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Abstract 

This study investigates the classification of individual tree and shrub species within a complex Mediterranean ecosystem using 

UAV-acquired multispectral imagery and machine learning techniques. Conducted on Culuccia Island (Sardinia, Italy), the research 

integrates high-resolution photogrammetric products with Object-Based Image Analysis (OBIA) and a Random Forest classifier to 

delineate and identify vegetation species at the crown level. A total of 272 geo-referenced samples from 16 species were used to train 

and validate the model, which achieved an overall accuracy of 0.71. The workflow demonstrates the effectiveness of single tree 

segmentation in highly heterogeneous environments and highlights the potential of phenology-informed feature sets for improving 

classification. The results underscore the value of UAV-based methods in conservation monitoring, ecological assessment, and 

habitat management. Future research directions include the integration of LiDAR data, deep learning architectures, and multi-

temporal observations to enhance scalability and model interpretability. 

 

 

1. Introduction 

The classification and monitoring of vegetation species in 

coastal and insular ecosystems are critical for biodiversity 

conservation, sustainable resource management, and 

compliance with European directives such as the Habitats 

Directive 92/43/EEC. These areas are characterised by unique 

ecological features, including high salinity, poor and shallow 

soils, strong seasonal dynamics, and a diverse mosaic of 

vegetation structures. Accurate recognition of plant species, 

particularly at the individual level, is essential for assessing 

conservation status, understanding successional processes, and 

supporting restoration or mitigation planning. While field-based 

surveys remain the traditional approach for species-level 

monitoring, they are often labour-intensive, time-consuming, 

and logistically challenging, particularly in complex or remote 

terrain. As such, remote sensing technologies, including high-

resolution UAV (Uncrewed Aerial Vehicle) imagery and 

satellite observations, are increasingly leveraged to overcome 

these limitations. UAV-based approaches, in particular, offer 

significant advantages in terms of spatial, spectral, and temporal 

resolution, providing a flexible and cost-effective means of 

capturing fine-scale ecological information (Belcore et al., 

2021; Fassnacht et al., 2016). 

 

In recent years, the integration of UAV-acquired multispectral 

and hyperspectral imagery with advanced machine learning 

(ML) techniques has significantly advanced the capabilities of 

species-level vegetation mapping. Object-Based Image Analysis 

(OBIA), coupled with supervised classifiers such as Random 

Forest (RF) and Support Vector Machines (SVM), has proven 

effective for delineating individual tree crowns and assigning 

them to species categories based on spectral, geometric, and 

textural features (Takahashi Miyoshi et al., 2020; Michez et al., 

2016). These methods can incorporate both spectral reflectance 

characteristics (e.g., red-edge, NIR) and phenological traits 

derived from multi-temporal datasets, enabling improved 

species discrimination even in structurally complex 

environments 

UAV platforms enable tailored, high-frequency data acquisition 

that is especially valuable for phenology-based classification, 

wherein plant species are characterised by their seasonal growth 

stages. Studies have demonstrated that UAV data collected at 

key phenological epochs, such as pre-green-up, flowering, and 

full canopy development, can significantly increase 

classification accuracy. For instance, Belcore et al. (2021) 

showed that the overall F1-score for species classification in 

riparian habitats increased by 0.3 when three phenological 

epochs were included instead of two. 

 

Nevertheless, species classification using UAV and AI 

technologies still faces critical challenges. Mediterranean 

ecosystems, such as those in coastal and insular areas, often 

consist of dense, multi-layered vegetation with low height 

variation and overlapping canopies. These conditions lead to 

common issues such as under-segmentation, high intra-species 

spectral variability, and limited spectral separability among 

different species. Moreover, the accuracy of classification 

models is often constrained by the availability of balanced, 

high-quality ground-truth data and the need for extensive 

feature engineering (Belcore et al., 2021; Xu et al., 2020). 

 

Recent studies have emphasized the benefits of employing data 

balancing strategies—such as SMOTE (Synthetic Minority 

Oversampling Technique)—and of integrating canopy height 

models (CHMs) derived from UAV photogrammetry or LiDAR 

to enhance vertical differentiation among species (Shi et al., 

2020). These approaches are especially relevant for detecting 

less dominant or structurally distinct species, such as Pinus 

sylvestris or Salicornia europaea, which may otherwise be 

underrepresented. Looking forward, the incorporation of deep 

learning architectures—particularly convolutional neural 

networks (CNNs)—offers promising avenues for automated and 

scalable vegetation mapping. CNNs have demonstrated superior 

performance in tasks involving complex spatial patterns and can 

learn hierarchical features directly from image data without 

extensive manual preprocessing (Egli and Hopke, 2020; 

