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Abstract 

 

Deep learning has significantly advanced forest health monitoring by enabling automated analysis of high-resolution aerial imagery. 

However, the generalization of these models across ecologically diverse regions remains limited due to domain shifts, which are 

variations in environmental conditions between training and testing locations. In this study, we propose a domain generalization (DG) 

framework that disentangles domain-invariant, task-relevant features from domain-specific environmental variations in multispectral 

UAS imagery. Our approach extends a baseline 2D convolutional neural network by incorporating parallel domain-specific and shared 

feature extractors, along with a domain classifier trained via adversarial learning. We evaluate the model using a leave-one-site-out 

strategy across three Finnish forest sites with diverse ecological characteristics. Results show that the DG model improves classification 

accuracy in previously unseen environments, with performance gains of up to 27% compared to the baseline. These findings highlight 

the effectiveness of feature disentanglement in enhancing the robustness and transferability of deep learning models for forest canopy 

health assessment, supporting more scalable and reliable forest monitoring solutions. 

 

  

1. Introduction 

Unmanned aerial systems (UAS) have become essential tools for 

forest health monitoring, providing high-resolution data needed 

to detect early signs of disease and pest outbreaks. The European 

spruce bark beetle (Ips typographus L.) poses a particularly 

serious threat to boreal forests, causing extensive damage that can 

lead to large-scale forest decline (Patacca et al., 2023; Hlásny et 

al., 2019). 

 

Deep learning models, especially convolutional neural networks 

(CNNs), show promise for automating tree health classification 

from aerial imagery (Safonova et al., 2019; Turkulainen et al., 

2023). However, these models face a significant practical 

limitation: they often fail when applied to new geographic areas 

or environmental conditions different from their training data. 

This problem, known as domain shift, occurs when factors like 

lighting, canopy structure, terrain, or sensor characteristics vary 

between training and deployment locations. 

 

Domain adaptation (DA) and domain generalization (DG) 

techniques address this challenge by training models to focus on 

task-relevant features while ignoring environmental variations 

(Shai et al., 2006; Muandet et al., 2013). While DA methods 

require data from target locations during training, DG approaches 

work without any prior knowledge of deployment conditions. 

This makes DG particularly valuable for operational forest 

monitoring, where data from new areas may not be available 

during model development. 

 

DG methods typically fall into three categories: data 

manipulation (such as augmentation or domain randomization), 

representation learning (like feature disentanglement), and 

learning strategies (including ensemble or meta-learning 

approaches) (Wang et al., 2022; Zhou et al., 2021). This study 

focuses on representation learning through feature 

disentanglement, which explicitly separates task-relevant 

features from domain-specific characteristics. 

Recent work has shown promising results combining feature 

disentanglement with adversarial learning. Park et al. (2025) 

developed methods using gradient reversal layers to promote 

domain-invariant features, while Chen et al. (2024) proposed 

contrastive approaches that align feature distributions across 

domains. The gradient reversal layer (GRL) technique, which 

maximizes domain prediction error to encourage domain-

invariant features, has proven particularly effective (Ganin et al., 

2016). 

 

Despite growing adoption in remote sensing (Zhu et al., 2021; 

Luo et al., 2024), DG applications in forest monitoring remain 

limited. Most existing bark beetle detection systems are trained 

and tested within single locations, severely limiting their 

practical applicability across diverse forest environments. This 

study addresses these limitations by developing a DG framework 

specifically for UAS-based forest health monitoring. We extend 

our previous CNN architecture (Turkulainen et al., 2023) by 

adding domain-adversarial training components. Our approach 

uses dual feature extractors, combined with adversarial learning 

to improve generalization across different environmental 

conditions. 

 

Our earlier work demonstrated strong performance within 

individual sites but required transfer learning with local data for 

new locations (Turkulainen et al., 2024). Here, we investigate 

whether integrating DG can eliminate the need for site-specific 

retraining while maintaining robust performance across diverse 

forest environments. 

