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Abstract

Deep learning has significantly advanced forest health monitoring by enabling automated analysis of high-resolution aerial imagery.
However, the generalization of these models across ecologically diverse regions remains limited due to domain shifts, which are
variations in environmental conditions between training and testing locations. In this study, we propose a domain generalization (DG)
framework that disentangles domain-invariant, task-relevant features from domain-specific environmental variations in multispectral
UAS imagery. Our approach extends a baseline 2D convolutional neural network by incorporating parallel domain-specific and shared
feature extractors, along with a domain classifier trained via adversarial learning. We evaluate the model using a leave-one-site-out
strategy across three Finnish forest sites with diverse ecological characteristics. Results show that the DG model improves classification
accuracy in previously unseen environments, with performance gains of up to 27% compared to the baseline. These findings highlight
the effectiveness of feature disentanglement in enhancing the robustness and transferability of deep learning models for forest canopy

health assessment, supporting more scalable and reliable forest monitoring solutions.

1. Introduction

Unmanned aerial systems (UAS) have become essential tools for
forest health monitoring, providing high-resolution data needed
to detect early signs of disease and pest outbreaks. The European
spruce bark beetle (Ips typographus L.) poses a particularly
serious threat to boreal forests, causing extensive damage that can
lead to large-scale forest decline (Patacca et al., 2023; Hlasny et
al., 2019).

Deep learning models, especially convolutional neural networks
(CNNs), show promise for automating tree health classification
from aerial imagery (Safonova et al., 2019; Turkulainen et al.,
2023). However, these models face a significant practical
limitation: they often fail when applied to new geographic areas
or environmental conditions different from their training data.
This problem, known as domain shift, occurs when factors like
lighting, canopy structure, terrain, or sensor characteristics vary
between training and deployment locations.

Domain adaptation (DA) and domain generalization (DG)
techniques address this challenge by training models to focus on
task-relevant features while ignoring environmental variations
(Shai et al., 2006; Muandet et al., 2013). While DA methods
require data from target locations during training, DG approaches
work without any prior knowledge of deployment conditions.
This makes DG particularly valuable for operational forest
monitoring, where data from new areas may not be available
during model development.

DG methods typically fall into three categories: data
manipulation (such as augmentation or domain randomization),
representation learning (like feature disentanglement), and
learning strategies (including ensemble or meta-learning
approaches) (Wang et al., 2022; Zhou et al., 2021). This study
focuses on representation learning through feature
disentanglement, which explicitly separates task-relevant
features from domain-specific characteristics.

Recent work has shown promising results combining feature
disentanglement with adversarial learning. Park et al. (2025)
developed methods using gradient reversal layers to promote
domain-invariant features, while Chen et al. (2024) proposed
contrastive approaches that align feature distributions across
domains. The gradient reversal layer (GRL) technique, which
maximizes domain prediction error to encourage domain-
invariant features, has proven particularly effective (Ganin et al.,
2016).

Despite growing adoption in remote sensing (Zhu et al., 2021;
Luo et al., 2024), DG applications in forest monitoring remain
limited. Most existing bark beetle detection systems are trained
and tested within single locations, severely limiting their
practical applicability across diverse forest environments. This
study addresses these limitations by developing a DG framework
specifically for UAS-based forest health monitoring. We extend
our previous CNN architecture (Turkulainen et al., 2023) by
adding domain-adversarial training components. Our approach
uses dual feature extractors, combined with adversarial learning
to improve generalization across different environmental
conditions.

Our earlier work demonstrated strong performance within
individual sites but required transfer learning with local data for
new locations (Turkulainen et al., 2024). Here, we investigate
whether integrating DG can eliminate the need for site-specific
retraining while maintaining robust performance across diverse
forest environments.

We evaluate our approach using multispectral imagery from three
ecologically distinct Finnish forest sites, representing different
vegetation types, seasons, and imaging conditions. A leave-one-
site-out strategy tests the model's ability to generalize to
completely unseen environments, providing a rigorous
assessment of domain generalization capabilities.
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Our approach represents a novel application of domain
generalization principles to the specific challenges of bark beetle
detection in boreal forests, contributing both methodological
innovations and practical solutions for operational forest
monitoring systems. By demonstrating the effectiveness of
feature disentanglement in this domain, we aim to establish a
foundation for more robust and scalable deep learning
approaches in forest health assessment.