Kattenborn et al., 2021; Boston et al, 2024). 
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Moreover, recent advances in explainable artificial intelligence 

(XAI) are beginning to peel back deep learning models' “black-

box” nature providing interpretable visualizations such as 

saliency maps, Class Activation Maps (CAM), and feature 

attribution techniques that help elucidate which image features 

most influence model decisions (Samek et al., 2017; Montavon 

et al., 2018). For instance, Matrone et al. (2022) introduced 

BubblEX, an XAI framework that produces saliency-style 

visualisations and interpretability modules for 3D point‑cloud 

data, showing how specific features and neighbourhoods 

contribute to model decisions. These methods are highly 

relevant in ecological settings, where transparency and 

interpretable model outputs are essential for scientific validation 

and practical environmental management. 

 

Despite the increasing adoption and interest in these analyses, 

several challenges persist in species classification, which can be 

grouped into technological limitations and the specific 

characteristics of the forest types under examination. The most 

significant challenges include: low detection rates for small 

trees and shrubs, under-segmentation caused by high vegetation 

density and limited height differences among specimens, over-

segmentation and limited classification precision, low spectral 

variability between species, and high intra-class spectral 

variability at very high resolutions. 

 

These challenges are especially pronounced in Mediterranean 

woodlands, which are characterized by small trees and shrubs, a 

complex and stratified structure, and patchy vegetation cover. 

Moreover, due to the unique nature of the Mediterranean 

Ecosystem and the high variability in structure and composition, 

developing a generalizable species classification and detection 

model remains highly complex. 

 

2. Materials and Methods 

2.1 Study site 

Culuccia Island, also known as Isola delle Vacche, is a 

promontory spanning approximately 320 hectares connected to 

the mainland by a narrow sandy isthmus. It is located in the 

Gallura region, along the northeastern coast of Sardinia, Italy 

(Figure 1). Geographically, the island is situated within the Gulf 

of Arzachena, near the La Maddalena Archipelago National 

Park. This area holds significant conservation interest, having 

been designated as a Site of Community Importance (SCI) with 

code ITB010008, under the Habitats Directive 92/43/EEC, due 

to its high biodiversity and the presence of priority habitats. 

 

Climatically, the island is characterised by a thermo-temperate 

Mediterranean climate (Csa type according to the Köppen-

Geiger classification), featuring hot, arid summers and mild, 

moderately rainy winters. Intrusive rocks of the Hercynian 

basement dominate the site's geology, primarily granites and 

granodiorites, which give rise to an undulating landscape with 

rocky outcrops and shallow, acidic sandy soils with limited 

water retention capacity (Figure 2). 

 

The vegetation is a typical example of Mediterranean maquis, a 

complex mosaic of plant communities whose structure and 

composition are determined by topography, exposure to 

dominant winds, particularly the Mistral. The vegetation cover 

is dominated by evergreen sclerophyllous formations, which can 

be distinguished into: tall maqui, a dense scrubland up to 4-5 

meters high, dominated by tree and shrub species such as 

Phoenicean juniper (Juniperus phoenicea), wild olive (Olea 

europaea var. sylvestris), mastic tree (Pistacia lentiscus), and 

broad-leaved phillyrea (Phillyrea latifolia); Low maquis and 

garrigue: more open and lower-height formations (0.5-1.5 

meters), where prevalent species include common myrtle 

(Myrtus communis), various cistus species (Cistus spp.), spiny 

broom (Calicotome villosa), and Italian everlasting 

(Helichrysum italicum). 

 

A salient feature of this vegetation landscape is its high 

structural heterogeneity, with individuals of different species 

growing in dense aggregates, often with overlapping and 

interpenetrating canopies. This complexity represents a 

significant challenge for remote sensing techniques for 

Individual Tree Detection. Culuccia Island constitutes an ideal 

study site; it is a representative, ecologically intact, and 

sufficiently circumscribed ecosystem to test and validate a high-

resolution single tree classification methodology.  

 

 
 

Figure 1. Geographic context of the study site, Culuccia Island, 

in the northern part of Sardinia. 

 

 
 

Figure 2. Aerial view of Culuccia Island. 

 

2.2 UAV Data Collection and Pre-Processing 

UAV data were collected using a DJI Mavic 3M RTK 

multirotor drone, equipped with four 1/2.8-inch CMOS 5 MP 

multispectral sensors, specifically capturing Green (560 ± 12.5 

nm), Red (650 ± 10 nm), Red Edge (730 ± 10 nm), and Near-

Infrared (860 ± 13 nm) bands. Additionally, a wide-angle 

camera with a 4/3 CMOS 20 MP sensor and a 24 mm (35 mm 

equivalent) lens was utilized to capture RGB (Red, Green, Blue) 

information, providing high-resolution visual context. 