 

We evaluate our approach using multispectral imagery from three 

ecologically distinct Finnish forest sites, representing different 

vegetation types, seasons, and imaging conditions. A leave-one-

site-out strategy tests the model's ability to generalize to 

completely unseen environments, providing a rigorous 

assessment of domain generalization capabilities. 
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Our approach represents a novel application of domain 

generalization principles to the specific challenges of bark beetle 

detection in boreal forests, contributing both methodological 

innovations and practical solutions for operational forest 

monitoring systems. By demonstrating the effectiveness of 

feature disentanglement in this domain, we aim to establish a 

foundation for more robust and scalable deep learning 

approaches in forest health assessment. 

 

2. Materials and methods 

2.1 UAS data collection 

Data was collected from four ecologically diverse sites across 

Finland: Ruokolahti (61°29′21.84″N, 29°3′0.72″E), Koli Na-

tional Park (63°5′29.92″N, 29°48′36.01″E), Paloheinä in Hel-

sinki Central Park (60°15′25.20″N, 24°55′19.20″E), and Evo Na-

tional Park (61°10′19.84″N, 25°8′7.81″E). The locations of these 

sites are shown in Figure 1. The datasets cover a range of years, 

seasons, and UAS platforms, introducing natural variability to 

vegetation phenology, lighting, and canopy structure.  

 

 
 

Figure 1. Location of the study sites. Background map from the 

National Land Survey of Finland Topographic Database. 

 

UAS imagery from Ruokolahti, Koli, and Paloheinä has been de-

scribed in prior studies (Turkulainen et al., 2023; Turkulainen et 

al., 2024). At Ruokolahti, data were captured in late August of 

2019, 2020, and 2021 using a MicaSense Altum sensor. At Koli, 

a Kelluu airship equipped with a MicaSense RedEdge camera 

was used to collect imagery in May, June, and September of 

2023. In Paloheinä, data were acquired in May, July, and Sep-

tember 2020 using a MicaSense Altum mounted on a quadcopter. 

To support species classification, we incorporated an additional 

dataset from the Evo site, contributing complementary forest 

characteristics. The Evo site comprises mature boreal forests with 

mixed stands dominated by spruce, pine, and birch. Imagery was 

acquired in early August 2018 with a MicaSense RedEdge sen-

sor.   

2.2 Reference data collection 

Ground reference data were collected across all four study sites 

to support supervised training and validation of the deep learning 

classification models. The data collection approach varied by site 

based on study objectives and logistical constraints, but all sites 

employed standardized assessment protocols for tree health eval-

uation. 

Reference data collection procedures for the Ruokolahti and 

Paloheinä sites are detailed in Turkulainen et al. (2023). At Ru-

okolahti, systematic health assessments were conducted from 

2019 to 2021 across four sub-sites using 66 circular sampling 

plots. At Paloheinä, individual tree assessments were performed 

during spring, summer, and autumn campaigns in 2020, with dif-

ferent trees monitored in each season. Field experts manually se-

lected and annotated individual trees distributed throughout the 

area, targeting a balanced representation of crown vitality sta-

tuses. 

The data collection procedures for the Koli site are described 

comprehensively in Turkulainen et al. (2024). Field reference 

data were collected across 28 circular plots, where trained experts 

recorded tree species and canopy condition. Plots were visited 

repeatedly throughout the growing season to capture temporal 

changes in tree health status. 

At the Evo site, species information was collected in the field 

from four 20 × 20 meter sample plots, focusing on identifying 

tree species visible in aerial imagery, particularly dominant and 

co-dominant individuals. 

Tree health was assessed using standardized symptom categories 

following protocols adapted from Blomqvist et al. (2018). As-

sessment criteria included crown discoloration, defoliation, bark 

damage, resin flow, and the presence of bark beetle entrance or 

exit holes. This standardized approach ensured consistency in 

health classifications across all study sites.  