2. Materials and methods

2.1 UAS data collection

Data was collected from four ecologically diverse sites across
Finland: Ruokolahti (61°2921.84"N, 29°3'0.72"E), Koli Na-
tional Park (63°5'29.92"N, 29°48'36.01"E), Paloheind in Hel-
sinki Central Park (60°15"25.20”"N, 24°55'19.20"E), and Evo Na-
tional Park (61°10'19.84"N, 25°8'7.81"E). The locations of these
sites are shown in Figure 1. The datasets cover a range of years,
seasons, and UAS platforms, introducing natural variability to
vegetation phenology, lighting, and canopy structure.

Koli

Ruokolahti
Evo [
]

Paloheiné
|

Figure 1. Location of the study sites. Background map from the
National Land Survey of Finland Topographic Database.

UAS imagery from Ruokolahti, Koli, and Palohein& has been de-
scribed in prior studies (Turkulainen et al., 2023; Turkulainen et
al., 2024). At Ruokolahti, data were captured in late August of
2019, 2020, and 2021 using a MicaSense Altum sensor. At Koli,
a Kelluu airship equipped with a MicaSense RedEdge camera
was used to collect imagery in May, June, and September of
2023. In Paloheind, data were acquired in May, July, and Sep-
tember 2020 using a MicaSense Altum mounted on a quadcopter.

To support species classification, we incorporated an additional
dataset from the Evo site, contributing complementary forest
characteristics. The Evo site comprises mature boreal forests with
mixed stands dominated by spruce, pine, and birch. Imagery was
acquired in early August 2018 with a MicaSense RedEdge sen-
Sor.

2.2 Reference data collection

Ground reference data were collected across all four study sites
to support supervised training and validation of the deep learning
classification models. The data collection approach varied by site
based on study objectives and logistical constraints, but all sites
employed standardized assessment protocols for tree health eval-
uation.

Reference data collection procedures for the Ruokolahti and
Paloheina sites are detailed in Turkulainen et al. (2023). At Ru-
okolahti, systematic health assessments were conducted from
2019 to 2021 across four sub-sites using 66 circular sampling
plots. At Paloheind, individual tree assessments were performed
during spring, summer, and autumn campaigns in 2020, with dif-
ferent trees monitored in each season. Field experts manually se-
lected and annotated individual trees distributed throughout the
area, targeting a balanced representation of crown vitality sta-
tuses.

The data collection procedures for the Koli site are described
comprehensively in Turkulainen et al. (2024). Field reference
data were collected across 28 circular plots, where trained experts
recorded tree species and canopy condition. Plots were visited
repeatedly throughout the growing season to capture temporal
changes in tree health status.

At the Evo site, species information was collected in the field
from four 20 x 20 meter sample plots, focusing on identifying
tree species visible in aerial imagery, particularly dominant and
co-dominant individuals.

Tree health was assessed using standardized symptom categories
following protocols adapted from Blomqvist et al. (2018). As-
sessment criteria included crown discoloration, defoliation, bark
damage, resin flow, and the presence of bark beetle entrance or
exit holes. This standardized approach ensured consistency in
health classifications across all study sites.

Tree locations were recorded using site-specific positioning
methods. In Ruokolahti and Koli, plot centers were located using
a Trimble Geo XT GPS device (Trimble Navigation Ltd.,
Sunnyvale, CA, USA) and a Topcon Hiper HR GNSS receiver
(Topcon Corporation, Tokyo, Japan), respectively, with individ-
ual tree positions determined by measuring distance and azimuth
from plot center. In Evo, tree positions were extracted from ter-
restrial laser scanning (TLS) point clouds collected using a Leica
HDS6100 scanner (Leica Geosystems AG, Heerbrugg, Switzer-
land) and verified during field investigations. In Paloheind, the
tree positions were determined from orthophotos collected prior
to field tree selection.

2.3 Data processing

2.3.1 Image preprocessing: Individual tree crowns were
manually annotated by creating bounding boxes around each tree
using the recorded GPS coordinates as reference points. Tree lo-
cations were cross-referenced with the generated orthophotos to
ensure accurate positioning. Trees that could not be clearly iden-
tified or delineated in the orthophotos due to factors such as over-
lapping crowns, shadow occlusion, or poor image quality were
excluded from the dataset to maintain annotation reliability.

Individual tree crown images were extracted from the
orthophotos using the bounding box coordinates. To ensure
consistent input dimensions for the deep learning models, all
extracted images were standardized to 150 x 150 pixels. Images
smaller than 150 x 150 pixels were zero-padded to maintain
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aspect ratio and reach target dimensions. Images larger than 150
x 150 pixels were downsampled using nearest neighbour
interpolation. The 150 x 150 pixel resolution was selected to
balance computational efficiency with preservation of crown-
level detail necessary for health classification.