 

Flight missions were executed autonomously, ensuring 

consistent data acquisition parameters (Figure 3). An average 

flight altitude of 70 m above ground level was maintained, 

resulting in an average Ground Sample Distance (GSD) of 
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approximately 1.50 cm/pixel for the RGB camera, while the 

multispectral cameras produced a GSD of approximately 3 

cm/pixel. To ensure comprehensive coverage and sufficient data 

for accurate photogrammetric reconstruction, images were 

acquired with substantial longitudinal and transverse overlap of 

80% and 60% respectively. Over 40,000 images were captured, 

collectively covering the entire 3.2 km² study area. 

 

The acquired UAV data underwent a standard Structure-from-

Motion (SfM) photogrammetric workflow (Turner et al., 2012; 

Calantropio et al., 2018; Cortesi et al., 2022; Giordano et al, 

2025) using Agisoft Metashape Professional software (version 

2.1.0).  

 

The processing pipeline included several key steps: initial image 

alignment, generation of a dense 3D point cloud (Figure 3), 

construction of a Digital Surface Model (DSM) (Figure 4) and a 

Digital Terrain Model (DTM), and a high-resolution 

multispectral orthomosaic (Figure 4). 

 

Georeferencing of the final products was achieved directly 

through the drone's integrated dual-frequency GNSS receiver. 

To further verify and optimise the geometric accuracy of the 

measurements and to refine the alignment of images and the 3D 

model, 38 known ground coordinate points were used. These 

included 26 Ground Control Points (GCPs) and 12 Check Points 

(CPs), all easily identifiable within the imagery. These points 

were measured in the field using the Network Real-Time 

Kinematic (NRTK) GNSS technique. The rigorous 

georeferencing process resulted in a remarkable final accuracy 

of 1.5 cm in the planimetric component and 3 cm in the 

altimetric one. 

 

 
 

Figure 3. Flight plan and dense point cloud of the island's 

northern part. 

 

 
 

Figure 4. Digital Surface Model, on the left, and Orthomosaic, 

on the right, of the northern part of Culuccia Island with a 

spatial resolution of 3 cm/pixel. 

2.3 Ground-Truth Vegetation Species Data Collection  

A comprehensive geodatabase of tree and shrub species present 

was compiled to train and validate the vegetation classification. 

This involved extensive ground-truthing, during which 272 

individual samples of 16 distinct species were identified and 

geo-referenced (Figure 5). These samples were meticulously 

selected based on their clear discernibility in the high-resolution 

RGB orthophotos and multispectral imagery, ensuring that their 

spectral and geometric characteristics could be accurately 

extracted for machine learning training and validation.  

 

Each sampled tree or shrub's crown centroid was recorded with 

a high-precision Leica GS18 GNSS RTK receiver, achieving 

sub-centimetre positional accuracy. This precise georeferencing 

of individual tree locations served as the ground truth data. The 

composition of the sampled species highlights the dominance of 

a few key taxa within the study area. Phoenicean juniper 

(Juniperus phoenicea) was the most frequently sampled species, 

accounting for 96 individuals (35% of the total). Following this, 

Common myrtle (Myrtus communis) represented a significant 

portion with 49 samples (18%). Other notable species included 

Lentisk (Pistacia lentiscus) and a variety of other Mediterranean 

maquis components, each contributing a smaller percentage to 

the overall sample count, such as Spartium junceum, Juncus 

acutus, Salicornia europaea, Cistus monspeliensis, Helichrysum 

italicum, Limonium sp., Phillyrea angustifolia, Inula 

crithmoides, Arbutus unedo, Erica arborea, Lavandula 

stoechas, and Olea europaea var. sylvestris. The cumulative 

samples for these other 14 species accounted for the remaining 

47% of the geodatabase. 

 

This robust geodatabase, compiled with high-precision NRTK 

GNSS measurements and combined with the accurately 

processed UAV imagery, provided the essential foundation for 

developing and validating the individual tree species 

classification methodology. 

 

 
 

Figure 5. Distribution of ground-truth vegetation samples 

collected for model training and validation. 
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2.4 Vegetation Classification Methodology 

The methodological workflow for classifying individual tree 

species involved a multi-stage approach encompassing initial 

vegetation segmentation, individual tree crown delineation, 

comprehensive feature extraction, and a machine learning 

classification algorithm. 

