprehensive set of 72 descriptive features,
encompassing spectral, textural, and geometric attributes.
Integrating these diverse features proved essential for
differentiating species that may exhibit similar spectral
signatures but possess distinct canopy structures, as evidenced
by the robust classification performance observed for species
such as Juniperus phoenicea and Salicornia europaea.
Furthermore, the Random Forest algorithm's inherent robustness
and proven ability to effectively manage high-dimensional data
and complex non-linear relationships contributed to the model's
overall efficacy. The approach is particularly valuable for
conducting detailed vegetation surveys in inaccessible areas,
overcoming limitations of traditional field methods.

Despite these strengths, the methodology also presents
limitations. The model's overall accuracy, while indicative of
reasonable performance for a complex environment, suggests
that challenges persist in achieving higher classification
precision across all species. This moderate accuracy can be
attributed to the inherent complexity and high structural
heterogeneity of Mediterranean woodlands, which are
characterised by small-sized trees and shrubs, dense aggregates,
and often overlapping and interpenetrating canopies. These
conditions can lead to difficulties in accurate individual tree
crown delineation, potentially causing under- or over-
segmentation and impacting subsequent classification. The
relatively lower performance observed for species like Myrtus
communis exemplifies these challenges, stemming from its
variable growth habit and density.

Additionally, the process requires extensive ground truthing, as
highlighted by the collection of 272 individual samples across
16 species. While crucial for model training and validation, this
labour-intensive step can limit the scalability of such detailed
analyses to much larger geographical areas.

3.2 Potential Methodological Improvements

Several methodological improvements can be explored to
enhance the classification precision and address the inherent
complexities encountered in Mediterranean maquis ecosystems.

A significant advancement involves integrating LiDAR (Light
Detection and Ranging) data. The precise three-dimensional
information LiDAR provides, particularly through enhanced
Canopy Height Models (CHM), offers a superior capability for
accurate individual tree crown delineation and improved
vertical differentiation among species. This is particularly
crucial in structurally complex and stratified environments,
where distinguishing between species based solely on spectral
and two-dimensional features can be challenging. Another
promising avenue lies in the exploitation of multi-temporal and

phenological data. By acquiring UAV data across different
seasons or key phenological stages, it is possible to capture the
spectral variations associated with plant growth cycles. This
approach can effectively differentiate species that might exhibit
similar spectral signatures at a single point in time but display
distinct phenological changes (e.g., flowering, leaf senescence,
or canopy development) throughout the year, thereby adding a
crucial temporal dimension to the classification process.

Further improvements can be achieved by focusing on the
refinement of segmentation techniques. Enhancing the
algorithms used for object delineation is paramount, especially
in areas characterized by high vegetation density or significant
canopy overlap. Exploring more advanced segmentation
algorithms or integrating deep learning approaches, such as
semantic segmentation, could lead to more robust and accurate
individual tree crown identification, mitigating issues of under-
or over-segmentation.

Moreover, a sophisticated approach to advanced feature
selection can significantly benefit the model. While a
comprehensive set of features is valuable, developing more
discriminative features through engineering or employing
advanced selection techniques can reduce data dimensionality
while simultaneously improving model performance and
computational efficiency. This involves identifying the most
informative variables that best separate the target species.

Concurrently, increasing and diversifying the ground-truth
dataset is fundamental for enhancing model training and
validation robustness. Collecting additional samples under
varying environmental conditions, such as different lighting or
distinct growth phases, can significantly increase the model's
ability to generalize across diverse scenarios and improve its
overall reliability, especially for minority or spectrally
ambiguous classes.

Finally, the exploration of Deep Learning algorithms,
particularly Convolutional Neural Networks (CNNs) for
semantic segmentation or classification, represents a cutting-
edge direction. These algorithms possess the capacity to
automatically learn complex hierarchical features directly from
raw image data, potentially surpassing the limitations of
traditional object-based approaches that rely on manually
engineered features. CNNs have demonstrated superior
performance in various complex remote sensing tasks and could
offer a powerful framework for more accurate and automated
vegetation species mapping.

4. Conclusion

This study demonstrates the effectiveness of UAV-based
multispectral imagery combined with machine learning
techniques for detailed vegetation classification in a structurally
complex Mediterranean ecosystem. Integrating high-resolution
remote sensing data with object-based image analysis and
Random Forest classification enabled the accurate identification
of multiple tree and shrub species at the individual crown level
within Culuccia Island, a highly heterogeneous and ecologically
sensitive site.

The results reaffirm the value of Single Tree Segmentation and
Classification (STSC) approaches, which allow for precise
species-level  discrimination  in  environments  where
conventional field methods are impractical or insufficient. By
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leveraging spatial, spectral, and textural features derived from
UAYV imagery, the proposed methodology effectively addressed
the challenges posed by overlapping canopies, small crown
sizes, and high intra- and inter-species variability typical of
Mediterranean maquis systems. Beyond the technical
achievements, this work underscores the broader significance of
STSC methods for the sustainable management of complex
ecosystems. Detailed and spatially explicit vegetation maps—
such as those produced in this study—offer critical inputs for
biodiversity assessment, habitat monitoring, conservation
planning, and the implementation of environmental policies,
particularly in Natura 2000 sites like Culuccia Island. Such
datasets are essential for tracking ecosystem changes and
guiding adaptive management in response to anthropogenic
pressures and climate change. Despite the promising results,
several limitations emerged, including segmentation challenges
in dense vegetation, moderate classification performance for
less abundant species, and the need for substantial ground truth
data.

Future research should integrate complementary data sources
like LIDAR to enhance three-dimensional structural analysis
and improve crown delineation. Furthermore, incorporating
multi-temporal and phenologically relevant observations could
enhance classification performance by capturing species-
specific seasonal variability. Advanced deep learning models,
particularly explainable convolutional neural networks, also
hold potential for improving accuracy and interpretability in
species mapping.

In conclusion, UAV-based STSC methods provide a robust and
scalable framework for fine-scale vegetation analysis,
particularly suited to ecologically rich but structurally complex
Mediterranean  environments.  Continued methodological
refinement and broader implementation will strengthen their
role in ecological research and landscape-level conservation
strategies.
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