Tree locations were recorded using site-specific positioning 

methods. In Ruokolahti and Koli, plot centers were located using 

a Trimble Geo XT GPS device (Trimble Navigation Ltd., 

Sunnyvale, CA, USA) and a Topcon Hiper HR GNSS receiver 

(Topcon Corporation, Tokyo, Japan), respectively, with individ-

ual tree positions determined by measuring distance and azimuth 

from plot center. In Evo, tree positions were extracted from ter-

restrial laser scanning (TLS) point clouds collected using a Leica 

HDS6100 scanner (Leica Geosystems AG, Heerbrugg, Switzer-

land) and verified during field investigations. In Paloheinä, the 

tree positions were determined from orthophotos collected prior 

to field tree selection. 

2.3 Data processing 

2.3.1 Image preprocessing: Individual tree crowns were 

manually annotated by creating bounding boxes around each tree 

using the recorded GPS coordinates as reference points. Tree lo-

cations were cross-referenced with the generated orthophotos to 

ensure accurate positioning. Trees that could not be clearly iden-

tified or delineated in the orthophotos due to factors such as over-

lapping crowns, shadow occlusion, or poor image quality were 

excluded from the dataset to maintain annotation reliability. 

Individual tree crown images were extracted from the 

orthophotos using the bounding box coordinates. To ensure 

consistent input dimensions for the deep learning models, all 

extracted images were standardized to 150 × 150 pixels. Images 

smaller than 150 × 150 pixels were zero-padded to maintain 
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aspect ratio and reach target dimensions. Images larger than 150 

× 150 pixels were downsampled using nearest neighbour 

interpolation. The 150 × 150 pixel resolution was selected to 

balance computational efficiency with preservation of crown-

level detail necessary for health classification.  

 

2.3.2 Data labelling: The labels for the trees were determined 

based on the reference data collected in the field. The tree health 

classes were determined based on the colour of the crown, such 

that green and faded green spruces were labelled as healthy, yel-

low and yellowish trees as infested and reddish brown and grey 

trees as dead. All other trees were labelled as non-spruce. The 

total number of samples for each class across all study sites is 

presented in Table 1. 

 

Dataset Healthy Infested Dead Non-

spruce 

Paloheinä 129 107 281 0 

Ruoko-

lahti 

818 19 498 72 

Koli 493 21 210 150 

Evo 53 0 0 129 

Table 1. Total numbers of tree crown images assigned to each 

class by study site. 

 

For training of the DG model, we needed to define domains that 

capture the main sources of variation in forest imagery. We 

considered three approaches: geographic domains (one per site), 

site-temporal domains (combining location and time), and 

seasonal-meteorological domains (combining season and 

weather conditions). 

 

We selected the seasonal-meteorological approach, creating six 

domains: (1) sunny spring, (2) cloudy spring, (3) sunny summer, 

(4) cloudy summer, (5) sunny fall, and (6) cloudy fall. This 

strategy was chosen for several reasons.  

 

Firstly, seasonal and lighting conditions create the most 

significant visual variation in forest imagery. Spring shows trees 

during leaf-off conditions and early foliation, summer captures 

full canopy development, and fall reveals natural senescence that 

must be distinguished from pest damage. Weather conditions 

(sunny vs. cloudy) strongly affect image contrast, shadows, and 

color saturation. This approach also maintains adequate sample 

sizes across domains while capturing meaningful environmental 

variation. Alternative approaches like site-temporal domains 

would create too many small domains, some with few or no 

samples for certain health classes. Additionally, these domains 

align with practical deployment scenarios where bark beetle 

monitoring systems must work reliably across different seasons 

and weather conditions. 

 

2.4 Model implementation 

We implemented the DG model by extending the 2D-CNN archi-

tecture used by Turkulainen et al. (2023). The baseline model 

comprises a feature extractor with three convolutional layers and 

a classification head. To incorporate DG capabilities, we 

augmented the architecture with two key components: (1) a do-

main-specific feature extractor operating in parallel with the orig-

inal feature extractor, now denoted as the shared feature extrac-

tor, and (2) a domain classifier designed to mirror the task classi-

fier's structure. 