 

2.4.1 Individual Tree Detection and Feature Extraction 

 

This section details the methodology used to accurately identify 

individual trees and extract a comprehensive set of descriptive 

features crucial for vegetation characterisation. This process 

was implemented within the Trimble eCognition Developer 

software. 

 

Firstly, a preliminary vegetation segmentation was performed to 

distinguish vegetated areas from bare soil and other non-

vegetated surfaces. This step utilized an object-based approach 

that applied multi-thresholding techniques on spectral indices, 

such as the Normalized Difference Vegetation Index (NDVI), 

and height information derived from the Normalized Digital 

Surface Model (NDSM) (Figure 6). This allowed for the 

effective separation of ground cover from vegetation (Figure 7a) 

and a subsequent differentiation between low-lying herbaceous 

and shrub vegetation and taller arboreal structures (Figure 7b), 

optimising the subsequent individual tree detection. 

 

Following this initial segmentation, individual tree crown 

detection and delineation (Figure 7c) were achieved using a 

multi-resolution segmentation algorithm. This Object-Based 

Image Analysis (OBIA) approach was tailored to identify and 

segment individual tree objects by analysing homogeneity 

criteria based on pixel values from various image layers (e.g., 

multispectral bands, NDVI, and NDSM). The segmentation 

parameters were dynamically optimised for different vegetation 

strata (i.e., low vs. high vegetation) to ensure accurate crown 

delineation across the diverse structural complexity of the 

Mediterranean maquis. This process resulted in the generation 

of numerous spatially distinct vegetation segments, each 

representing a potential individual tree or a defined vegetation 

clump. 

 

For each individual tree vegetation object, a comprehensive set 

of 72 descriptive features was extracted. This included spectral 

features such as the mean, skewness, and standard deviation of 

pixel values across all multispectral (Green, Red, Red Edge, 

Near-Infrared) and RGB bands. Various established spectral 

indices were also calculated, including NDVI, NDSM, GRVI 

(Green-Red Vegetation Index), NDWI (Normalized Difference 

Water Index), and SAVI (Soil-Adjusted Vegetation Index), 

which offer key insights into vegetation health, photosynthetic 

activity, and water content. To characterize the spatial 

arrangement and perceived roughness of tree crowns, texture 

features were derived from the Haralick Co-occurrence Matrix 

(Haralick et al., 1973). These included metrics such as Angular 

Second Moment, Contrast, Correlation, Dissimilarity, Entropy, 

Homogeneity, Mean, and Standard Deviation, computed from 

significant bands like Green and Near-Infrared. Texture features 

are essential for differentiating species that may have similar 

spectral signatures but distinct canopy structures. Additionally, 

geometric features like compactness and colour transformation 

features, such as hue derived from various band combinations, 

further enhanced the descriptive power of each segmented 

object. This extensive feature set provides a multi-dimensional 

representation for each vegetation species, forming the 

foundation for subsequent machine learning classification. 

Figure 6. NDVI map (left) and NDSM (right) used for 

vegetation analysis. 

 

 
 

Figure 7. Sequential segmentation strategy for vegetation 

analysis: a) Bare soil and vegetation segmentation; b) High and 

low vegetation segmentation; c) Individual tree segmentation. 

 

2.4.2 Classification Algorithm 

 

The extracted features from the individual vegetation objects 

were subsequently used as input for the classification model. 

The Random Forest (RF) algorithm (Breiman, 2001) was 

selected for its robustness, proven ability to handle high-

dimensional data, effective management of complex non-linear 

relationships, and reduced susceptibility to overfitting, making 

it particularly suitable for this classification application. Prior to 

training the RF model, the ground-truth dataset underwent 

several crucial preparation steps to optimize classification 

performance. The collected ground-truth samples were 

thoroughly prepared and cleaned, ensuring data quality and 

consistency for model input. To enhance the representation of 

minority classes and prevent algorithmic bias towards dominant 

species, oversampling techniques were applied to augment the 

training dataset for these underrepresented categories. The 

model was configured with a specific number of estimators 

designed to ensure stable and robust predictions, utilizing the 

GINI impurity criterion for optimal node splitting within each 

tree. A feature selection process, based on the GINI impurity 

metric, was also applied to identify and retain the most 

discriminative features, thereby reducing dimensionality and 

enhancing computational efficiency without compromising 

classification accuracy. For model validation, the Leave-One-

Out (LOO) cross-validation strategy was implemented, 

providing a comprehensive assessment of the model's 

generalization capabilities by iteratively training on nearly the 

entire dataset and testing on a single, independent sample. 
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3. Results and Discussion 

The application of the developed OBIA and Random Forest 

classification workflow yielded comprehensive results 

regarding the identification and spatial distribution of vegetation 

species within the Culuccia Island study area. The Random 

Forest model's overall accuracy was 0.71, with a standard 

deviation of 0.18. Table 3 presents a more detailed performance 

assessment of the individual species classes, providing insights 

into Precision, Recall, and F1-score. 