2.3.2 Data labelling: The labels for the trees were determined
based on the reference data collected in the field. The tree health
classes were determined based on the colour of the crown, such
that green and faded green spruces were labelled as healthy, yel-
low and yellowish trees as infested and reddish brown and grey
trees as dead. All other trees were labelled as non-spruce. The
total number of samples for each class across all study sites is
presented in Table 1.

Dataset Healthy Infested | Dead Non-
spruce

Palohein& 129 107 281 0

Ruoko- 818 19 498 72

lahti

Koli 493 21 210 150

Evo 53 0 0 129

Table 1. Total numbers of tree crown images assigned to each
class by study site.

For training of the DG model, we needed to define domains that
capture the main sources of variation in forest imagery. We
considered three approaches: geographic domains (one per site),
site-temporal domains (combining location and time), and
seasonal-meteorological domains (combining season and
weather conditions).

We selected the seasonal-meteorological approach, creating six
domains: (1) sunny spring, (2) cloudy spring, (3) sunny summer,
(4) cloudy summer, (5) sunny fall, and (6) cloudy fall. This
strategy was chosen for several reasons.

Firstly, seasonal and lighting conditions create the most
significant visual variation in forest imagery. Spring shows trees
during leaf-off conditions and early foliation, summer captures
full canopy development, and fall reveals natural senescence that
must be distinguished from pest damage. Weather conditions
(sunny vs. cloudy) strongly affect image contrast, shadows, and
color saturation. This approach also maintains adequate sample
sizes across domains while capturing meaningful environmental
variation. Alternative approaches like site-temporal domains
would create too many small domains, some with few or no
samples for certain health classes. Additionally, these domains
align with practical deployment scenarios where bark beetle
monitoring systems must work reliably across different seasons
and weather conditions.

2.4 Model implementation

We implemented the DG model by extending the 2D-CNN archi-
tecture used by Turkulainen et al. (2023). The baseline model
comprises a feature extractor with three convolutional layers and
a classification head. To incorporate DG capabilities, we

augmented the architecture with two key components: (1) a do-
main-specific feature extractor operating in parallel with the orig-
inal feature extractor, now denoted as the shared feature extrac-
tor, and (2) a domain classifier designed to mirror the task classi-
fier's structure.

The shared feature extractor is optimized to learn domain-invar-
iant, task-relevant features, while the domain-specific extractor
captures environmental characteristics that arise from domain
variation. Both shared and domain features are input to the do-
main classifier. A gradient reversal layer (GRL) is applied to the
shared features before domain classification, promoting invari-
ance by maximizing domain prediction error from these features.

Canopy health classification is performed exclusively using the
shared features, ensuring that predictions are based on general-
ized, domain-independent representations. The model is trained
using a composite loss function comprising three components: (i)
task classification loss, (ii) domain classification loss computed
on domain-specific features, and (iii) domain confusion loss ap-
plied to shared features via the GRL. This adversarial training
setup encourages the shared feature space to be discriminative for
the classification task while remaining invariant to domain-spe-
cific variations. The total loss function is formulated as:

Ltotal = )\1 X Ltask + }\2 X Ldomain + )\3 X Lconfusion, (1)

where A denotes a loss weighing coefficient controlling how
much influence each loss component has to the total loss value.

Figure 2 illustrates the architecture of the proposed DG classifi-
cation model. This disentangled optimization strategy enhances
the model's ability to generalize across diverse environmental
contexts by effectively isolating task-relevant signals from do-

main-specific noise.
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Figure 2. Architecture of the DG model.
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2.5 Model training

All models were implemented using PyTorch and trained on
NVIDIA GPUs with CUDA acceleration. To ensure model
convergence and stability, we incorporated several regularization
techniques within the network architecture. Batch normalization
layers were applied after each convolutional operation to stabilize
training dynamics and accelerate convergence. Dropout layers
with a rate of 0.5 were inserted before the final classification
layers to prevent overfitting and improve generalization
performance.

The models were trained using the Adam optimizer with an initial
learning rate of 0.0001, chosen based on preliminary experiments
showing optimal convergence behavior for this specific task and
architecture. A learning rate scheduler with exponential decay
(decay rate = 0.95, decay steps = 1000) was employed to
gradually reduce the learning rate during training, facilitating
fine-tuning in later epochs. Early stopping was implemented
based on validation loss with a patience of 20 epochs to prevent
overfitting. Training was conducted in mini-batches of size 16,
for a maximum of 200 epochs

To enhance model robustness to site-specific variations and
increase the effective size of the training dataset, comprehensive
data augmentation was applied during training. The
augmentation pipeline included random horizontal and vertical
flipping, random rotations, and random translations, random
brightness variations, contrast adjustments, and saturation
modifications to simulate different lighting and atmospheric
conditions. Gaussian noise was added to improve robustness to
sensor-specific characteristics. These augmentations were
applied randomly during each training epoch, ensuring that the
model never saw identical input images across different epochs,
thereby reducing memorization and improving generalization
capability.