The shared feature extractor is optimized to learn domain-invar-

iant, task-relevant features, while the domain-specific extractor 

captures environmental characteristics that arise from domain 

variation. Both shared and domain features are input to the do-

main classifier. A gradient reversal layer (GRL) is applied to the 

shared features before domain classification, promoting invari-

ance by maximizing domain prediction error from these features. 

Canopy health classification is performed exclusively using the 

shared features, ensuring that predictions are based on general-

ized, domain-independent representations. The model is trained 

using a composite loss function comprising three components: (i) 

task classification loss, (ii) domain classification loss computed 

on domain-specific features, and (iii) domain confusion loss ap-

plied to shared features via the GRL. This adversarial training 

setup encourages the shared feature space to be discriminative for 

the classification task while remaining invariant to domain-spe-

cific variations. The total loss function is formulated as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  λ1 × 𝐿𝑡𝑎𝑠𝑘 + λ2 × 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 + λ3 × 𝐿𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛,     (1) 

 

where λ denotes a loss weighing coefficient controlling how 

much influence each loss component has to the total loss value. 

Figure 2 illustrates the architecture of the proposed DG classifi-

cation model. This disentangled optimization strategy enhances 

the model's ability to generalize across diverse environmental 

contexts by effectively isolating task-relevant signals from do-

main-specific noise. 

 

Figure 2. Architecture of the DG model. 
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2.5 Model training 

All models were implemented using PyTorch and trained on 

NVIDIA GPUs with CUDA acceleration. To ensure model 

convergence and stability, we incorporated several regularization 

techniques within the network architecture. Batch normalization 

layers were applied after each convolutional operation to stabilize 

training dynamics and accelerate convergence. Dropout layers 

with a rate of 0.5 were inserted before the final classification 

layers to prevent overfitting and improve generalization 

performance. 

 

The models were trained using the Adam optimizer with an initial 

learning rate of 0.0001, chosen based on preliminary experiments 

showing optimal convergence behavior for this specific task and 

architecture. A learning rate scheduler with exponential decay 

(decay rate = 0.95, decay steps = 1000) was employed to 

gradually reduce the learning rate during training, facilitating 

fine-tuning in later epochs. Early stopping was implemented 

based on validation loss with a patience of 20 epochs to prevent 

overfitting. Training was conducted in mini-batches of size 16, 

for a maximum of 200 epochs 

 

To enhance model robustness to site-specific variations and 

increase the effective size of the training dataset, comprehensive 

data augmentation was applied during training. The 

augmentation pipeline included random horizontal and vertical 

flipping, random rotations, and random translations, random 

brightness variations, contrast adjustments, and saturation 

modifications to simulate different lighting and atmospheric 

conditions. Gaussian noise was added to improve robustness to 

sensor-specific characteristics. These augmentations were 

applied randomly during each training epoch, ensuring that the 

model never saw identical input images across different epochs, 

thereby reducing memorization and improving generalization 

capability. 

 

The loss weighting coefficients for the total loss calculation were 

empirically determined through systematic grid search across the 

parameter space: λ₁ ∈ [0.5, 1.0, 1.5], λ₂ ∈ [0.1, 0.3, 0.5], and λ₃ ∈ 

[0.05, 0.1, 0.2]. Optimal performance was achieved with weights 

λ₁ = 1.0, λ₂ = 0.5, and λ₃ = 0.1, respectively. These weights ensure 

that the primary classification task remains the dominant 

objective while allowing sufficient influence from the domain 

generalization components. 

 

For each leave-one-site-out experiment, the training data was 

further subdivided using stratified sampling to maintain class 

balance. The data from the source domains was divided into 

training and validation following an 80:20 split. Test set included 

100% of data from the held-out target domain. Domain labels 

were assigned consistently across all splits according to the 

seasonal-meteorological categorization described in the data 

processing section. Class balancing was implemented through 

weighted sampling during training to address potential 

imbalances in the health class distribution across different 

domains. 

 

3. Results and discussion 

3.1 Model performance analysis 

To assess the effectiveness of the proposed DG approach, we 

conducted a leave-one-site-out evaluation across three study 

areas: Ruokolahti, Koli, and Paloheinä. In each experimental 

round, one site was held out exclusively for testing, while the 

remaining sites, including Evo, were used for training. Evo was 

excluded as a test site due to the absence of bark beetle symptom 

annotations required for canopy health classification evaluation. 