 

Metrics 
Juniperus 

phoenicea 

Myrtus 

communis 

Salicornia 

europea 

Juncus 

acutus 
Other 

Precision 0.77 0.65 0.95 0.74 0.75 

Recall 0.82 0.58 0.95 0.86 0.73 

F1-Score 0.80 0.55 0.95 0.80 0.74 

 

Table 1. Per-class accuracy metrics, including Precision, Recall, 

and F1-score, for the classified vegetation species (Juniperus 

phoenicea, Myrtus communis, Salicornia europaea, Juncus 

acutus) and the aggregated 'Other' class 

 

Juniperus phoenicea demonstrated strong classification 

performance, achieving an impressive F1-score of 0.80. This 

excellent result is mainly due to its distinct morphological 

features and unique vertical structure; it typically grows as a 

taller shrub or small tree, reaching heights that make it stand out 

and clearly differentiate from surrounding lower vegetation or 

mixed stands. This distinct vertical profile, captured by the 

Canopy Height Model (CHM) and influencing various extracted 

features, plays a significant role in its accurate identification. 

 

Conversely, Myrtus communis showed moderate classification 

accuracy, with an F1-score of 0.55. This comparatively lower 

performance can be attributed to its more variable growth habit 

and density. Myrtus communis often appears as a shorter shrub, 

usually between 0.5 to 1.5 meters tall. It frequently grows in 

denser, more interconnected stands or as understory within 

mixed vegetation, making it more difficult to delineate 

individual crowns and classify them accurately. While valuable, 

the spectral and textural information may be less distinct in 

these mixed and structurally complex environments compared 

to more isolated or taller specimens. 

 

Notably, Salicornia europaea and Juncus acutus exhibited 

exceptionally high classification accuracy, with F1-scores of 

0.95 and 0.80, respectively. Several factors likely contribute to 

this strong performance. Both species typically grow in isolated 

clumps or form distinct, homogeneous patches that are well-

separated from other vegetation types. This spatial separation 

simplifies individual object delineation during segmentation, 

reducing issues related to overlapping canopies. Additionally, 

these species have unique spectral features that make them easy 

to distinguish from the broader Mediterranean maquis flora; 

Salicornia, as a halophyte, shows specific spectral responses 

related to its physiological adaptations to saline environments, 

while Juncus acutus, as a rush, also has a distinctive spectral 

signature due to its unique leaf structure and often wetland 

habitat. Their growth forms also produce unique texture patterns 

easily captured by Haralick texture features, such as Salicornia's 

succulent nature or Juncus's rigid, upright culms. These spectral 

and textural properties and their spatial isolation reduce spectral 

overlap with dominant shrub species, enhancing their 

separability by the classification model. The combined 'Other' 

class also performed well, with an F1-score of 0.74, 

demonstrating the usefulness of grouping various less dominant 

species. 

 

 

The application of the Random Forest model across the study 

area generated a detailed spatial map illustrating the predicted 

distribution of the classified vegetation species. This map 

(Figure 8) visually represents the spatial patterns of Juniperus 

phoenicea, Myrtus communis, and the 'Other' vegetation class, 

providing a foundational understanding of their distribution 

across Culuccia Island. Specific regions of high density for 

Juniperus phoenicea are discernible, often forming extensive, 

homogeneous patches. Myrtus communis appears more 

dispersed, frequently found in smaller, fragmented stands or 

interspersed within mixed vegetation areas. The 'Other' class 

delineates areas comprising the remaining aggregated species, 

which exhibit a heterogeneous spatial distribution. The visual 

inspection of the map confirms the model's ability to delineate 

individual vegetation objects and classify them according to the 

defined species categories, providing a valuable spatial 

representation of the island's vegetation composition. 