The loss weighting coefficients for the total loss calculation were
empirically determined through systematic grid search across the
parameter space: A € [0.5, 1.0, 1.5], A € [0.1,0.3,0.5], and As €
[0.05, 0.1, 0.2]. Optimal performance was achieved with weights
M =1.0,22=0.5,and As = 0.1, respectively. These weights ensure
that the primary classification task remains the dominant
objective while allowing sufficient influence from the domain
generalization components.

For each leave-one-site-out experiment, the training data was
further subdivided using stratified sampling to maintain class
balance. The data from the source domains was divided into
training and validation following an 80:20 split. Test set included
100% of data from the held-out target domain. Domain labels
were assigned consistently across all splits according to the
seasonal-meteorological categorization described in the data
processing section. Class balancing was implemented through
weighted sampling during training to address potential
imbalances in the health class distribution across different
domains.

3. Results and discussion
3.1 Model performance analysis

To assess the effectiveness of the proposed DG approach, we
conducted a leave-one-site-out evaluation across three study
areas: Ruokolahti, Koli, and Paloheind. In each experimental
round, one site was held out exclusively for testing, while the
remaining sites, including Evo, were used for training. Evo was

excluded as a test site due to the absence of bark beetle symptom
annotations required for canopy health classification evaluation.
Model performance was evaluated using multiple metrics
including overall classification accuracy, class-wise precision,
recall, and F1-score to provide a comprehensive assessment of
generalization capabilities across different health categories and
environmental conditions.

The results, presented in Table 2 and Figure 3, demonstrate that
the DG model consistently outperformed the baseline 2D-CNN
across most test scenarios. The DG model achieved substantial
improvements in generalization performance, with overall
accuracy gains of 9.8% and 27.2% for the Ruokolahti and Koli
test sites, respectively. These improvements highlight the
effectiveness of feature disentanglement in learning domain-
invariant representations that transfer well to unseen
environments.
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Table 2. Classification performance comparison between
baseline 2D-CNN and domain generalization (DG) models
across test sites.
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Figure 3. Overall classification accuracy of the baseline and
domain generalization models across test sites.

However, the results also reveal important nuances in the DG
model's performance. For the Paloheind test set, the DG model
showed a modest decrease in overall accuracy of 2.6% compared
to the baseline. This performance pattern suggests that the
benefits of domain generalization are most pronounced when
there are significant domain shifts between training and test
environments, while the approach may introduce minor
performance trade-offs in scenarios where the baseline model
already achieves near-optimal performance.

Examination of class-wise performance metrics reveals
differential impacts of domain generalization across health
categories. The DG model demonstrated particularly strong
improvements in distinguishing between healthy and infested
trees, which is critical for early detection of bark beetle
outbreaks. For the infested class, the most challenging category
in the baseline model, the DG approach achieved remarkable
improvements: precision increased from 0.50 to 0.68 at
Ruokolahti and from 0.04 to 0.45 at Koli, while recall improved
from 0.21 to 0.55 at Ruokolahti and from 0.48 to 0.57 at Koli.
These enhancements are especially valuable given the subtle
visual differences that characterize early-stage infestations,
where conventional models often struggle due to domain-specific
variations.

The dead tree classification also benefited from domain
generalization, with improved precision and recall across most
test sites. At Ruokolahti, precision improved from 0.80 to 0.85
and recall from 0.77 to 0.87, while at Koli, precision increased
from 0.68 to 0.83 and recall from 0.68 to 0.85. For the non-
spruce class, performance improvements were substantial at both
test sites where this category was present. At Ruokolahti,
precision dramatically increased from 0.15 to 0.58 and recall
from 0.38 to 0.62, while at Koli, precision improved from 0.37 to
0.59 and recall from 0.22 to 0.63. These improvements reflect the
model's enhanced ability to distinguish between different tree
species across varying environmental conditions.

The magnitude of performance improvements varied
substantially across test sites, providing insights into the
conditions under which domain generalization is most beneficial.