Model performance was evaluated using multiple metrics 

including overall classification accuracy, class-wise precision, 

recall, and F1-score to provide a comprehensive assessment of 

generalization capabilities across different health categories and 

environmental conditions. 

 

The results, presented in Table 2 and Figure 3, demonstrate that 

the DG model consistently outperformed the baseline 2D-CNN 

across most test scenarios. The DG model achieved substantial 

improvements in generalization performance, with overall 

accuracy gains of 9.8% and 27.2% for the Ruokolahti and Koli 

test sites, respectively. These improvements highlight the 

effectiveness of feature disentanglement in learning domain-

invariant representations that transfer well to unseen 

environments. 
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baseline 2D-CNN and domain generalization (DG) models 
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Figure 3. Overall classification accuracy of the baseline and 

domain generalization models across test sites. 

 

However, the results also reveal important nuances in the DG 

model's performance. For the Paloheinä test set, the DG model 

showed a modest decrease in overall accuracy of 2.6% compared 

to the baseline. This performance pattern suggests that the 

benefits of domain generalization are most pronounced when 

there are significant domain shifts between training and test 

environments, while the approach may introduce minor 

performance trade-offs in scenarios where the baseline model 

already achieves near-optimal performance. 

 

Examination of class-wise performance metrics reveals 

differential impacts of domain generalization across health 

categories. The DG model demonstrated particularly strong 

improvements in distinguishing between healthy and infested 

trees, which is critical for early detection of bark beetle 

outbreaks. For the infested class, the most challenging category 

in the baseline model, the DG approach achieved remarkable 

improvements: precision increased from 0.50 to 0.68 at 

Ruokolahti and from 0.04 to 0.45 at Koli, while recall improved 

from 0.21 to 0.55 at Ruokolahti and from 0.48 to 0.57 at Koli. 

These enhancements are especially valuable given the subtle 

visual differences that characterize early-stage infestations, 

where conventional models often struggle due to domain-specific 

variations. 

 

The dead tree classification also benefited from domain 

generalization, with improved precision and recall across most 

test sites. At Ruokolahti, precision improved from 0.80 to 0.85 

and recall from 0.77 to 0.87, while at Koli, precision increased 

from 0.68 to 0.83 and recall from 0.68 to 0.85.  For the non-

spruce class, performance improvements were substantial at both 

test sites where this category was present. At Ruokolahti, 

precision dramatically increased from 0.15 to 0.58 and recall 

from 0.38 to 0.62, while at Koli, precision improved from 0.37 to 

0.59 and recall from 0.22 to 0.63. These improvements reflect the 

model's enhanced ability to distinguish between different tree 

species across varying environmental conditions. 

 

The magnitude of performance improvements varied 

substantially across test sites, providing insights into the 

conditions under which domain generalization is most beneficial. 

The Koli dataset showed the largest performance gains (27.2% 

improvement in overall accuracy), suggesting that this site 

presented the most significant domain shift relative to the training 

data. This substantial improvement can be attributed to Koli's 

unique environmental characteristics, including pronounced 

seasonal variations in vegetation phenology and distinctive 

topographic features that created challenging imaging conditions. 

The DG model's ability to achieve balanced performance across 

all classes at Koli demonstrates effective domain-invariant 

feature learning. The Ruokolahti dataset exhibited moderate but 

consistent improvements (9.8% increase in overall accuracy), 

indicating that while domain shifts were present, they were less 

severe than those encountered at Koli. This intermediate 

performance gain demonstrates the model's ability to adapt to 

moderately different environmental conditions while maintaining 

robust classification performance across all health categories. 

 

The Paloheinä dataset's slight performance decrease (2.6% 

reduction in overall accuracy) warrants careful interpretation. 