 

 
 

Figure 8. Spatial classification map of vegetation species across 

Culuccia Island, illustrating the predicted distribution of 

Juniperus phoenicea, Myrtus communis, and other vegetation 

classes, with zoomed-in examples of classified Juniper and 

Myrtle species in the northern part of the island. 
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3.1 Strengths and Limitations of the Approach 

The methodology employed in this study, UAV-acquired 

multispectral imagery and ML techniques, demonstrates 

significant strengths in addressing the intricate challenges of 

detailed vegetation classification within complex Mediterranean 

ecosystems. A primary advantage lies in the capacity of UAV-

based platforms to acquire very high-resolution data, which is 

crucial for individual tree detection and the subsequent 

classification at the single-species level. The rigorous 

georeferencing process, achieved through NRTK GNSS 

measurements, ensured a remarkable final accuracy of 1.5 cm in 

the planimetric component and 3 cm in the altimetric one, 

providing a robust foundation for accurate spatial analysis. This 

high spatial detail and multispectral capabilities allowed for 

extracting a comprehensive set of 72 descriptive features, 

encompassing spectral, textural, and geometric attributes. 

Integrating these diverse features proved essential for 

differentiating species that may exhibit similar spectral 

signatures but possess distinct canopy structures, as evidenced 

by the robust classification performance observed for species 

such as Juniperus phoenicea and Salicornia europaea. 

Furthermore, the Random Forest algorithm's inherent robustness 

and proven ability to effectively manage high-dimensional data 

and complex non-linear relationships contributed to the model's 

overall efficacy. The approach is particularly valuable for 

conducting detailed vegetation surveys in inaccessible areas, 

overcoming limitations of traditional field methods. 

 

Despite these strengths, the methodology also presents 

limitations. The model's overall accuracy, while indicative of 

reasonable performance for a complex environment, suggests 

that challenges persist in achieving higher classification 

precision across all species. This moderate accuracy can be 

attributed to the inherent complexity and high structural 

heterogeneity of Mediterranean woodlands, which are 

characterised by small-sized trees and shrubs, dense aggregates, 

and often overlapping and interpenetrating canopies. These 

conditions can lead to difficulties in accurate individual tree 

crown delineation, potentially causing under- or over-

segmentation and impacting subsequent classification. The 

relatively lower performance observed for species like Myrtus 

communis exemplifies these challenges, stemming from its 

variable growth habit and density. 

 

Additionally, the process requires extensive ground truthing, as 

highlighted by the collection of 272 individual samples across 

16 species. While crucial for model training and validation, this 

labour-intensive step can limit the scalability of such detailed 

analyses to much larger geographical areas. 

 

3.2 Potential Methodological Improvements 

Several methodological improvements can be explored to 

enhance the classification precision and address the inherent 

complexities encountered in Mediterranean maquis ecosystems.  

 

A significant advancement involves integrating LiDAR (Light 

Detection and Ranging) data. The precise three-dimensional 

information LiDAR provides, particularly through enhanced 

Canopy Height Models (CHM), offers a superior capability for 

accurate individual tree crown delineation and improved 

vertical differentiation among species. This is particularly 

crucial in structurally complex and stratified environments, 

where distinguishing between species based solely on spectral 

and two-dimensional features can be challenging. Another 

promising avenue lies in the exploitation of multi-temporal and  

 

 

phenological data. By acquiring UAV data across different 

seasons or key phenological stages, it is possible to capture the 

spectral variations associated with plant growth cycles. This 

approach can effectively differentiate species that might exhibit 

similar spectral signatures at a single point in time but display 

distinct phenological changes (e.g., flowering, leaf senescence, 

or canopy development) throughout the year, thereby adding a 

crucial temporal dimension to the classification process. 

 

Further improvements can be achieved by focusing on the 

refinement of segmentation techniques. Enhancing the 

algorithms used for object delineation is paramount, especially 

in areas characterized by high vegetation density or significant 

canopy overlap. Exploring more advanced segmentation 

algorithms or integrating deep learning approaches, such as 

semantic segmentation, could lead to more robust and accurate 

individual tree crown identification, mitigating issues of under- 

or over-segmentation. 

 

Moreover, a sophisticated approach to advanced feature 

selection can significantly benefit the model. While a 

comprehensive set of features is valuable, developing more 

discriminative features through engineering or employing 

advanced selection techniques can reduce data dimensionality 

while simultaneously improving model performance and 

computational efficiency. This involves identifying the most 

informative variables that best separate the target species. 

 

Concurrently, increasing and diversifying the ground-truth 

dataset is fundamental for enhancing model training and 

validation robustness. Collecting additional samples under 

varying environmental conditions, such as different lighting or 

distinct growth phases, can significantly increase the model's 

ability to generalize across diverse scenarios and improve its 

overall reliability, especially for minority or spectrally 

ambiguous classes. 

 

Finally, the exploration of Deep Learning algorithms, 

particularly Convolutional Neural Networks (CNNs) for 

semantic segmentation or classification, represents a cutting-

edge direction. These algorithms possess the capacity to 

automatically learn complex hierarchical features directly from 

raw image data, potentially surpassing the limitations of 

traditional object-based approaches that rely on manually 

engineered features. CNNs have demonstrated superior 

performance in various complex remote sensing tasks and could 

offer a powerful framework for more accurate and automated 

vegetation species mapping. 