The Koli dataset showed the largest performance gains (27.2%
improvement in overall accuracy), suggesting that this site
presented the most significant domain shift relative to the training
data. This substantial improvement can be attributed to Koli's
unique environmental characteristics, including pronounced
seasonal variations in vegetation phenology and distinctive
topographic features that created challenging imaging conditions.
The DG model's ability to achieve balanced performance across
all classes at Koli demonstrates effective domain-invariant
feature learning. The Ruokolahti dataset exhibited moderate but
consistent improvements (9.8% increase in overall accuracy),
indicating that while domain shifts were present, they were less
severe than those encountered at Koli. This intermediate
performance gain demonstrates the model's ability to adapt to
moderately different environmental conditions while maintaining
robust classification performance across all health categories.

The Paloheind dataset's slight performance decrease (2.6%
reduction in overall accuracy) warrants careful interpretation.
The baseline model already achieved high accuracy on this
dataset (88.6%), suggesting that the environmental conditions at
Paloheind were well-represented in the training data from other
sites. In such cases, the additional complexity introduced by
domain generalization mechanisms may not provide substantial
benefits and could potentially introduce minor performance
trade-offs due to the regularization effects of the adversarial
training components.

3.2 Limitations

While the proposed DG framework demonstrates substantial
improvements in generalization performance, several limitations
warrant discussion. The uneven performance gains across sites,
particularly the slight decrease on the Paloheind dataset, highlight
the need for more sophisticated approaches that can
automatically determine when domain generalization is
beneficial versus potentially counterproductive.

Class imbalance presents another significant challenge, as the
distribution of health categories varies substantially across sites
and domains. The infested class is severely underrepresented in
some datasets, potentially biasing the model toward more
prevalent conditions and limiting its ability to detect early or
subtle symptoms. Future work should investigate specialized
sampling strategies or loss functions that can better handle class
imbalance in the context of domain generalization.

The seasonal-meteorological domain definition, while capturing
important sources of variation, may not fully represent all
relevant domain shifts. Geographic factors, for instance, could
introduce additional sources of variation that are not explicitly
modeled in the current framework. More sophisticated domain
definition strategies that can automatically discover relevant
domain boundaries from the data could improve generalization
performance.

Finally, the current approach focuses primarily on classification
accuracy and does not explicitly address other important aspects
of forest health monitoring, such as the spatial distribution of
symptoms or the temporal dynamics of outbreak progression.
Integrating these considerations into the domain generalization
framework could enhance its practical utility for operational
forest management applications.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-285-2025 | © Author(s) 2025. CC BY 4.0 License. 289



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

4, Conclusions

This study successfully demonstrated the potential of domain
generalization techniques to address a critical challenge in
operational forest health monitoring: the limited transferability of
deep learning models across diverse environmental conditions.
By developing a domain generalization framework that
incorporates dual feature extractors and adversarial learning, we
achieved substantial performance improvements of up to 27% in
previously unseen environments, particularly where significant
domain shifts existed between training and testing conditions.

The proposed seasonal-meteorological domain definition
strategy effectively captured the primary sources of visual
variation in aerial forest imagery while maintaining sufficient
sample sizes for robust training. The leave-one-site-out
evaluation provided compelling evidence that feature
disentanglement can successfully separate task-relevant, domain-
invariant features from environmental noise.

Our results reveal that the benefits of domain generalization are
context-dependent, with the largest improvements observed in
test environments that differed substantially from training data.
At Kaoli, where the most significant domain shift occurred, the
DG model achieved balanced performance across all health
categories, with particularly notable improvements in the
challenging infested class. At Ruokolahti, moderate domain
shifts resulted in consistent improvements across all classes, with
the infested class showing remarkable enhancement. This finding
has important practical implications, suggesting that domain
generalization techniques should be selectively applied based on
anticipated domain shift severity.

While demonstrating clear benefits, this work also revealed
important limitations. The slight performance decrease on the
Paloheiné dataset highlights that domain generalization may not
be universally beneficial when baseline models already achieve
high performance.

Future research should focus on adaptive domain generalization
approaches that can automatically determine when to apply these
techniques, integration with object detection frameworks for
spatially explicit symptom identification, and extension to fine-
grained symptom classification for early outbreak detection.
Multi-modal approaches incorporating additional data sources
such as hyperspectral imagery could further enhance robustness
and accuracy.

This research contributes to the broader field of remote sensing
by demonstrating practical applicability of domain generalization
to real-world environmental monitoring challenges. The methods
and evaluation frameworks developed here can be adapted to
other remote sensing applications facing similar domain shift
challenges. By providing both theoretical insights and practical
tools, this work represents a significant step toward more robust
and scalable deep learning solutions for forest health monitoring,
supporting urgent needs for reliable automated systems in the
face of increasing climate-related forest disturbances.
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