The baseline model already achieved high accuracy on this 

dataset (88.6%), suggesting that the environmental conditions at 

Paloheinä were well-represented in the training data from other 

sites. In such cases, the additional complexity introduced by 

domain generalization mechanisms may not provide substantial 

benefits and could potentially introduce minor performance 

trade-offs due to the regularization effects of the adversarial 

training components.  

 

3.2 Limitations 

While the proposed DG framework demonstrates substantial 

improvements in generalization performance, several limitations 

warrant discussion. The uneven performance gains across sites, 

particularly the slight decrease on the Paloheinä dataset, highlight 

the need for more sophisticated approaches that can 

automatically determine when domain generalization is 

beneficial versus potentially counterproductive. 

 

Class imbalance presents another significant challenge, as the 

distribution of health categories varies substantially across sites 

and domains. The infested class is severely underrepresented in 

some datasets, potentially biasing the model toward more 

prevalent conditions and limiting its ability to detect early or 

subtle symptoms. Future work should investigate specialized 

sampling strategies or loss functions that can better handle class 

imbalance in the context of domain generalization. 

 

The seasonal-meteorological domain definition, while capturing 

important sources of variation, may not fully represent all 

relevant domain shifts. Geographic factors, for instance, could 

introduce additional sources of variation that are not explicitly 

modeled in the current framework. More sophisticated domain 

definition strategies that can automatically discover relevant 

domain boundaries from the data could improve generalization 

performance. 

 

Finally, the current approach focuses primarily on classification 

accuracy and does not explicitly address other important aspects 

of forest health monitoring, such as the spatial distribution of 

symptoms or the temporal dynamics of outbreak progression. 

Integrating these considerations into the domain generalization 

framework could enhance its practical utility for operational 

forest management applications. 
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4. Conclusions 

This study successfully demonstrated the potential of domain 

generalization techniques to address a critical challenge in 

operational forest health monitoring: the limited transferability of 

deep learning models across diverse environmental conditions. 

By developing a domain generalization framework that 

incorporates dual feature extractors and adversarial learning, we 

achieved substantial performance improvements of up to 27% in 

previously unseen environments, particularly where significant 

domain shifts existed between training and testing conditions. 

 

The proposed seasonal-meteorological domain definition 

strategy effectively captured the primary sources of visual 

variation in aerial forest imagery while maintaining sufficient 

sample sizes for robust training. The leave-one-site-out 

evaluation provided compelling evidence that feature 

disentanglement can successfully separate task-relevant, domain-

invariant features from environmental noise. 

 

Our results reveal that the benefits of domain generalization are 

context-dependent, with the largest improvements observed in 

test environments that differed substantially from training data. 

At Koli, where the most significant domain shift occurred, the 

DG model achieved balanced performance across all health 

categories, with particularly notable improvements in the 

challenging infested class. At Ruokolahti, moderate domain 

shifts resulted in consistent improvements across all classes, with 

the infested class showing remarkable enhancement. This finding 

has important practical implications, suggesting that domain 

generalization techniques should be selectively applied based on 

anticipated domain shift severity. 

 

While demonstrating clear benefits, this work also revealed 

important limitations. The slight performance decrease on the 

Paloheinä dataset highlights that domain generalization may not 

be universally beneficial when baseline models already achieve 

high performance.  

 

Future research should focus on adaptive domain generalization 

approaches that can automatically determine when to apply these 

techniques, integration with object detection frameworks for 

spatially explicit symptom identification, and extension to fine-

grained symptom classification for early outbreak detection. 

Multi-modal approaches incorporating additional data sources 

such as hyperspectral imagery could further enhance robustness 

and accuracy. 

 

This research contributes to the broader field of remote sensing 

by demonstrating practical applicability of domain generalization 

to real-world environmental monitoring challenges. The methods 

and evaluation frameworks developed here can be adapted to 

other remote sensing applications facing similar domain shift 

challenges. By providing both theoretical insights and practical 

tools, this work represents a significant step toward more robust 

and scalable deep learning solutions for forest health monitoring, 

supporting urgent needs for reliable automated systems in the 

face of increasing climate-related forest disturbances. 
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