 

4. Conclusion 

This study demonstrates the effectiveness of UAV-based 

multispectral imagery combined with machine learning 

techniques for detailed vegetation classification in a structurally 

complex Mediterranean ecosystem. Integrating high-resolution 

remote sensing data with object-based image analysis and 

Random Forest classification enabled the accurate identification 

of multiple tree and shrub species at the individual crown level 

within Culuccia Island, a highly heterogeneous and ecologically 

sensitive site.  

 

The results reaffirm the value of Single Tree Segmentation and 

Classification (STSC) approaches, which allow for precise 

species-level discrimination in environments where 

conventional field methods are impractical or insufficient. By 
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leveraging spatial, spectral, and textural features derived from 

UAV imagery, the proposed methodology effectively addressed 

the challenges posed by overlapping canopies, small crown 

sizes, and high intra- and inter-species variability typical of 

Mediterranean maquis systems. Beyond the technical 

achievements, this work underscores the broader significance of 

STSC methods for the sustainable management of complex 

ecosystems. Detailed and spatially explicit vegetation maps—

such as those produced in this study—offer critical inputs for 

biodiversity assessment, habitat monitoring, conservation 

planning, and the implementation of environmental policies, 

particularly in Natura 2000 sites like Culuccia Island. Such 

datasets are essential for tracking ecosystem changes and 

guiding adaptive management in response to anthropogenic 

pressures and climate change. Despite the promising results, 

several limitations emerged, including segmentation challenges 

in dense vegetation, moderate classification performance for 

less abundant species, and the need for substantial ground truth 

data.  

 

Future research should integrate complementary data sources 

like LiDAR to enhance three-dimensional structural analysis 

and improve crown delineation. Furthermore, incorporating 

multi-temporal and phenologically relevant observations could 

enhance classification performance by capturing species-

specific seasonal variability. Advanced deep learning models, 

particularly explainable convolutional neural networks, also 

hold potential for improving accuracy and interpretability in 

species mapping.  

 

In conclusion, UAV-based STSC methods provide a robust and 

scalable framework for fine-scale vegetation analysis, 

particularly suited to ecologically rich but structurally complex 

Mediterranean environments. Continued methodological 

refinement and broader implementation will strengthen their 

role in ecological research and landscape-level conservation 

strategies. 

 
 

Acknowledgements 

The primary data acquisition of this study was carried out in 

collaboration with BIRU Srl Agricola, along with the activities 

of the students’ team DIRECT (Disaster RECovery Team) of 

the Politecnico di Torino. We gratefully acknowledge all those 

who actively contributed to the field campaigns and data 

acquisition, with special thanks to Paolo Maschio, Alessio 

Martino, Lorenzo Teppati Losè e Giacomo Patrucco, and for 

their essential support during UAV operations. Their efforts, 

together with those of all participants in the acquisition 

campaigns, were fundamental to the success of this research. 

This research was conducted within the RETURN Extended 

Partnership and received funding from the European Union 

Next GenerationEU (National Recovery and Resilience Plan 

NRRP, Mission 4, Component 2, Investment 1.3 D.D. 1243 

2/8/2022, PE0000005) SPOKE 6 – TS2. 

This manuscript reflects only the authors’ views and opinions; 

neither the European Union nor the European Commission can 

be held responsible for them. 

 

References 

 

Belcore, E., Pittarello, M., Lingua, A., Lonati, M., 2021: 

Mapping Riparian Habitats of Natura 2000 Network (91E0*, 

3240) at Individual Tree Level Using UAV Multi-Temporal and 

Multi-Spectral Data. Remote Sens., 13(9), 1756. 

https://doi.org/10.3390/rs13091756. 

Boston, T., Van Dijk, A., Thackway, R., 2024: U-Net 

Convolutional Neural Network for Mapping Natural Vegetation 

and Forest Types from Landsat Imagery in Southeastern 

Australia. J. Imaging, 10(6), 143. 

https://doi.org/10.3390/jimaging10060143. 

 

Breiman, L., 2001: Random Forests. Machine Learning, 45, 5–

32. https://doi.org/10.1023/A:1010933404324. 

 

Calantropio, A., Chiabrando, F., Sammartano, G., Spanò, A., 

Teppati Losè, L., 2018: UAV strategies validation and remote 

sensing data for damage assessment in post-disaster scenarios. 

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-

3/W4, 121–128. https://doi.org/10.5194/isprs-archives-XLII-3-

W4-121-2018. 

 

Cortesi, I., Masiero, A., Tucci, G., Topouzelis, K., 2022: UAV-

based river plastic detection with a multispectral camera. Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-

2022, 855–861. https://doi.org/10.5194/isprs-archives-XLIII-

B3-2022-855-2022. 

 

Egli, S., Höpke, M., 2020: CNN-Based Tree Species 

Classification Using High Resolution RGB Image Data from 

Automated UAV Observations. Remote Sens., 12(23), 3892. 

https://doi.org/10.3390/rs12233892. 

 

Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., 

Lefsky, M., Waser, L.T., Straub, C., Ghosh, A., 2016: Review 

of studies on tree species classification from remotely sensed 

data. Remote Sens. Environ., 186, 64–87. 

https://doi.org/10.1016/j.rse.2016.08.013. 

 

Giordano, C.M., Girelli, V.A., Lambertini, A., Tini, M.A., 

Zanutta, A., 2025: UAV Data Collection Co-Registration: 

LiDAR and Photogrammetric Surveys for Coastal Monitoring. 

Drones, 9, 49, 1–25. 

 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973: Textural 

Features for Image Classification. IEEE Trans. Syst. Man 

Cybern., SMC-3(6), 610–621. 

https://doi.org/10.1109/TSMC.1973.4309314. 

 

Kattenborn, T., Leitloff, J., Schiefer, F., Hinz, S., 2021: Review 

on Convolutional Neural Networks (CNN) in vegetation remote 

sensing. ISPRS J. Photogramm. Remote Sens., 173, 24–49. 

 

Matrone, F., Paolanti, M., Felicetti, A., Martini, M., Pierdicca, 

R., 2022: BubblEX: An Explainable Deep Learning Framework 

for Point‑Cloud Classification. IEEE J. Sel. Top. Appl. Earth 

Obs. Remote Sens., 15, 6571–6585. 

 

Michez, A., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., 

2016: Classification of riparian forest species and health 

condition using multi-temporal and hyperspatial imagery from 

unmanned aerial system. Environ. Monit. Assess., 188(3), 146. 

https://doi.org/10.1007/s10661-015-4996-2. 

 

Montavon, G., Samek, W., Müller, K.R., 2018: Methods for 

Interpreting and Understanding Deep Neural Networks. Digit. 

Signal Process., 73, 1–15. 

https://doi.org/10.1016/j.dsp.2017.10.011. 

 

Samek, W., Wiegand, T., Müller, K.R., 2017: Explainable 

Artificial Intelligence: Understanding, Visualizing and 

Interpreting Deep Learning Models. arXiv preprint, 

arXiv:1708.08296. https://arxiv.org/abs/1708.08296. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-269-2025 | © Author(s) 2025. CC BY 4.0 License.

 
275



 

Shi, Y., Wang, T., Skidmore, A.K., Heurich, M., 2020: 

Improving LiDAR-Based Tree Species Mapping in Central 

European Mixed Forests Using Multi-Temporal Digital Aerial 

Colour-Infrared Photographs. Int. J. Appl. Earth Obs. Geoinf., 

84, 101970. https://doi.org/10.1016/j.jag.2019.101970. 

 

Takahashi Miyoshi, G., Imai, N.N., Garcia Tommaselli, A.M., 

Antunes de Moraes, M.V., Honkavaara, E., 2020: Evaluation of 

Hyperspectral Multitemporal Information to Improve Tree 

Species Identification in the Highly Diverse Atlantic Forest. 

Remote Sens., 12, 244. https://doi.org/10.3390/rs12020244. 

 

Turner, D., Lucieer, A., Watson, C., 2012: An Automated 

Technique for Generating Georectified Mosaics from Ultra-

High Resolution Unmanned Aerial Vehicle (UAV) Imagery, 

Based on Structure from Motion (SfM) Point Clouds. Remote 

Sens., 4(5), 1392–1410. https://doi.org/10.3390/rs4051392. 

 

Xu, Z., Shen, X., Cao, L., Coops, N.C., Goodbody, T.R.H., 

Zhong, T., Zhao, W., Sun, Q., Ba, S., Zhang, Z., 2020: Tree 

Species Classification Using UAS-Based Digital Aerial 

Photogrammetry Point Clouds and Multispectral Imageries in 

Subtropical Natural Forests. Int. J. Appl. Earth Obs. Geoinf., 92, 

102173. https://doi.org/10.1016/j.jag.2020.102173. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-269-2025 | © Author(s) 2025. CC BY 4.0 License.

 
276




